A study of the impact of unconventional sources within a large urban area: Evidence from spatio-temporal assessment of volatile organic compounds.

PDF Version Also Available for Download.

Description

Conventional sources of emissions have been a prime target for policymakers in designing pollution control strategies. However, the evolution of shale gas activities is a growing concern over the impact of unconventional sources on urban and regional air quality. Owing to the development of Barnett Shale production, the fast-growing Dallas-Fort Worth (DFW) metroplex has encountered both types of these emissions. Oil and gas activities result in emissions of ozone precursors, notably volatile organic compounds (VOC). The major objective of this study was to evaluate the spatio-temporal distribution of VOC in order to highlight the influence of unconventional emissions. The study ... continued below

Creation Information

Matin, Maleeha May 2016.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 46 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Matin, Maleeha

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Conventional sources of emissions have been a prime target for policymakers in designing pollution control strategies. However, the evolution of shale gas activities is a growing concern over the impact of unconventional sources on urban and regional air quality. Owing to the development of Barnett Shale production, the fast-growing Dallas-Fort Worth (DFW) metroplex has encountered both types of these emissions. Oil and gas activities result in emissions of ozone precursors, notably volatile organic compounds (VOC). The major objective of this study was to evaluate the spatio-temporal distribution of VOC in order to highlight the influence of unconventional emissions. The study utilized measurements from automated gas chromatography (AutoGC) monitors to analyze the patterns of the total non-methane organic compounds (TNMOC) and relative contributions from marker species of traffic versus oil and gas activities. In this study, data from 2001-2014 was obtained from the Texas Commission on Environmental Quality (TCEQ) for fifteen monitoring sites within the North Texas region. With over a thousand wells in a 10 mile radius, two of the rural sites measured twice as much TNMOC as compared to the urban site in Dallas. Source apportionment analysis was conducted using Positive Matrix Factorization (PMF) technique. The target site located in the urban zone resolved an eight factor model. Natural gas signature was the dominant source of emission with a 52% contribution followed by 31% from two separate traffic-related sources. Considering ethane to be the dominant species in oil and gas emissions, it was observed that the rising ethane/NOx ratio correlated with increasing annual average ozone post-2007. In this period, higher concentration of ozone was found to be associated with stronger winds from the Barnett Shale area – a region that did not seem to contribute to high ozone during 2001-2007. With traffic emissions having flattened over the years, the recent increase in oil- and gas-related emissions has a negative impact on the air quality in this area. Results indicate that the area has failed to observe a declining trend in ozone despite effective reductions in NOx and traffic-related VOC emissions. The findings of the study would be helpful in proper evaluation of the ozone-forming potential of unconventional VOC emissions. Although these emissions may not be strong enough to cause harm through direct exposure, underestimating their potential towards ozone formation could hinder the progress in ozone attainment in growing urban areas. After all, a major portion of the study area continues to be in nonattainment of the EPA designated ozone standards. The study therefore draws the attention of policymakers towards the new influx of emissions that have emerged as a powerful source within the DFW metropolitan area.

Subjects

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2016

Added to The UNT Digital Library

  • June 28, 2016, 4:28 p.m.

Description Last Updated

  • July 25, 2016, 12:32 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 46

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Matin, Maleeha. A study of the impact of unconventional sources within a large urban area: Evidence from spatio-temporal assessment of volatile organic compounds., thesis, May 2016; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc849645/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .