Simulink(R) Based Design and Implementation of a Solar Power Based Mobile Charger

PDF Version Also Available for Download.

Description

Electrical energy is used at approximately the rate of 15 Terawatts world-wide. Generating this much energy has become a primary concern for all nations. There are many ways of generating energy among which the most commonly used are non-renewable and will extinct much sooner than expected. Very active research is going on both to increase the use of renewable energy sources and to use the available energy with more efficiency. Among these sources, solar energy is being considered as the most abundant and has received high attention. The mobile phone has become one of the basic needs of modern life, ... continued below

Creation Information

Mukka, Manoj Kumar May 2016.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 435 times , with 16 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Member

Other

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Mukka, Manoj Kumar

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Electrical energy is used at approximately the rate of 15 Terawatts world-wide. Generating this much energy has become a primary concern for all nations. There are many ways of generating energy among which the most commonly used are non-renewable and will extinct much sooner than expected. Very active research is going on both to increase the use of renewable energy sources and to use the available energy with more efficiency. Among these sources, solar energy is being considered as the most abundant and has received high attention. The mobile phone has become one of the basic needs of modern life, with almost every human being having one.Individually a mobile phone consumes little power but collectively this becomes very large. This consideration motivated the research undertaken in this masters thesis.
The objective of this thesis is to design a model for solar power based charging circuits for mobile phone using Simulink(R). This thesis explains a design procedure of solar power based mobile charger circuit using Simulink(R) which includes the models for the photo-voltaic array, maximum power point tracker, pulse width modulator, DC-DC converter and a battery.The first part of the thesis concentrates on electron level behavior of a solar cell, its structure and its electrical model.The second part is to design an array of solar cells to
generate the desired output.Finally, the third part is to design a DC-DC converter which can stabilize and provide the required input to the battery with the help of the maximum power point tracker and pulse width modulation.The obtained DC-DC converter is adjustable to meet the requirements of the battery. This design is aimed at charging a lithium ion battery with nominal voltage of 3.7 V, which can be taken as baseline to charge different types of
batteries with different nominal voltages.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2016

Added to The UNT Digital Library

  • June 28, 2016, 4:28 p.m.

Description Last Updated

  • July 25, 2016, 12:30 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 16
Total Uses: 435

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mukka, Manoj Kumar. Simulink(R) Based Design and Implementation of a Solar Power Based Mobile Charger, thesis, May 2016; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc849640/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .