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In this thesis, we discuss three main projects which are related to Polish groups 

and their actions on standard Borel spaces. In the first part, we show that the 

complexity of the classification problem of continua is Borel bireducible to a universal 

orbit equivalence relation induce by a Polish group on a standard Borel space. In the 

second part, we compare the relative complexity of various types of classification 

problems concerning subspaces of [0,1]𝑛𝑛 for all natural number 𝑛𝑛. We show that both of 

the homeomorphic relation of closed subsets of [0,1]𝑛𝑛 and the restricted homeomorphic 

relation of closed subsets of [0,1]𝑛𝑛 are Borel reducible to the homeomorphic relation of 

connected closed subsets of [0,1]𝑛𝑛+2; and the restricted homeomorphic relation of closed 

subsets of [0,1] is Borel reducible to the restricted homeomorphic relation of connected 

closed subsets of [0,1]3. In the last chapter, we give a topological characterization 

theorem for the class of locally compact two-sided invariant non-Archimedean Polish 

groups. Using this theorem, we show the non-existence of a universal group and the 

existence of a surjectively universal group in the class. 
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CHAPTER 1

INTRODUCTION

Over the last two decades, descriptive set theory and its applications have been an

active field of research, and there are a lot of development. The three main projects in this

work are closely related to Polish groups and their actions on standard Borel spaces.

(1) The complexity of the classification problem of continua is Borel bireducible to a

universal orbit equivalence relation.

(2) The Borel reducibility theory of the complexity of various classification problems of

closed subsets of [0, 1]n.

(3) The non-existence of a universal locally compact TSI non-Archimedean Polish group

and the existence of a surjectively universal one.

1.1. The Complexity of the Classification Problem of Continua

One of the main subjects of descriptive set theory is to study the complexity for the

orbit equivalence relation induced by a Borel action of a Polish group on a standard Borel

space.

Recall that the Borel space of a topological space (X, τ) is the σ-algebra σ(τ) gener-

ated by the open sets. A measurable space (X,S) is a standard Borel space if it is isomorphic

to (Y, σ(τ)) for some Polish space (Y, τ).

Let G be a Polish group, X a standard Borel space, and a : G ×X → X an action

of G on X. If a is a Borel function (i.e., the pre-images of Borel sets are Borel) then we say

that X is a Borel G-space. And the orbit equivalence relation, denoted EX
G , is given by

xEX
G y ⇐⇒ ∃g ∈ G(a(g, x) = y).

Given two equivalence relations, we first need to define in what sense one is at most

as complicated as the other. This is made precise by means of the concept of reducibility.

For standard Borel spaces X, Y and equivalence relations E on X and F on Y , we say that
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E is Borel reducible to F , denoted by E ≤B F , if there is a Borel function f : X → Y such

that, for any x, y ∈ X,

xEy ⇐⇒ f(x)Ff(y).

If E ≤B F and F ≤B E, then we say that E is Borel bireducible with F and write E ∼B F .

The preorder ≤B imposes a hierarchy of complexity on equivalence relations.

By a theorem of Becker-Kechris (c.f. [2] Theorem 3.3.4), for any Polish group G, there

is a universal equivalence relation in the class of all orbit equivalence relations induced by

Borel actions of G. If follows from results of Mackey (c.f. [8] Theorem 3.5.3) and Uspenskij

(c.f. [8] Theorem 2.5.2) that there is a universal equivalence relation EX
G in the class of all

orbit equivalence relations induced by Borel actions of all Polish group, i.e. for all Borel

G′-space X ′, EX′

G′ ≤B EX
G . We simply refer to such an equivalence relation as a universal

orbit equivalence relation.

Suppose we have a class of mathematical objects so that these objects can be viewed

as forming a standard Borel space, one natural question would be determining when two

objects are or are not isomorphic in an appropriate sense. The isomorphic relation becomes

an equivalence relation on the space, so the complexity of the classification problem can be

compared with other equivalence relations.

Very often, the complexity of classification problems can be shown to be Borel bire-

ducible to an orbit equivalence relation induce by a Polish group action. For example, the

isometric classification problem for all Polish metric spaces([4], [10]), the isometric classifica-

tion problem of all separable Banach spaces([16]), the isometric problem of all separable (nu-

clear) C∗-algebras([19]) and the homeomorphism problem of all compact metric spaces([21])

are all Borel bireducible to some universal orbit equivalence relations, i.e. they are the most

complex equivalence relations in the class of orbit equivalence relations induced by a Polish

group on a standard Borel space.

In Chapter 3, we consider the complexity of the homeomorphic classification problem

among continua and show that it is Borel bireducible to the most complex orbit equivalence

relations induced by a Polish group action.
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1.2. The Complexity of Classifying Various Closed Subsets of [0, 1]n

In Chapter 4, we will compare the complexity of various types of classification prob-

lems concerning subspaces of [0, 1]n for n ∈ N.

Let Hom([0, 1]n) denote the group of all homeomorphisms of the compact metric space

[0, 1]n. For all n ∈ N, define some equivalence relations:

• Hn: homeomorphic relation of closed subsets of [0, 1]n;

• CHn: homeomorphic relation of connected closed subsets of [0, 1]n;

• Rn: restricted homeomorphic relation of closed subsets of [0, 1]n;

• CRn: restricted homeomorphic relation of connected closed subsets of [0, 1]n,

where two closed subsets (resp. connected closed subsets) A,B ⊆ [0, 1]n are restricted home-

omorphic equivalent, denoted A ∼=Rn B (resp. A ∼=CRn B), if there exists f ∈ Hom([0, 1]n)

such that f(A) = B.

The goal of this chapter is to show the following Borel reducibility diagram. Note

that some of the equivalence relations can be trivially reduced to some other equivalence

relations. In particular, we show that Hn ≤B CHn+2 and Rn ≤B CHn+2, for all n ∈ N.

H1 H2 H3 · · ·

CH1 CH2 CH3 · · ·

R1 · · ·

Finally, we show the Borel reducibility between R1 and CR3. We will have the

following diagram (dashed lines represent plausible results, but no proof provided).

R1 R2 R3 · · ·

CR1 CR2 CR3 · · ·
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1.3. Locally Compact TSI Non-Archimedean Polish Groups

A topological group is Polish if it has a Polish topology (i.e., separable and completely

metrizable). A metric d on a Polish group G is two-sided invariant if for all g1, g2, h, k ∈ G,

d(hg1k, hg2k) = d(g1, g2).

If G admits a compatible two-sided invariant metric, we say that G is TSI. Abelian Polish

groups and compact Polish groups are all TSI, but locally compact Polish groups need not

be TSI, an example is SL2(R).

A Polish group is called non-Archimedean if it has a neighborhood base for the identity

that consists of open subgroups. The group S∞ of all permutations of N with the composition

as the group operation and with the pointwise convergence topology is a non-Archimedean

Polish group.

Recall that if C is a class of topological groups, then a universal element of C is

a group G ∈ C such that any other group H ∈ C is topologically isomorphic to a closed

subgroup of G. Similarly, a surjectively universal element of C is a group G ∈ C such that

for any H ∈ C, H is topologically isomorphic to a quotient group of G. It is of interest to

ask whether there are universal or surjectively universal groups in this class.

In [2], Becker and Kechris showed that every non-Archimedean Polish group is topo-

logically isomorphic to a closed subgroup of S∞, thus S∞ is a universal non-Archimedean

Polish group; Gao([7]) showed that there is a surjectively universal group for all non-

Archimedean Polish groups. But it is still unknown that whether there is a universal or

surjectively universal group in the class of locally compact non-Archimedean Polish groups.

In Chapter 5, we consider the class of all locally compact TSI non-Archimedean

Polish groups and give exact answers to these questions. In order to achieve this, we need

to have a thorough understanding of these topological groups. In [11], Xuan and Gao gave

a characterization of all TSI non-Archimedean Polish groups, which is a bigger class of

topological groups containing the class of our interest. Inspired by that, we will show a

characterization theorem of locally compact TSI non-Archimedean Polish groups.
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In [15], the author showed that there are uncountably many non-isomorphic finitely

generated simple groups, and each such a group falls into the class of our interest. Then

by applying the characterization theorem of locally compact TSI non-Archimedean Polish

groups, it turns out that there is no such a group in which uncountably many non-isomorphic

countable simple groups can be embedded. So we show that the answer to the existence of

a universal group in that class is negative.

At the end of the chapter, we give a very explicit construction and show the existence

of a surjectively universal group in the class of our interest, by utilizing the characterization

theorem again.
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CHAPTER 2

PRELIMINARIES

The content of this chapter consists of a brief list of notations, some well-known

definitions and facts from point-set topology, topological groups, and descriptive set theory.

We assume the reader already has familiarity with the basics of sets, groups, and topological

spaces.

2.1. Notations

Suppose X is a topological space, we write an element in X × I as (x, λ) for some

x ∈ X and λ ∈ I. If A ⊆ X and λ ∈ I, we sometimes write the set {(a, λ), a ∈ A} simply as

(A, λ) or A× {λ}.

• ∼=(1,1): Restricted homeomorphic relation

• A: The closure of the set A

• EX
G : The orbit equivalence relation induced by a Borel action of a Polish group G

on a standard Borel space X

• F (X): The space of closed subsets of X

• Hom(X, Y ): The set of homeomorphisms from X to Y

• I : The unit interval (or [0, 1])

• id: The identity map

• IntA: The interior points of the set A

• K(X): The space of compact subsets of X

• lim←−Gi: The inverse limit of the inverse system {Gi}i

• Q: The Hilbert cube (or IN)

• S∞: The group of the permutations of all natural numbers

• TSI: two-sided invariant
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2.2. Definitions and Facts

A topological space X is disconnected if there are disjoint nonempty open sets H and

K in X such that X = H ∪ K. When no such disconnection exists, X is connected. A

space X is path connected if for any two points x and y in X, there is a continuous function

f : I→ X such that f(0) = x, f(1) = y. Such a function f (as well as its range f(I), when

confusion is not possible) is called a path from x to y.

Subspaces of connected spaces are not usually connected. In fact, the only subspace

theorem available dealing with connectedness is just a useful way of rephrasing the definition

so that it can be applied to a subspace without passing to the relative topology.

Theorem 2.1 ([20]). A subspace E of X is connected if and only if there are no nonempty

disjoint sets H and K in X with E = H ∪K, such that

H ∩K = H ∩K = ∅.

The next theorem says that the closure of a connected set is also connected.

Lemma 2.2 ([20]). If E is a connected subset of X and E ⊆ A ⊆ E, then A is connected.

Here is another useful theorem to show the connectedness of a set.

Lemma 2.3 ([20]). If X =
⋃
Xα, where each Xα is connected and

⋂
Xα 6= ∅, then X is

connected.

If x ∈ X, the largest connected subset Cx of X containing x is called the component

of x. The components of X are closed sets, but they need not be open. The path components

of a space X are the equivalence classes in X under the equivalence relation x ∼ y if there

is a path joining x to y.

A space X is Hausdorff (or T2) if two distinct points can be separated by disjoint

open sets, i.e. whenever x and y are distinct points of X, there are disjoint open sets U and

V in X with x ∈ U and y ∈ V .

A space X is compact if each open cover of X has a finite subcover, i.e. for every
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arbitrary collection {Uα}α∈A of open subsets of X such that

X =
⋃
α∈A

Uα,

there is a finite subset B of A such that

X =
⋃
α∈B

Uα.

Every closed subset of a compact space is compact. Any products of compact spaces are

compact. The continuous image of a compact space is compact.

A family E of subsets of X has the finite intersection property if the intersection of

any finite subcollection from E is nonempty. For a compact space X, each family E of closed

subsets of X with the finite intersection property has nonempty intersection.

Theorem 2.4 ([20]). The continuous image of a compact metric space in a Hausdorff space

is metrizable.

The next theorem provides a tool to simplify the process of showing a map is home-

omorphism into showing the map is continuous bijective.

Theorem 2.5 ([20]). A one-one continuous map from a compact space X onto a Hausdorff

space Y is a homeomorphism.

Now we are ready to define some terms of the main topic of Chapter 3.

Definition 2.6. A continuum is a compact, connected Hausdorff space.

Among the continua we find many familiar spaces. Some examples of continua are

the unit interval I, the circle {(x, y) ∈ R2 : x2 + y2 = 1}.

Definition 2.7. Let X be a connected T2-space. A cut point of X is a point p ∈ X such

that X − {p} is not connected. If p is not a cut point of X, we call it a non-cut point of X.

The property of being a cut point, is preserved under homeomorphism; but continuous

maps can destroy cut points. We will use extensively the cut (or non-cut) property in the

proof.
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Lemma 2.8. Suppose we have two homeomorphic continua, say X
f−→ Y , and x, f(x) are two

cut points in their respective spaces, then f �X−{x} maps each component in X −{x} onto a

component in Y − {f(x)}.

Proof. We can write X−{x} =
⋃
Ci and Y −{f(x)} =

⋃
Di, where Ci, Di are components.

Since f is a continuous map, then for each i ∈ N, f(Ci) ⊆ Dji for some ji ∈ N. Suppose

there are two components Ck1 , Ck2 mapped into one single component Dk, then f−1(Dk) is

disconnected, which is impossible. �

Let (X, T ) be a topological space. The class of Borel sets of X is the σ-algebra

generated by the open sets of X. We denote it by B(X, T ). We call (X,B(X)) the Borel

space of X.

Definition 2.9. A measurable space (X,S) is a standard Borel space if it is isomorphic to

(Y,B(Y )) for some Polish space Y or equivalently, if there is a Polish topology T on X with

S = B(T ).

Given a topological space X we denote by F (X) the set of closed subsets of X. We

endow F (X) with the σ-algebra generated by the sets

{F ∈ F (X) : F ∩ U 6= ∅},

where U varies over open subsets of X. If X has a countable basis {Un}, it is clearly enough

to consider U in that basis. The space F (X) with this σ-algebra is called the Effros Borel

space of F (X).

Theorem 2.10 ([13]). If X is Polish, the Effros Borel space of F (X) is standard.

Next we will explain how the space of continua can be viewed as a standard Borel

space. For a Polish space X, let K(X) = {A ⊆ X : A is compact} denote the hyperspace of

compact subsets of X. K(X) is endowed with the Vietoris topology, which is the topology

generated by sets of the form

{K ∈ K(X) : K ∩ U 6= ∅}
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and those of the form

{K ∈ K : K ⊆ U}

where U ⊆ X is open. K(X) is a Polish space. If X is compact, then K(X) is also

compact([13] 4.F).

Let Q = IN denote the Hilbert cube. Since every separable metric space embeds into

Q, so in particular, every compact metric space can be embedded into a (compact) subspace

of Q. We view K(Q) as the class of compact metric spaces, so it is a standard Borel space.

If we consider the subclass of connected compact metric spaces in K(Q), denoted C. Then

C is a closed subset of K(Q) , since for any K ∈ K(Q),

K ∈ C ⇐⇒ ∀ open U, V (U ∩ V = ∅ ⇒ U ∩K = ∅ or V ∩K = ∅ or K 6⊆ U ∪ V ).

Thus C is also a standard Borel space.

In Chapter 5, we will explore characterizations of a certain class of topological groups.

A topological group is a group (G, ·) together with a topology on G such that (x, y) 7→ x·y−1 is

continuous (from G2 into G). A Polish group is a separable completely metrizable topological

group. For example, all countable groups with the discrete topology are Polish groups, (R,+)

with the usual metric is a Polish group.

There are some basic properties about Polish groups,

• If G is a Polish group and H ≤c G is a closed subgroup, then H is a Polish group

with the subspace topology.

• If G is a Polish group and H Ec G is a closed normal subgroup, then the quotient

group G/H is a Polish group with the quotient topology.

• If {Gn}n∈N are Polish groups, then
∏

nGn is a Polish group with the product topol-

ogy.

The group S∞ of all permutations of N with the composition as the group operation

and with the pointwise convergence topology is a Polish group. A compatible metric on S∞
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is

d(x,y) =


0 if x = y,

2−n if x 6= y, n = min{k : x(k) 6= y(k)}.

A basic open set of S∞ has the form

[x0, x1, . . . , xn] := {x ∈ SN : x(k) = xk for all k ≤ n}.

Moreover, S∞ has an open neighborhood base at the identity consisting of open subgroups,

say {[0, 1, . . . , n]}n∈N.

Theorem 2.11 (Becker, Kechris, [2]). Let G be a Polish group. Then the following are

equivalent:

(1) G is isomorphic to a closed subgroup of S∞.

(2) G admits a countable neighborhood base of 1G consisting of open subgroups.

Isomorphisms in this work are all between topological groups, i.e., they are both

group isomorphisms and homeomorphisms. Because of the characterization in the previous

theorem, we can now define non-Archimedean Polish groups.

Definition 2.12. A Polish group G is non-Archimedean if it has a basis at the identity that

consists of open subgroups.

A metric d on a topological group G is left-invariant if d(gh, gk) = d(h, h) for all

g, h, k ∈ G. Birkhoff-Kakutani ([8], Theorem 2.1.1) showed that if G is a metrizable topo-

logical group, then G admits a compatible left-invariant metric. A metric d on a group G

is two-sided invariant (TSI) if d(g1hg2, g1kg2) = d(h, k) for all g1, g2, h, k ∈ G. Klee ([14])

showed a characterization of TSI groups.

Theorem 2.13 ([14]). A metrizable group G is TSI if and only if there is a countable open

neighborhood base {Vn} about 1G such that gVng
−1 = Vn for all n ∈ N and g ∈ G.

An inverse system of topological groups consists of a sequence of {Gi}i∈N topological

groups, and a collection of continuous homomorphisms πj,i : Gj −→ Gi for all i ≤ j, so that

11



(1) πi,i : Gi −→ Gi is the identity, and

(2) whenever i ≤ j ≤ k, we have πk,i = πj,i ◦ πk,j.

Given an inverse system {Gi}i∈N of topological groups, its direct product is the topo-

logical group
∏
Gi, endowed with the product topology, and the group operation is defined

coordinatewise.

The inverse limit lim←−Gi is a subgroup of
∏
Gi defined as{

(gi)i∈N ∈
∏

Gi : πj,i(gi) = gj for all i ≤ j
}
.

If each Gi is a Hausdorff space for all i ∈ N, then lim←−Gi is a closed subspace of
∏
Gi.

Lemma 2.14. If {Gi}i∈N is an inverse system of Hausdorff topological groups, then lim←−Gi is

a closed subspace of
∏
Gi.

Proof. Let (gi) ∈
∏
Gi − lim←−Gi. Then there exists m,n with n ≥ m and πn,m(gn) 6= gm.

Choose open disjoint neighborhoods U and V or πn,m(gn) and gm in Gm, respectively. Let

U ′ be an open neighborhood of gn in Gn, such that πm,n(U ′) ⊆ U . Consider the basic open

subset W =
∏

i∈N Vi of
∏
Gi where Vn = U ′, Vm = V and Vi = Gi for i 6= m,n. Then W is

a open neighborhood of (gi), disjoint from lim←−Gi. This shows that lim←−Gi is closed. �

Actually, we can define an inverse system in a more general context. Let (I,≤) be

a directed partially ordered set, that is, I is a set with a binary relation ≤ satisfying the

following conditions:

(1) i ≤ i, for i ∈ I;

(2) i ≤ j and j ≤ k imply i ≤ k, for i, j, k ∈ I;

(3) i ≤ j and j ≤ i imply i = j, for i, j ∈ I; and

(4) if i, j ∈ I, there exists some k ∈ I such that i, j ≤ k.

An inverse system of topological groups over I consists of an indexed collection {Gi}i∈I of

topological groups, and a collection of continuous homomorphisms πj,i : Gj → Gi for all

i ≤ j, so that

(1) πi,i : Gi −→ Gi is the identity, and

12



(2) whenever i ≤ j ≤ k, we have πk,i = πj,i ◦ πk,j.

Let I be a directed partial order and J ⊆ I. We say that J is cofinal in I if for any

i ∈ I there is j ∈ J such that i ≤ j. If J is cofinal in I then (J,≤ |J) is also a directed

partial order. If {Gi}i∈I is an inverse system of topological groups and J ⊆ I is cofinal, then

{Gj}j∈J is also an inverse system, moreover, lim←−i∈I Gi and lim←−j∈J Gj are isomorphic.

13



CHAPTER 3

THE COMPLEXITY OF THE CLASSIFICATION PROBLEM OF CONTINUA

3.1. The Ĩ(X,A) Construction

Suppose X is a (path) connected perfect compact metric space and A ⊆ X is a closed

subset. We will construct a (path) connected compact metric space Ĩ(X,A).

Since our desired set Ĩ(X,A) is built on from the set I(X,A), which is defined in

[21], so we need to first review the construction of I(X,A). Here we have to point out that

neither the I-construction nor the Ĩ-construction depends on the (path) connectivity or the

perfect property of X. As long as X is a compact metric space and A ⊆ X is a closed subset

of X, the I(X,A) and Ĩ(X,A) can be constructed in the following ways.

Pick a countable dense subset of A and enumerate it in such a way that each element

occurs infinitely many times, denote the enumeration by {a1, a2, . . . }. Then the set I(X,A) ⊆

X × I is defined by

I(X,A) := X × {0} ∪ {a1, a2, . . . },

where ai = (ai,
1
i+1

) for all i ∈ N.

Note that I(X,A) consists of two parts: one part is the copy of the space X as X×{0};

the other part is the countable set of isolated points DA := {a1, a2, . . . } in X× (0, 1] (Figure

3.1).

A X

DA

Figure 3.1. I(X,A)
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Generally speaking, the construction described above codes a pair of sets (X,A) into

one set I(X,A) and in the meantime we can still keep track of the original pair. This

information preserving construction is made precisely by the following theorem.

Theorem 3.1 ([21]). Let X, Y be compact metric spaces, with A,B closed subsets so that A

(resp. B) contains all isolated points of X (resp. Y ). Let I(X,A) and I(Y,B) be constructed

as above. Then every homeomorphism g : X → Y with g(A) = B extends to a homeomor-

phism I(X,A) → I(Y,B). Conversely, if f : I(X,A) → I(Y,B) is a homeomorphism, then

f(X) = Y and f(A) = B.

The author mentioned in [21] that DA is unique up to homeomorphism on the choices

of countable dense subsets of A and the ways of enumerations of those sets. We will show

next that DA is unique up to homeomorphism in a broader sense, as long as DA satisfies two

conditions stated in the following theorem.

Proposition 3.2. Let (X, ρ) be a perfect compact metric space, A ⊆ X be a closed subset,

and I(X,A) = X × {0} ∪DA be constructed as above. Suppose D′A ⊆ X × I is a countable

set of isolated points that satisfies

(C1) D′A ⊆ X × (0, 1],

(C2) D′A −D′A = A× {0},

then X × {0} ∪D′A ∼= I(X,A).

Proof. Clearly, the set DA specifically constructed above satisfies both (C1), (C2). Instead

of proving the statement directly, we will show a more general argument.

Suppose DA, D
′
A are arbitrary countable sets of isolated points satisfying (C1) and

(C2). We will find a homeomorphism f : X × {0} ∪DA → X × {0} ∪D′A (Figure 3.2) such

that f �X×{0}= id. Since the spaces under consideration are compact metric spaces, it is

enough to find a continuous bijection f by Theorem 2.5.

Enumerate DA, D
′
A

DA = {d1,d2, . . . }

D′A = {d′1,d′2, . . . }
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A X

DA

A X

D′A

Figure 3.2. X × {0} ∪DA and X × {0} ∪D′A

in such a way that the vertical distance of d to X ×{0} is decreasing, i.e. π2(di+1) ≤ π2(di)

for i ∈ N, where π2 is the projection map π2 : X× I→ I. Notice that for all n ∈ N, there are

only finitely many d ∈ DA and d′ ∈ D′A such that d,d′ ∈ X × [ 1
n+1

, 1
n
). Otherwise, suppose

there are infinitely many d ∈ DA or d′ ∈ D′A in X× [ 1
n+1

, 1
n
) for some n, then there will be a

limit point in DA or D′A, respectively, since both X × {0} ∪DA, X × {0} ∪D′A are compact

spaces. But this contradicts with that DA, D
′
A consist of isolated points.

From (C2), we have

(1) A ⊆ π1(DA) and A ⊆ π1(D′A),

where π1 is the projection map π1 : X × I → X. Suppose {dn1 ,dn2 , . . . ,dnk} ⊆ DA and

{d′m1
,d′m2

, . . . ,d′mk} ⊆ D′A, we have

(2) A ⊆ π1(DA − {dn1 ,dn2 , . . . ,dnk}) and A ⊆ π1(DA − {d′m1
,d′m2

, . . . ,d′mk}).

It is possible that for some d ∈ DA or d′ ∈ D′A, π1(d) 6∈ A or π1(d′) 6∈ A. Next we

will define some points a, a′ in A that are the closest to π1(d), π1(d′) respectively.

Claim 3.3. For all di ∈ DA, there exists ai ∈ A such that the distance between π1(di) and

A achieves its minimum at ai, i.e.

ρ(π1(di), ai) = ρ(π1(di), A),

where ρ is a compatible metric on X. Similarly, for all d′i ∈ D′A, there exists a′i ∈ A with

ρ(π1(d′i), a
′
i) = ρ(π1(d′i), A).
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Proof of Claim: Since X is a compact space, so any family of closed subsets of X with

the finite intersection property has nonempty intersection. Fix an arbitrary d ∈ DA and

denote ρ(π1(d), A) by r. For all n ∈ N, the closed ball Bn := Bρ(π1(d), r + 1/n) intersects

with A. Now the family of closed subsets {Bn}n ∪ A has the finite intersection property, so⋂
nBn ∩A 6= ∅. Since

⋂
nBn = Bρ(π1(d), r), so there exists a ∈ A with ρ(π1(d), a) = r. �

Fix the corresponding sequences {ai}i, {a′i}i ⊆ A for {di}i and {d′i}i, respectively.

We will show that {ai}i, {a′i}i and {π1(di)}i, {π1(d′i)}i behave closely.

Claim 3.4. If {dnk}k ⊆ DA converges to some (a0, 0) ∈ X × I, then {ank}k converges to a0.

Similarly, if d′nk
k−→ (a′0, 0), then a′nk

k−→ a′0.

Proof of Claim: We show {ank}k is Cauchy. By the way we defined ank , we have

ρ(π1(dnk), ank) ≤ ρ(π1(dnk), a0).

Then by triangle inequality,

ρ(ank , ank′ ) ≤ ρ(π1(dnk), ank) + ρ(π1(dnk), π1(dnk′ )) + ρ(π1(dnk′ ), ank′ )

≤ ρ(π1(dnk), a0) + ρ(π1(dnk), π1(dnk′ )) + ρ(π1(dnk′ ), a0).

Since the sequence {π1(dnk)}k is Cauchy and converging to a0 by assumption, so {ank}k is

also Cauchy. Hence ank
k−→ a0, by the fact that π1(dnk)

k−→ a0 again. �

We are now ready to define the map f . The idea is that f acts as the identity function

on the set X × {0} and f gives a one-one correspondence between points in DA and D′A.

The goal of the correspondence d
f−→ d′ is that as d ∈ DA approaches some point in A×{0},

we want to have d′ ∈ D′A approach d and thus approach to the same point in A × {0} as

well.

Stage 1:

Suppose DA or D′A has some points in X × [1
2
, 1), otherwise, we move on to the

next stage and set m′1 = 0 and im′1 = 0. List all di ∈ DA such that π2(di) ∈ [1
2
, 1),

say d1, . . . ,dn1 , and list all d′j ∈ D′A so that π2(d′j) ∈ [1
2
, 1), say d′1, . . . ,d

′
m1

. Because
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of (1), we know that Bρ(a1, 1) ∩ π1(D′A) 6= ∅. So for d1, take the smallest j1 so that

π1(d′j1) ∈ Bρ(a1, 1) ∩ π1(D′A). Suppose we have defined di−1
f−→ d′ji−1

. By (2), we know that

Bρ(ai, 1) ∩ π1(D′A − {d′1, . . . ,d′ji−1
}) 6= ∅. So for di, let ji be the smallest number such that

d′ji has not been used and π1(d′ji) ∈ Bρ(ai, 1) ∩ π1(D′A).

Let m′1 := max{j1, . . . , jn1 ,m1} and for each d′j, j ≤ m′1 that has not been used, we

will find dij like in the previous paragraph. This completes the first stage, and let im′1 record

the largest index of di ∈ DA that has been used.

Stage 2

Suppose DA or D′A has some points in X × [1
3
, 1

2
) that have not been used, otherwise,

we move on to the next stage and set m′2 = 0 and im′2 = 0. We list all di ∈ DA such that

π2(di) ∈ [1
3
, 1

2
), say dn1+1, . . . ,dn2 , and list all the d′j ∈ D′A such that π2(d′j) ∈ [1

3
, 1

2
), say

d′m1+1 . . . ,d
′
m2

. For each such di ∈ DA that has not occurred, let ji be the smallest number

so that d′ji has not been used and π1(d′ji) ∈ Bρ(ai,
1
2
) ∩ π1(D′A).

Let m′2 be the maximum of all the indexes ji defined so far and m2. We will assign

each d′j, j ≤ m′2 that has not been assigned some dij like before. This completes the second

stage and let im′2 record the largest index of di ∈ DA that has been used.

...

We can continue this process. It is clear that the correspondence between points in

DA and D′A is one-one. To see that the correspondence defined this way is indeed a bijection,

note that as n→∞, the set X × [ 1
n+1

, 1
n
) will eventually contain every point of DA and D′A.

For all Stage n, we have either assigned f(d) or f−1(d′), for d ∈ DA ∩ X × [ 1
n+1

, 1
n
) and

d′ ∈ D′A ∩X × [ 1
n+1

, 1
n
), respectively.

The last thing we want to show is the continuity. f is continuous on DA, since both

DA and D′A consist of isolated points and f is a one-one correspondence between them. f is

also continuous on (X−A)×{0}, as f �(X−A)×{0}= id and (X−A)×{0} is open in I(X,A).

So we just need to check f is continuous at (a, 0), for all a ∈ A.

Since I(X,A) is a metric space with a compatible metric r:

r[(x1, a1), (x2, a2)] = ρ(x1, x2) + |a1 − a2|,
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where ρ is a compatible metric on X, so we really need to check that for all {an}n ⊆ I(X,A)

with an
n−→ (a, 0), f(an)

n−→ (a, 0). Suppose there exists N0 with an 6∈ DA for all n > N0, then

f(an) = an for all n > N0, thus f(an)
n−→ (a, 0). So without loss of generality, we can assume

that there are infinitely many n ∈ N such that an ∈ DA, say {ank}k ⊆ DA. It is enough

to show that f(ank)
k−→ (a, 0). Equivalently, we need to show that for all {dik}k ⊆ DA with

dik
k−→ (a, 0), f(dik)

k−→ (a, 0).

By the way we enumerate the set DA, we have ik
k−→∞. Then,

r[f(dik), (a, 0)] = ρ(π1(f(dik)), a) + π2(f(dik))

≤ ρ[π1(dik), π1(f(dik))] + ρ[π1(dik), a] + π2(f(dik)).(3)

Recall the two sequences of numbers associated with each stage of construction,

{m′1,m′2, . . . } and {im′1 , im′2 , . . . }. By (C2), there exists a strictly increasing subsequence

{m′k1 ,m
′
k2
, . . . } with m′kn 6= 0 for all n ∈ N, and the corresponding non-decreasing subse-

quence {im′k1 , im′k2 , . . . } with im′kn 6= 0 for all n ∈ N. We claim the following:

Claim 3.5. For all i > im′kn , π2(f(di)) <
1
kn

, and ρ[π1(di), π1(f(di))] <
1
kn

.

Proof of Claim: Note that at each stage kn, we have assigned all d′j ∈ D′A such that

π2(d′j) ≥ 1
kn

with some dij ∈ DA and ij ≤ im′kn . So π2(f(di)) <
1
kn

for all i > im′kn .

On the other hand, for all i > im′kn , di ∈ DA must have not been used in the stage

kn or earlier stages. Thus, ρ[π1(di), π1(f(di))] <
1
kn

. �

Now combine the inequality (3) with Claim 3.4, 3.5, we have proved that f(dik)
k−→

(a, 0). �

Theorem 3.1 and Proposition 3.2 together will immediately imply the following result,

we will only state the theorem without providing a proof.

Corollary 3.6. Let X, Y be perfect compact metric spaces and A ⊆ X, B ⊆ Y be closed

subsets. Suppose DA ⊆ X × I and DB ⊆ Y × I are countable sets of isolated points that

satisfy:
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(C1) DA ⊆ X × (0, 1], DB ⊆ Y × (0, 1];

(C2) DA −DA = A× {0}, DB −DB = B × {0}.

Then X×{0}∪DA
∼= Y ×{0}∪DB if and only if there exists a homeomorphism f : X → Y

such that f(A) = B (Figure 3.3).

A X

DA

B Y

DB

Figure 3.3. I(X,A) and I(Y,B)

Remark 3.7. In Corollary 3.6 and Proposition 3.2, we can make weaker assumptions about

the pairs (X,A), (Y,B), and the statements are still true. Similar to the assumptions made

in Theorem 3.1, we can assume X, Y are compact metric spaces, with A,B closed subsets

so that A (resp. B) contains all isolated points of X (resp. Y ).

Continue our construction of Ĩ(X,A). Let XA := DA and embed I(X,A) into

I(X,A)× {0} ∪XA × I as I(X,A)× {0} (Figure 3.4).

X
A

DA

Figure 3.4. I(X,A)× {0} ∪ (XA × I)

Finally, we put all points XA × {1} into one equivalent class, denoted a∗, and all

the other points into distinct classes of their own, call the resulting quotient space Ĩ(X,A)

(Figure 3.5).
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X
A

DA

a∗

Figure 3.5. Ĩ(X,A)

Since the continuous image of a compact space is still compact, so Ĩ(X,A) is clearly

a compact space. By Theorem 2.4, Ĩ(X,A) is also metrizable. Next, we will define a

compatible metric τ on Ĩ(X,A).

Lemma 3.8. Suppose ρ is a compatible metric for I(X,A) with ρ < 1, then Ĩ(X,A) has a

compatible metric

τ [(x, r), (y, s)] = 2|r − s|+ (1−max{r, s})ρ(x,y),

for (x, r), (y, s) ∈ Ĩ(X,A).

Proof. First we check τ is a metric. Actually, we just need to check the triangle inequality.

Given (x, r), (y, s), and (z, t) in Ĩ(X,A), we look at the following cases:

• s < r = t:

τ [(x, r), (y, s)] + τ [(y, s), (z, t)] ≥ 2|r − t|+ (1− r)ρ(x, z)

• r = t < s:

τ [(x, r), (y, s)] + τ [(y, s), (z, t)] ≥ 4|s− r|+ (1− s)ρ(x, z)

= 4|s− r|+ (1− r)ρ(x, z)− (s− r)ρ(x, z) > (1− r)ρ(x, z)

• s < r < t:

τ [(x, r), (y, s)] + τ [(y, s), (z, t)] ≥ 2|r − t|+ (1− t)ρ(x, z)
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• r < s < t:

τ [(x, r), (y, s)] + τ [(y, s), (z, t)] ≥ 2|r − t|+ (1− t)ρ(x, z)

• r < t < s:

τ [(x, r), (y, s)] + τ [(y, s), (z, t)] ≥ 2|s− r|+ 2|s− t|+ (1− s)ρ(x, z)

≥ 2|s− r|+ (1− t)ρ(x, z) ≥ 2|t− r|+ (1− t)ρ(x, z)

Next, we check τ is compatible with the quotient topology. There are two types of

points in Ĩ(X,A), say a∗ as one type and all other points as the other type.

An open neighborhood of a∗ in the quotient topology has the form XA× (1− ε, 1] for

some ε > 0, and it is equal to the open ball Bτ (a
∗, ε).

Fix some x′ := (x, r) ∈ Ĩ(X,A), where r < 1. For one direction, consider an open ball

Bτ (x
′, ε) for some ε > 0. We can find an open set in the quotient topology, say Bρ(x, ε/4)×

(r − ε/4, r + ε/4), such that it is contained in the open ball. On the other hand, suppose

there is an open neighborhood V ⊆ Ĩ(X,A) of x′ in the quotient topology, we will find an

open ball at x′ with respect to the metric τ contained in V .

Without loss of generality, we can assume V does not contain a∗. Then the quotient

map is 1-1 on the pre-image of V in the product space X ×{0}∪XA× I. Hence there exists

ε > 0 such that Bρ(x, ε)× (r − ε, r + ε) ⊆ V in the quotient topology.

Finally, let ε′ > 0 such that ε′ < ε and ε′ < 1−r
1
2

+ 1
ε

, we can check that Bτ (x
′, ε′) ⊆

Bρ(x, ε)× (r − ε, r + ε). For all (y, s) ∈ Bτ (x
′, ε′),

(4) 2|r − s| ≤ τ [(x, r), (y, s)] < ε′ < ε,

so |r − s| < ε/2. Moreover,

(1− r − ε′/2)ρ(x,y) ≤ (1−max{r, s})ρ(x,y) ≤ τ [(x, r), (y, s)] < ε′,

where the leftmost inequality is because of (4). So

ρ(x,y) < ε′/(1− r − ε′/2) < ε.
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Hence (y, s) ∈ Bρ(x, ε)× (r − ε, r + ε). �

In the space Ĩ(X,A), there is a very special point, namely a∗. Intuitively, a∗ is path

connected to all the other points (assuming the space X is path connected), this property

will turn out to be very important in uncovering the original pair (X,A). We will make this

topological property precisely in the following lemma.

Lemma 3.9. If X is a (path) connected perfect compact metric space, then the space Ĩ(X,A)

defined above is (path) connected. Moreover, a∗ is a cut point and Ĩ(X,A) − {a∗} has

infinitely many components.

Proof. The subset XA× I is clearly path connected, as all the points in it are connected to

a∗. IfX is (path) connected, then Ĩ(X,A) is also (path) connected, sinceXA×I∩X×{0} 6= ∅.

For the second part, we will write out all the components of Ĩ(X,A)− {a∗}:

Ca := {(a, λ), λ ∈ [0, 1)}, for all a ∈ DA,

and

C∞X := X × {0} × {0} ∪ A× {0} × [0, 1).

Actually, all the components Ca for a ∈ DA are clopen sets in Ĩ(X,A) − {a∗}. To

check C∞X is (path) connected, notice that each X × {0}2 ∪ {a} × {0} × [0, 1) is (path)

connected for all a ∈ A, so C∞X =
⋃
a∈AX ×{0}2 ∪ {a}× {0}× [0, 1) is (path) connected, as⋂

a∈AX × {0}2 ∪ {a} × {0} × [0, 1) = X × {0}2 6= ∅. �

3.2. The Borel Reduction Map

Next, we will show the construction from the pair (X,A) with A ⊆ X into the space

Ĩ(X,A) is a Borel map. Since this is a pure computational problem, we will divide it up into

some small lemmas and then combine all of them in the end.

Zielinski mentioned in [21] that the map I from the space of pairs {(X,A) ∈ K(Q)×

K(Q) : A ⊆ X} into K(Q × [0, 1]) is Borel. For the completeness, we briefly explain it

here. We will use the Kuratowski-Ryll Nardzewski selector functions stated in the following

theorem.
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Theorem 3.10 ([13]). Let X be Polish. There is a sequence of Borel functions dn : F (X)→

X, such that for nonempty F ∈ F (X), {dn(F )} is dense in F .

Fix h : N → N, an enumeration with inifinite repetition, and let {dn}n∈N be the

functions in Theorem 3.10. Define I(X,A) = X × {0} ∪ DA as before, where DA =

{(dh(1)(A), 1/2), (dh(2)(A), 1/3), . . . }. Then for any open U in Q× [0, 1], I(X,A) ∩ U 6= ∅ if

and only if

∃n, (dn(X), 0) ∈ U or ∃n, (dh(n)(A), 1/(n+ 1)) ∈ U,

a Borel condition by the measurability of the selector functions. Thus (X,A)
I−→ I(X,A) is

a Borel map.

Suppose X is a topological space, we embed it into the cylinder X × I as X × {0},

and obtain the cone ΛX over X as the quotient space of X × I, by identifying all the points

(x, 1) in X × I as a single point. Note that if X ∈ K(Q), then ΛX belongs to K(ΛQ).

Lemma 3.11. Suppose X ⊆ Q is a closed subset, then the map f : K(Q) → K(ΛQ) by

f(X) = ΛX is Borel.

Proof. We can write f as a composition of two functions

X
f1−→ X × I f2−→ ΛX.

f1 is Borel, since for all basic open set U × V of Q× I, (X × I) ∩ (U × V ) 6= ∅ if and

only if X ∩ U 6= ∅.

Suppose U is an open set in ΛQ, let {(un, λn)}n be a countable dense subset of U .

Then ΛX ∩ U 6= ∅ if and only if

⋃
n

⋃
{i:Bρ(un,

1
i
)×(λn− 1

i
,λn+ 1

i
)⊆U}

{X ∩Bρ(un,
1

i
) 6= ∅},

where ρ is a compatible metric on X. Thus f2 is Borel as well. �

The construction of Ĩ(X,A) is more or less like constructing a partial cone with the

base XA = DA, the closure of all isolated points in I(X,A). Because of the previous lemma,
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we know the map from XA to ΛXA is Borel. We will show next that the map I(X,A)→ XA

is also Borel.

Lemma 3.12. Suppose (X, ρ) is a compact metric space. For all A ∈ K(X), let DA denote

the set of isolated points in A. Then the map f : K(X)→ K(X) by f(A) = DA is Borel.

Proof. For all A ∈ K(X), let A′ = A − DA, i.e., A′ is the set of limit points of A. We

first check that the map A 7→ A′ is Borel. Suppose U ⊆ X is an open set and {un}n is a

countable dense subset of U , then A′ ∩ U 6= ∅ if and only if

⋃
n

⋂
i

{A ∩Bρ(un,
1

i
) 6= ∅},

where Bρ is an open ball. Thus the map is Borel.

Now, DA ∩ U 6= ∅ if and only if

⋃
n

⋃
i

{A ∩Bρ(un,
1

i
) 6= ∅} ∩ {A′ ⊆ X −Bρ(un,

1

i
)},

where Bρ is a closed ball. Hence, we have that A 7→ DA is Borel. �

Given a perfect compact metric space X and a closed subset A ⊆ X, let Ĩ(X,A)

be constructed as before, then Ĩ(X,A) is a subspace of the cone ΛI(X,A). Actually, recall

that I(X,A) = X × {0} ∪DA, then Ĩ(X,A) is the union of the cone ΛDA ⊆ ΛI(X,A) and

I(X,A)× {0} ⊆ ΛI(X,A). So we will check next the union operation is Borel.

Lemma 3.13. Suppose X is a compact metric space. The map (K,L) 7→ K∪L from K(X)×

K(X) into K(X) is Borel.

Proof. Let U ⊆ X be an open set, then (K ∪ L) ∩ U 6= ∅ if and only if

K ∩ U 6= ∅ or L ∩ U 6= ∅.

This is clearly Borel. �

We are ready to compute the Borel measurability of the map (X,A)
Ĩ−→ Ĩ(X,A).
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Proposition 3.14. The map Ĩ from {(X,A) ∈ K(Q) × K(Q) : A ⊆ X} into Ĩ(X,A) ∈

K(Λ(Q× I)) is Borel.

Proof. Consider the following maps

(X,A)
f0−→ I(X,A)

f1−→ DA
f2−→ ΛDA,

(X,A)
f0−→ I(X,A)

f3−→ I(X,A)× {0},

(ΛDA, I(X,A)× {0}) f4−→ ΛDA ∪ I(X,A)× {0}.

Notice that the map f3 from I(X,A) to I(X,A)×{0} is actually a composition of two maps:

Firstly, I(X,A) ⊆ K(Q× I) is mapped to I(X,A)×{0} ⊆ K(Q× I× I), then I(X,A)×{0}

is mapped to I(X,A)× {0} ⊆ K(Λ(Q× I)) by the quotient map.

Since all the maps f0, f1, f2, f3 and f4 are Borel by previous lemmas, so Ĩ(X,A) =

f4(f2 ◦ f1 ◦ f0(X,A), f3 ◦ f0(X,A)) is Borel. �

3.3. Code One Closed Set

Now let us consider a class P of perfect compact metric spaces that has a certain

property,

P = {X is perfect compact metric space : ∀x ∈ X,X − {x} is path connected}.

Example 3.15.

• For all n ≥ 2, In ∈ P ,

• The Hilbert cube Q is in P .

The Hilbert cube Q is path connected. For example, let x = (x1, x2, . . . ),y =

(y1, y2, . . . ) be two points in Q. Then for all n ∈ N, there is a continuous map fn : I → I

such that fn(0) = xn and fn(1) = yn, say fn(λ) = (1− λ)xn + λyn. Hence, f : I→ Q given

by f(λ) = (f1(λ), f2(λ), . . . ) is a continuous path from x to y.

If we remove an arbitrary point x∗ = (x∗1, x
∗
2, . . . ) ∈ Q, the remaining space Q−{x∗}

is still path connected.
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Again, consider two points x,y ∈ Q − {x∗}. In a simpler case, suppose there exist

i, j such that xi 6= x∗i and yj 6= x∗j . Let fn, n ∈ N be the same maps as in the previous case,

then

(f1(λ), f2(λ), . . . , fi−1(λ), xi, fi+1(λ), . . . )

is a continuous path that sends x to (y1, . . . , yi−1, xi, yi+1, . . . ). Note that x∗ is not on the

path since the ith coordinate is a constant xi which is not equal to x∗i . Then we just move

(y1, . . . , yi−1, xi, yi+1, . . . ) to y by a path

(y1, . . . , yi−1, fi(λ), yi+1, . . . ).

Once again, x∗ is not on the path since yj 6= x∗j .

On the other hand, suppose the only coordinate that x,y are different from x∗ is the

ith. Then we can move x along some jth coordinate (j 6= i) to a different x′j 6= xj, now that

x′,y have more than one coordinates combined that are different from x∗, we can apply the

previous case to find a path from x to y without x∗ on it.

Next, we will show that the Ĩ construction will preserve the information about the

original pair in the sense that made precisely by the following theorem.

Theorem 3.16. Suppose X, Y ∈ P, and A ⊆ X,B ⊆ Y are closed subsets with at least two

points, i.e. |A|, |B| ≥ 2. Then Ĩ(X,A) ∼= Ĩ(Y,B) if and only if there exists a homeomorphism

f : X → Y such that f(A) = B.

Proof. Suppose f ′ : X → Y is a homeomorphism with f ′(A) = B, then by Theorem

3.1, we can extend f ′ to a homeomorphism f : I(X,A) → I(Y,B) with f(XA) = YB and

f(X ×{0}) = Y ×{0}. And we want to extend f further into a homeomorphism f̃ between

Ĩ(X,A) and Ĩ(Y,B).

We assign f̃(a∗) = b∗. For all x ∈ XA and λ ∈ I, let f̃((x, λ)) := (f(x), λ). Now f̃ is

a bijection. We need to show f̃ is continuous.

• For all point in (X−A)×{0}×{0}, f̃ behaves exactly like f , since (X−A)×{0}×{0}

is open in Ĩ(X,A), so f̃ is continuous.
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• For all point x ∈ XA× [0, 1)∪{a∗}, a basic open neighborhood for f̃(x) has the form

U×V , where U is open in I(Y,B) and V is open in I, then f̃−1(U×V ) = f−1(U)×V ,

which is open in Ĩ(X,A).

So f̃ is a bijective continuous map between two compact metric spaces, and hence f̃ is a

homeomorphism.

For the other direction, assume f̃ : Ĩ(X,A) → Ĩ(Y,B) is a homeomorphism, we will

show that f̃(I(X,A) × {0}) = I(Y,B) × {0}, which implies I(X,A) ∼= I(Y,B). Then by

Theorem 3.1 again, we will have a homeomorphism f : X → Y such that f(A) = B.

We first check the cut (or non-cut) property of all the points in Ĩ(X,A). Recall that

Ĩ(X,A) = I(X,A)× {0} ∪XA × (0, 1) ∪ {a∗} (Figure 3.5), where I(X,A) = X × {0} ∪DA

and XA = DA.

• All the points in DA × {0} are non-cut points. Actually, remove an arbitrary point

x ∈ DA×{0} from Ĩ(X,A), the remaining space Ĩ(X,A)−{x} is still path connected.

• All the points in X × {0}2 are non-cut points. Suppose (x, 0, 0) has been removed

for some x ∈ X−A, then by the assumption X ∈ P , X−{x} is still path connected,

so is X ×{0}2−{(x, 0, 0)}. Hence Ĩ(X,A)−{(x, 0, 0)} being the union of two path

connected sets with nonempty intersection XA × {0} is path connected.

Suppose we have removed an arbitrary point (a, 0, 0) for some a ∈ A, we show

the remaining points are still path connected to a∗. By assumption, A has at least

two points, so at least one of them is still path connected to a∗, thus all the points

in X×{0}2 are path connected to a∗, by using the property X ∈ P again. The rest

of the points in Ĩ(X,A)− {(a, 0, 0)} are clearly path connect to a∗.

• All the points in A × {0} × (0, 1) are non-cut points. The argument is similar to

the second part of the previous case. Suppose (a, 0, λ) has been removed for some

a ∈ A and 0 < λ < 1. Since |A| ≥ 2 and X ∈ P , so all the points in X × {0}2

are still path connected to a∗. The rest of the points in Ĩ(X,A)−{(a, 0, λ)} can be

path connected to a∗ either directly or through the points in X × {0}2.

• All the points in DA × (0, 1) are cut points. For all x ∈ DA × (0, 1), Ĩ(X,A)− {x}
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has two components, and they are both clopen sets.

• Finally, a∗ is a cut point. By Lemma 3.9, Ĩ(X,A) − {a∗} has infinitely many

components.

The exact same analysis applies for the corresponding points in Ĩ(Y,B).

Since cut (or non-cut) property is a topological property, and by the previous analysis,

a∗ is the only cut point in Ĩ(X,A) such that removing it will result in infinitely many

components, so f̃(a∗) = b∗. Now f̃ must send each component in Ĩ(X,A)−{a∗} onto some

component in Ĩ(Y,B)− {b∗}.

Recall the two types of components in Ĩ(X,A)− {a∗} (Lemma 3.9):

Ca := {(a, λ), λ ∈ [0, 1)}, a ∈ DA,

C∞X := (X − A)× {0} × {0} ∪ A× {0} × [0, 1).

Each component Ca, a ∈ DA has exactly one non-cut point, say (a, 0), whereas, the compo-

nent C∞X has infinitely many non-cut points. Thus we must have

(5) f̃(C∞X ) = C∞Y ,

and f̃ sends Ca, a ∈ DA onto some component Cb,b ∈ DB. In particular, f̃ will send the

exact non-cut point in each Ca to the non-cut point in some Cb, i.e. f̃(DA×{0}) = DB×{0}.

Hence

(6) f̃(XA × {0}) = YB × {0}.

We still need to show f̃((X − A)× {0} × {0}) = (Y −B)× {0} × {0}. But because

of equation (5), it is enough to show that f̃(XA × [0, 1)) = XB × [0, 1). Consider the

spaces Ĩ(X,A) −XA × {0} and Ĩ(Y,B) − YB × {0}, f̃ is a homeomorphism between them

because of equation (6). So f̃ sends each component in one space onto a component in the

other. Note that one of the components in their respective spaces is XA × (0, 1) ∪ {a∗} and

YB × (0, 1)∪ {b∗}. Since f̃(a∗) = b∗, then we must have f̃(XA × (0, 1)) = XB × (0, 1). This

completes the proof. �
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Remark 3.17. We assume in the statement of the theorem that both A and B have at least

two elements for the purpose of convenience in proof. The only place in the proof that we

used that assumption is when analyzing the cut (or non-cut) property of all the points in

Ĩ(X,A), Ĩ(X,B), more precisely, we try to single out the points a∗,b∗ from all the other

points in their respective spaces. Without the assumption of |A|, |B| ≥ 2, we are still able

to achieve this, so we can eliminate that assumption in the theorem.

There is a slightly different version of Theorem 3.16. We will loosen the condition

on X a little. In Theorem 3.16, we require that removing an arbitrary point x ∈ X, the

remaining space X − {x} is still path connected. In the next theorem, we only require that

X is path connected and X has no cut point. The only difference is that when we remove

a point x from Ĩ(X,A), some of the components in the remaining space Ĩ(X,A)− {x} may

not be path connected anymore under the new assumption; whereas in Theorem 3.16, all

the components of the remaining space are path connected. We can use a similar argument

as before to show the revised theorem, but here we will give a different proof.

Theorem 3.18. Suppose X, Y are perfect compact metric spaces such that

(1) X, Y are path connected,

(2) X, Y have no cut point,

and A ⊆ X,B ⊆ Y are closed subsets with at least two elements. Then Ĩ(X,A) ∼= Ĩ(Y,B) if

and only if I(X,A) ∼= I(Y,B).

Proof. The proof of the direction I(X,A) ∼= I(Y,B) ⇒ Ĩ(X,A) ∼= Ĩ(Y,B) is identical to

the previous theorem. We will just check the direction Ĩ(X,A) ∼= Ĩ(Y,B) ⇒ I(X,A) ∼=

I(Y,B).

Suppose f̃ : Ĩ(X,A)→ Ĩ(Y,B) is a homeomorphism, we will show that f̃(X ×{0}×

{0}) = Y × {0} × {0} and f̃(A× {0} × {0}) = B × {0} × {0}.

By assumption, all points of I(X,A)× {0} and A× {0} × (0, 1) are non-cut points.

For all (a, λ), where a ∈ DA and λ ∈ (0, 1), Ĩ(X,A)− {(a, λ)} has exactly two components,

thus it is a cut-point. Similar properties hold for the corresponding points in Ĩ(Y,B). And
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a∗,b∗ are two special cut-points in their spaces, saying that removing them will result in

infinitely many components. Thus f̃(a∗) = b∗.

Remove a∗ and b∗ from their respective spaces, then f̃ sends one component in

Ĩ(X,A)− {a∗} onto some component in Ĩ(Y,B)− {b∗}.

There are two types of components in Ĩ(X,A)− {a∗}:

Ca := {(a, λ), λ ∈ [0, 1)}, a ∈ DA

C∞X := X × {0} × {0} ∪ A× {0} × (0, 1).

For all point in the component Ca, a ∈ DA, there is an open neighborhood that is contained in

the component. But for all (a, 0, 0) ∈ C∞X , every open neighborhood is not entirely contained

inside C∞X . The components Cb,b ∈ DB and C∞Y in Ĩ(Y,B)− {b∗} have similar properties.

Thus f̃ must send some component Ca to some Cb. In particular,

f̃(DA × {0}) = DB × {0},

and hence f̃(DA × {0}) = DB × {0}.

Next, let us remove all points DA × {0}, DB × {0} from the original spaces. Clearly,

all points DA × (0, 1) ∪ {a∗} are in one component in the remaining space, same for DB ×

(0, 1) ∪ {b∗}. Since we already know f̃(a∗) = b∗, then we must have

f̃(DA × (0, 1) ∪ {a∗}) = DB × (0, 1) ∪ {b∗}.

This combined with the result that f̃(C∞X ) = C∞Y tells us f̃(X × {0} × {0}) = Y × {0} ×

{0} × {0}. �

3.4. The Ĩ2(X,B,A) Construction

Next, we will show that we can code two closed subsets of a (path) connected compact

metric space into a (path) connected compact metric space.

Suppose (X,B,A) ∈ K(Q)3 with A ⊆ B ⊆ X, we first construct I(X,A) ⊆ X × I as

before, i.e.

I(X,A) = (X × {0}) ∪DA,
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where DA is a countable set of isolated point such that DA − DA = A × {0}. Note that

(B × {0}) ∪DA is a closed subset of I(X,A). Then we define I2(X,B,A) ⊆ X × I2 as

I2(X,B,A) := I(I(X,A), (B × {0}) ∪DA).

Let D2
B denote the countable set of isolated points of I2(X,B,A) and X2

B := D2
B (Figure

3.6).

AX B DA

D2
B

I2(X,B,A)

Figure 3.6. I2(X,B,A)

Observe that DA is the set of isolated points in the space I(X,A), but all the points

in DA×{0} are not isolated in the space I2(X,B,A) anymore, as by the I-construction, we

have

X2
B −D2

B = (B × {0} × {0}) ∪DA × {0}.

I2(X,B,A) is clearly disconnected, actually, it will always have infinitely many isolated

points.

Embed I2(X,B,A) into (I2(X,B,A) × {0}) ∪ X2
B × I as I2(X,B,A) × {0}, then

identify all the points in X2
B ×{1} as an equivalent class, denoted x∗∗, and call the resulting

quotient space Ĩ2(X,B,A) (Figure 3.7). The Ĩ2-construction is Borel, actually, Ĩ2(X,B,A) =

Ĩ(I(X,A), (B×{0})∪DA), and as pointed out earlier that both Ĩ and I are Borel. It is not

hard to check the connectedness property of Ĩ2(X,B,A).

Lemma 3.19. Suppose X ∈ P and A ⊆ B ⊆ X are closed subsets. Then Ĩ2(X,B,A) is path

connected.
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ABX DA

D2
BĨ2(X,B,A)

x∗∗

Figure 3.7. Ĩ2(X,B,A)

Proof. Note that Ĩ2(X,B,A) = I(X,A) × {0} × {0} ∪ X2
B × [0, 1) ∪ {x∗∗}, where x∗∗ =

{(x, 1) : x ∈ X2
B}. It is enough to show that every point of Ĩ2(X,B,A) is path connected

with x∗∗.

It is clear that all points in X2
B × [0, 1) are path connected to the point x∗∗. Recall

that I(X,A) = X × {0} ∪ DA. Since X2
B ⊇ DA × {0}, and X2

B ⊇ B × {0} × {0}, then by

the assumption of path connectedness of X, we know that all points of I(X,A)× {0} × {0}

are path connected to x∗∗. �

3.5. Code Two Nested Closed Subsets

Let (X,B,A), (Y,D,C) ∈ K(Q)3 with A,B ⊆ X and C,D ⊆ Y , we say (X,B,A)

and (Y,D,C) are restricted homeomorphic equivalent, denoted

(X,B,A) ∼=(1,1) (Y,D,C),

if there exists f ∈ Hom(X, Y ) such that f(B) = D and f(A) = C. We will show the

Ĩ2-construction preserves the restricted homeomorphic equivalent relation.

Theorem 3.20. Consider triples (X,B,A), (Y,D,C) ∈ K(Q)3, where X, Y ∈ P and A ⊆

B ⊆ X, C ⊆ D ⊆ Y are infinite closed subsets. We have (X,B,A) ∼=(1,1) (Y,D,C) if and

only if Ĩ2(X,B,A) ∼= Ĩ2(Y,D,C).

Proof. For the forward direction, suppose there exists a homeomorphism f : X → Y

with f(A) = C and f(B) = D. We can apply Theorem 3.1 repeatedly to first extend

f into a homeomorphism f ′ : I(X,A) → I(Y,C) with f ′(DA) = DC , and then extend
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f ′ into a homeomorphism f ′′ : I2(X,B,A) → I2(Y,D,C) with f ′′(D2
B) = D2

D. Now f ′′

induces a homeomorphism between I2(X,B,A)×{0} ⊆ Ĩ2(X,B,A) and I2(Y,D,C)×{0} ⊆

Ĩ2(Y,D,C). As we did in Theorem 3.16, f ′′ can be extended into a homeomorphism f̃ :

Ĩ2(X,B,A)→ Ĩ2(Y,D,C) by defining

f̃((x, λ)) := (f ′′(x), λ) for all x ∈ D2
B and λ ∈ I.

For the backward direction, suppose f̃ : Ĩ2(X,B,A) → Ĩ2(Y,D,C) is a homeomor-

phism. We will show (X,B,A) ∼=(1,1) (Y,D,C) in the following order

f̃(A× {0} × {0} × {0}) = C × {0} × {0} × {0};

f̃(B × {0} × {0} × {0}) = D × {0} × {0} × {0};

f̃ ((X −B)× {0} × {0} × {0}) = (Y −D)× {0} × {0} × {0}.

First, let us discuss the non-cut (or cut) property of the points in Ĩ2(X,B,A). We

will divide Ĩ2(X,B,A) up as the union I2(X,B,A)× {0} ∪X2
B × (0, 1) ∪ {x∗∗}.

• Recall that X2
B = (B × {0} × {0} ∪DA × {0}) ∪D2

B

– All the points in B × {0} × {0} × (0, 1) are non-cut points. For all (b, 0, 0, λ0),

where b ∈ B and λ0 ∈ (0, 1), Ĩ2(X,B,A)−{(b, 0, 0, λ0)} is still path connected

(all points are path connected to x∗∗). We just need to find a path from

(b, 0, 0, λ) for some λ < λ0 to x∗∗. By assumption that B is inifite, there exists

b′ ∈ B, b′ 6= b. Then a natural path would be from (b, 0, 0, λ) to (b, 0, 0, 0), then

to (b′, 0, 0, 0) (since X is path connected), and finally to x∗∗.

– All the points in DA×{0}× (0, 1) are non-cut points. For all (a0, 0, λ0) ∈ DA×

{0}×(0, 1), the set Ĩ2(X,B,A)−{(a0, 0, λ) : λ ≤ λ0} is connected (all points are

path connected to x∗∗). Since the closure of Ĩ2(X,B,A)− {(a0, 0, λ) : λ ≤ λ0}

is the whole space Ĩ2(X,B,A), so Ĩ2(X,B,A) − {(a0, 0, λ0)} is connected by

Lemma 2.2.
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– All the points in D2
B×(0, 1) are cut points. For all (b0, λ0), where b0 ∈ D2

B and

λ0 ∈ (0, 1), Ĩ2(X,B,A)− {(b0, λ0)} has exactly two components. One of them

is the clopen set {(b0, λ) : λ < λ0} and the other is Ĩ2(X,B,A)−{(b0, λ) : λ ≤

λ0}.

• Recall that I2(X,B,A) = I(X,A)× {0} ∪X2
B.

– All the points of X2
B × {0} are non-cut points. Note that because of the as-

sumption that B has more than one element, Ĩ2(X,B,A) − {(b, 0)} is path

connected for all b ∈ X2
B.

– All the points in I(X,A)×{0}×{0} are non-cut points. Recall that I(X,A) =

X × {0} ∪DA. Since DA × {0} × {0} ⊆ X2
B × {0}, so they are non-cut points

by the previous case. Using the assumption that X ∈ P and |B| > 2 again, it

is clear X × {0} × {0} × {0} are all non-cut points.

• Finally, x∗∗ is a cut point. Removing it will result in infinitely many components in

the remaining space.

Similar conclusions can be made for the corresponding points in Ĩ2(Y,D,C). Based

on the property of x∗∗ as indicated in the last case of previous analysis, we have

(7) f̃(x∗∗) = y∗∗.

Next, remove {x∗∗} from Ĩ2(X,B,A), let us analysis the components in the remaining

space.

Claim 3.21. In the space Ĩ2(X,B,A)− {x∗∗}, there are three types of components:

i) {(b, λ), λ ∈ [0, 1)}, for b ∈ D2
B;

ii) {(a, 0, λ), λ ∈ [0, 1)}, for a ∈ DA;

iii) (X −B)× {0} × {0} × {0} ∪B × {0} × {0} × [0, 1).

Proof of Claim. It is clear that all sets of type i) are path connected. Moreover, they

are clopen sets in Ĩ2(X,B,A) − {x∗∗}, since D2
B consists of isolated points in I2(X,B,A).

So no component in Ĩ2(X,B,A) − {x∗∗} would properly contain any component of type i).
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In other words, the rest of components in Ĩ2(X,B,A) − {x∗∗} are properly contained in

Ĩ2(X,B,A)− {x∗∗} −
⋃

b∈D2
B
{(b, λ), λ ∈ [0, 1)}.

All the sets of type ii) are clopen sets in Ĩ2(X,B,A)−{x∗∗}−
⋃

b∈D2
B
{(b, λ), λ ∈ [0, 1)},

as the set DA consists of isolated points in I(X,A) and all the points of D2
B have been

removed. Thus the sets of type ii) are components in Ĩ2(X,B,A)− {x∗∗}.

Finally, the set of type iii) is path connected, thus a component. �

Now we will define a topological property that will differentiate one type from the

other two:

(8)
Px: there is an open neighborhood U of x such that U is path

connected and all points but x are cut points in U .

Claim 3.22. In the components of type i), only points of D2
B × {0} satisfy property (8).

None of the point in the components of type ii) or iii) satisfies property (8).

Proof of Claim. First of all, for all (b0, 0) in D2
B × {0}, the clopen sets {(b0, λ) : λ ∈

[0, 1)} is an open connected neighborhood and (b0, 0) is the only non-cut point. So all of

D2
B × {0} satisfy property (8). On the other hand, for all (b0, λ0) in a component of type

i) with b0 ∈ D2
B and λ0 > 0, a connected open neighborhood U of (b0, λ0) is homeomorphic

to an open subinterval of R, thus all of U are cut points.

For all (a0, 0, λ0) in a component of type ii), there exists a sequence of points in D2
B×

{0} converging to it. This implies that all open neighborhoods of (a0, 0, λ0) are disconnected.

Similarly, none of the point in B × {0} × {0} × [0, 1) satisfies property (8). Since all

of the points in (X −B)×{0}× {0}× {0} are non-cut points within the component iii), so

they do not satisfy property (8) either. �

All of the arguments in the previous two claims can be carried out to the corresponding

points in the space Ĩ2(Y,D,C)− {y∗∗}. Thus, we must have

(9) f̃(D2
B × {0}) = D2

D × {0} and f̃(X2
B × {0}) = X2

D × {0}.
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For all component {(a, 0, λ) : λ ∈ [0, 1)} of type ii), there is only one non-cut point,

which is (a, 0, 0), but the component iii) has infinitely many non-cut points by the assumption

X ∈ P . Thus, we have

(10) f̃(DA × {0} × {0}) = DC × {0} × {0},

and hence f̃(A× {0} × {0} × {0}) = C × {0} × {0} × {0}. Combine equation (9) and (10),

we conclude that f̃(B × {0} × {0} × {0}) = D × {0} × {0} × {0}.

The last thing we need to show is f̃ sends (X − B) × {0} × {0} × {0} onto (Y −

D) × {0} × {0} × {0}. Actually, it is enough to show f̃(X2
B × (0, 1)) = X2

D × (0, 1), since

we already know f̃ sends the type iii) component in Ĩ2(X,B,A) − {x∗∗} to the same type

of component in Ĩ2(Y,D,C) − {y∗∗}. Because of equation (9), we can consider the spaces

Ĩ2(X,B,A) − X2
B × {0} and Ĩ2(Y,D,C) − X2

D × {0}, all the points of X2
B × (0, 1) ∪ {x∗∗}

and X2
D × (0, 1)∪{y∗∗} are in one clopen component, respectively. Since f̃(x∗∗) = y∗∗, then

f̃(X2
B × (0, 1)) = X2

D × (0, 1). �

In the previous theorem, we try to code two nested closed subsets of a (path) con-

nected compact metric space into a (path) connected compact metric space. Next we will

give a general construction of coding two arbitrary closed subsets of a compact metric space.

Given a triple (X,B,A) ∈ K(Q)3 such that A,B ⊆ X and they both contain the

isolated points of X, we first embed X into X × I as X ×{0} and add a countable sequence

of isolated points DA∩B ⊆ X × (0, 1] that converges to (A ∩B)× {0}, the resulting space is

denoted I(X,A ∩B) = X × {0} ∪DA∩B.

Secondly, we embed I(X,A∩B) into I(X,A∩B)× I as I(X,A∩B)×{0} and add a

sequence of isolated points D2
A ⊆ I(X,A∩B)×(0, 1] that converges to A×{0}∪DA∩B×{0},

the resulting space is I2(X,A,A ∩ B) = I(I(X,A ∩ B), A× {0} ∪DA∩B × {0}) = I(X,A ∩

B)× {0} ∪D2
A.

Thirdly, we embed I2(X,A,A∩B) into I2(X,A,A∩B)×I as I2(X,A,A∩B)×{0} and

add a sequence of isolated points D3
A∪B that converges to (A∪B)×{0}×{0}∪D2

A×{0}, the
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resulting space is I3(X,A∪B,A,A∩B) = I(I2(X,A,A∩B), (A∪B)×{0}×{0}∪D2
A×{0}) =

I2(X,A,A ∩B)× {0} ∪D3
A∪B.

Proposition 3.23. Suppose we have two triples (X,B,A), (Y,D,C) ∈ K(Q)3 with A,B ⊆

X and C,D ⊆ Y , moreover, assume A,B and C,D contain all isolated points of X and Y ,

respectively. Let I3(X,A∪B,A,A∩B) and I3(Y,C ∪D,C,C ∩D) be constructed as above.

Then (X,B,A) ∼=(1,1) (Y,D,C) if and only if I3(X,A∪B,A,A∩B) ∼= I3(Y,C∪D,C,C∩D).

Proof. For the forward direction, suppose f : X → Y is a homeomorphism with f(A) =

C, f(B) = D. Then we can extend f into f1 : I(X,A ∩ B) → I(Y,C ∩ D) such that

f1(DA∩B ∪A×{0}) = DC∩D ∪C×{0}. Hence f1 can be extended to f2 : I2(X,A,A∩B)→

I2(Y,C,C∩D) such that f2(D2
A×{0}∪(A∪B)×{0}×{0}) = D2

C×{0}∪(C∪D)×{0}×{0}.

Therefore, we can extend f2 into f3 : I3(A ∪B,A,X,A ∩B, )→ I3(Y,C ∪D,C,C ∩D).

For the backward direction, suppose f̃ : I3(X,A∪B,A,A∩B)→ I3(Y,C∪D,C,C∩D)

is a homeomorphism. Then f̃ must send isolated points D3
A∪B to isolated points D3

C∪D, hence

(11) f̃
(
(A ∪B, 0, 0, 0) ∪ (D2

A, 0, 0)
)

= (C ∪D, 0, 0, 0) ∪ (D2
C , 0, 0).

f̃ must send non-isolated points I2(X,A,A∩B)×{0} to non-isolated points I2(Y,C,C∩

D)× {0}. Now we restrict f̃ to these two subspaces. Since D2
A × {0}, D2

C × {0} are the set

of isolated points in their respective spaces, so f̃ must send D2
A × {0} to D2

C × {0}, hence

(12) f̃((A, 0, 0, 0) ∪ (DA∩B, 0, 0)) = (C, 0, 0, 0) ∪ (DC∩D, 0, 0).

And f̃ sends non-isolated points I(X,A ∩ B) × {0} × {0} to non-isolated points

I(X,C ∩ D) × {0} × {0}. Now we restrict f̃ to these two subspaces. Since DA∩B × {0} ×

{0}, DC∩D × {0} × {0} are the set of isolated points, so f̃(DA∩B × {0} × {0}) = DC∩D ×

{0} × {0}, and hence

(13) f̃((A ∩B, 0, 0, 0)) = (C ∩D, 0, 0, 0).

Now combine equations (11), (12), and (13), we have that f̃ induces a homeomorphism

that sends X to Y , A ∪ B to C ∪ D, A to C, and A ∩ B to C ∩ D. This shows that
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(X,B,A) ∼=(1,1) (Y,D,C). �

Suppose X ∈ P , then we can perform the exact same construction as before to obtain

Ĩ3(X,A ∪B,A,A ∩B). For example,

Ĩ3(X,A ∪B,A,A ∩B) = I3(X,A ∪B,A,A ∩B)× {0} ∪X3
A∪B × (0, 1) ∪ {x∗∗∗},

where X3
A∪B = D3

A∪B and x∗∗∗ is the equivalence class X3
A∪B × {1}.

Corollary 3.24. Consider two triples (X,B,A), (Y,D,C) ∈ K(Q)3, where X, Y ∈ P,

A,B ⊆ X and C,D ⊆ Y . Then (X,B,A) ∼=(1,1) (Y,D,C) if and only if Ĩ3(X,A ∪B,A,A ∩

B) ∼= Ĩ3(Y,C ∪D,C,C ∩D).

Remark 3.25. Actually, we can code an arbitrarily finitely many number of closed subsets

of a compact metric space such that the coding preserves restricted homeomorphic relations,

moreover, the finite sequence of closed subsets are not necessary nested. Nonetheless, it is

enough to get the main result with Theorem 3.20.

3.6. The Main Theorem

Theorem 3.26 ([21]). The equivalence relation ∼=(1,1) restricted on the space of triples

(X,B,A), where X ∈ P and A ⊆ B ⊆ X, is Borel bireducible with a universal orbit

equivalence relation.

In fact, Zielinski ([21]) showed the much stronger result in which the spaces X in the

triples are all the same:

X = {(x, y) ∈ Q×Q : ∀m 6= n (ym = 0 or yn = 0)}.

We will give a brief check that X ∈ P .

First let us describe X as the disjoint union of points on the ‘plane’, say Q × {0},

and points outside the ‘plane’. Clearly, removing any point on the ‘plane’ will not affect the

path connectivity of the remaining space (Example 3.15).
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Now suppose we remove a point (x∗,y∗) ∈ X such that y∗n 6= 0 for some n ∈ N.

The goal is to show that there is a connected path from any point outside the ‘plane’ to the

‘plane’, since the ‘plane’ is a path connected piece.

Without loss of generality, consider an arbitrary point above the removed one, (x∗,y) ∈

X with yn > y∗n. We can first find a path from (x∗,y) to some point (x,y), where x 6= x∗,

say

f(λ) := (λx + (1− λ)x∗,y), λ ∈ [0, 1].

Then we can find path from (x,y) to (x,0), say

g(λ) := (x, (1− λ)y), λ ∈ [0, 1].

Because of the last theorem, our effort in proving the main theorem is left to finding a

Borel map that can code each triple in the class mentioned above to a single (path) connected

compact metric space, and this has been achieved in Theorem 3.20.

Theorem 3.27. The homeomorphic equivalence relation of the class of connected compact

metric spaces is complete.
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CHAPTER 4

THE COMPLEXITY OF CLASSIFYING VARIOUS CLOSED SUBSETS OF [0, 1]N

4.1. Comparing Hn and CHn Relations

In this section, we will compare the complexity of classifying closed subsets of [0, 1]n

and connected closed subsets of [0, 1]n+2. We will first construct a map from the space of

closed sets to the space of connected closed sets. The construction is slightly different from

the I-construction in the previous chapter.

Suppose A ⊆ In is a closed subset and we will construct Ã in the following way: First

embed A into In+1 as A×{0} and add a countable set of isolated points DA ⊆ Int(In+1) such

that their limit points are exactly A× {0}; then embed DA into In+2 as DA × {0} and form

the cylinder set DA×I; finally, glue all the points DA×{1} as one point to form the quotient

space Ã := (DA× I)/{(x, 1) : x ∈ DA}. We denote the equivalent class {(x, 1) : x ∈ DA} by

a∗.

Remark 4.1. The metric introduced in Lemma 3.8 is still valid for the space Ã: For all

(x, r), (y, s) ∈ Ã,

τ [(x, r), (y, s)] = 2|r − s|+ (1−max{r, s})ρ(x,y),

where ρ is a compatible metric on In+1 with ρ < 1.

There is another way to construct Ã: first we embed A into In+1 as A×{0} and add a

countable set of isolated points DA ⊆ Int(In+1) so that DA−DA = A×{0}; then we embed

A × {0} ∪DA into In+2 as A × {0}2 ∪DA × {0}, called the ‘floor’ points; add an arbitrary

point a∗ ∈ Int(In+2), and connect all the ‘floor’ points to a∗. So Ã constructed this way is a

connected closed subset of In+2 and consists of the points:

{λx + (1− λ)a∗ : x ∈ A× {0}2 ∪DA × {0}, λ ∈ [0, 1]}.

The Ã constructed in these two ways are homeomorphic to each other, so without

any confusion, we can use the same notation.
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Now we will state a topological property that will separate points in DA × {0} from

the other points in Ã:

(14)

Px: x is a non-cut point. For all open neighborhood V of x,

there exists an open subset U ⊆ V such that x ∈ U and U is

path connected.

Lemma 4.2. Suppose A ⊆ In is a closed subset, and Ã is constructed as before. Then exactly,

the points of DA × {0} in Ã satisfy Property (14).

Proof. Note that all the points inDA×{0} are non-cut points, actually, for all x ∈ DA×{0},

Ã − {x} is still path connected, since all points in Ã − {x} are path connected to a∗. For

all x ∈ DA and for all open neighborhood V of (x, 0), there exists some ε > 0 such that

U := {(x, r) : r < ε} ⊆ V . Clearly, U is path connected.

Note that all the points in {(x, r) : x ∈ DA, 0 < r ≤ 1} are cut points, so they don’t

satisfy the Property (14).

Finally, for (x, r) ∈ Ã, where x ∈ A × {0}, r ∈ I, there is a sequence of points

from DA × {0} converging to x, then every open neighborhood V of x with a∗ 6∈ V is not

connected. �

Theorem 4.3. The homeomorphic equivalence relation of closed subsets of In is Borel re-

ducible to the homeomorphic equivalence relation of connected closed subsets of In+2, i.e.

Hn ≤B CHn+2 for all n ∈ N.

Proof. Suppose A,B are closed subsets of I, and Ã, B̃ are constructed as in the beginning

of this section. Moreover, assume that f̃ : Ã→ B̃ is a homeomorphism. By Lemma 4.2, we

have

f̃(DA × {0}) = DB × {0},

hence f̃(A× {0}2) = B × {0}2. Therefore, A,B are homeomorphic to each other.

On the other hand, suppose f : A → B is a homeomorphism. With the same

argument as in the proof of Proposition 3.2, we can extend f into a homeomorphism f ′ :

DA → DB such that f ′ �A×{0}= f. Then we can extend f ′ further to f̃ by sending a∗ to b∗,
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and (a, λ) ∈ DA × [0, 1) to (f ′(a), λ) ∈ DB × [0, 1). f̃ : Ã → B̃ is clearly one-to-one, onto

and continuous. Since both Ã and B̃ are compact metric spaces, then the continuity of f̃

implies homeomorphism. �

Since the notion of being a connected closed subset is stronger than just being a

closed subset, so trivially, we have CHn ≤B Hn for all n ∈ N. Thus we have the following

diagram (Figure 4.1).

H1 H2 H3 · · ·

CH1 CH2 CH3 · · ·

Figure 4.1. Reductions between Hn and CHn

4.2. Comparing Rn and CHn Relations

As we have mentioned before, In ∈ P for all n ≥ 2, so a direct application of Theorem

3.16 and Remark 3.17 implies that for all n ≥ 2 and A,B ⊆ In closed, we have

A ∼=Rn B ⇐⇒ Ĩ(In, A) ∼= Ĩ(In, B).

Here we have to point out again that the connected spaces Ĩ(In, A), Ĩ(In, B) can be treated

as subsets of In+2, so we have Rn ≤B CHn+2 for all n ≥ 2. Now the only case left is when

n = 1.

Theorem 4.4. The restricted homeomorphic relation on I is Borel reducible to the connected

homeomorphic relation on I3, i.e. R1 ≤B CH3.

Proof. Let A,B ⊆ I be closed subsets and Ĩ(I, A), Ĩ(I, B) be constructed. The direction

from A ∼=R1 B ⇒ Ĩ(I, A) ∼= Ĩ(I, B) is identical to the proof in Theorem 3.16, so we will only

look at the other direction.

Suppose f̃ : Ĩ(I, A)→ Ĩ(I, B) is a homeomorphism, we need to check that

f̃(I× {0}2) = I× {0}2,
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and

f̃(A× {0}2) = B × {0}2.

First, we show that a∗ has a unique topological property that no other point has.

Claim 4.5. In the quotient space Ĩ(I, A), a∗ is the unique cut point such that Ĩ(I, A)−{a∗}

has infinitely many components.

Proof of Claim: It’s clear that a∗ is a cut point such that Ĩ(I, A) − {a∗} has infinitely

many components. For the remaining points, we can divide them up into the following cases:

• For all (x, λ) ∈ Ĩ(I, A), where x ∈ DA and λ ∈ (0, 1), Ĩ(I, A)− {(x, λ)} has exactly

two components.

• For all (x, 0) ∈ Ĩ(I, A), where x ∈ DA, it’s a non-cut point.

• For all (a, 0, 0) ∈ Ĩ(I, A), where a ≥ max{A} or a ≤ min{A}, Ĩ(I, A) − {(a, 0, 0)}

has exactly two components.

• For all (a, 0, λ) ∈ Ĩ(I, A), where minA < a < maxA and λ < 1, (a, 0, λ) is a non-cut

point.

�

Thus f̃ sends a∗ to b∗. If we remove a∗,b∗ from their respective spaces, then f̃ sends

each component in the domain to some component in the codomain.

Claim 4.6. In the space Ĩ(I, A)− {a∗}, there are two types of components:

(1) First type

{(a, λ) : 0 ≤ λ < 1}, a ∈ DA

(2) Second type

I× {0}2 ∪ {(a, 0, λ) : a ∈ A, λ < 1}

Proof. Note that for all a ∈ DA, the set {(a, λ) : 0 ≤ λ < 1} is clopen and path connected,

thus it’s a component. It’s clear that the only non-cut point is (a, 0). Similarly, the second

type of component is also clopen and path connected. Depending on if A contains 0 or 1,

the second type of component could have up to two non-cut points or all cut points. �

44



In order to differentiate these two types of components, we will state the following

property in the space Ĩ(I, A)− {a∗}:

(15)
Px: For all open neighborhood V of x, V is disconnected as a

subspace of Ĩ(I, A)− {a∗}.

Claim 4.7. None of the point in the first type of component satisfies Property (15). On the

other hand, all the points in {(a, 0, λ) : a ∈ A, λ < 1} satisfy Property (15).

Proof. The first sentence is obvious, since the component itself is a path connected clopen

set. For all (a, 0, λ) where a ∈ A, λ < 1, there is a sequence {(an, λ) : an ∈ DA}n converging

to (a, 0, λ). Suppose V is an open neighborhood of (a, 0, λ), then V must contain some

(an, λ), thus it is disconnected. �

Therefore, f̃ sends each component {(a, λ) : λ < 1}, a ∈ DA to some component

{(b, λ) : λ < 1},b ∈ DB, and sends the component I × {0}2 ∪ {(a, 0, λ) : a ∈ A, λ < 1} to

I× {0}2 ∪ {(b, 0, λ) : b ∈ B, λ < 1}. Since (a, 0) is the only non-cut point in the component

{(a, λ) : λ < 1} for all a ∈ DA, similarly, (b, 0) is the only non-cut point in the component

{(b, λ) : λ < 1} for all b ∈ DB, so we have

f̃(DA × {0}) = DB × {0}.

Hence, we also have f̃(DA×{0}) = f̃(DB×{0}), which implies that f̃(A×{0}2) = B×{0}2.

We still need to show that f̃(I×{0}2) = I×{0}2. Consider the spaces Ĩ(I, A)−DA×{0}

and Ĩ(I, B) − DB × {0}. f̃ must send the component containing a∗ to the component

containing b∗, i.e.

f̃({(a, λ) : a ∈ DA, λ > 0}) = {(b, λ) : b ∈ DB, λ > 0}.

Thus, we have showed f̃(I× {0}2) = I× {0}2. �

In general, the reduction from CHn to Rm for some n,m ∈ N is unknown at the

moment, but we can briefly discuss about the reduction when both n and m are equal to 1.
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Define the reduction map f : I → I by f(λ) = (λ + 1)/3. Suppose A,B are closed

interval of I, and g : A→ B is a homeomorphism. Without loss of generality, we can assume

g is increasing, then g can be extended to g′ on I with g′ �A= g, for example,

g′(λ) =


minB
minA

λ if λ < minA

g(λ) if λ ∈ A

1− (1− λ)1−maxB
1−maxA

if λ > maxA

.

The other direction is trivial. Thus CH1 ≤B R1, and we have the following diagram (Figure

4.2).

CH1 CH2 CH3 CH4 · · ·

R1 R2 · · ·

Figure 4.2. Reductions between CHn and Rn

4.3. Comparing R1 and CR3 Relations

Suppose A ⊆ I is a closed set, let I(I, A) = I×{0}∪DA be constructed as in the Chap-

ter 3. Recall that we have definedDA in a specific way, sayDA = {(a1,
1
2
), (a2,

1
3
), . . . , (an,

1
n+1

), . . . },

where {a1, a2, . . . } is an enumeration with infinite repetition of a countable dense subset of

A. Next, we explain that if we move each point in DA a little bit upwards and call the new

set D′A, say

D′A := {(a1,
1

2− 1/2
), (a2,

1

3− 1/3
), . . . , (an,

1

n+ 1− 1/(n+ 1)
), . . . }.

Then I(I, A) and I× {0} ∪D′A are restricted homeomorphic to each other, i.e. I(X,A) ∼=R2

I× {0} ∪D′A.

For the purpose of notation simplification, we will use a different way representing

the sets DA, D
′
A. Suppose {an}n ⊆ A is a countable increasing dense subset. Let DA =⋃

n{(an, λni )}i, where λni+1 > λni for all n, i ∈ N, and for each n ∈ N, λni
i−→ 0. Similarly, let
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D′A =
⋃
n{(an, µni )}i, where µni+1 > µni for all n, i ∈ N, and for each n, µni

i−→ 0. Assume

µni > λni for all n, i ∈ N (Figure 4.3).

Ia1 a2

(a1, µ
1
1)

(a1, λ
1
1)

(a2, µ
2
1)

(a2, λ
2
1)

Figure 4.3

We claim there is a homeomorphism f̃ ∈ Hom(I2) such that f̃ �I×{0}= id and

f̃((an, λ
n
i ) = (an, µ

n
i ) for all n, i ∈ N.

For each n ∈ N, we can find a homeomorphism fn ∈ Hom(I) such that fn(λni ) = µni

for i ∈ N. Let `(n,i) denote the linear function connecting the pair (an, λ
n
i ) and (an+1, λ

n+1
i ),

so for all an ≤ x ≤ an+1, the point (x, `(n,i)(x)) is on the line `(n,i). Similarly, let `′(n,i) be the

linear function connecting the pair (an, µ
n
i ), (an+1, µ

n+1
i ).

The sequence 0 ≤ a1 < a2 < · · · split the unit interval into countable many subin-

tervals. For all x ∈ I, there exists n with an ≤ x ≤ an+1, let f 2
x ∈ Hom(I) be the map that

sends points in{`(n,i)(x)}i to the corresponding points in {`′(n,i)(x)}i.

Define f̃ on I2 by

f̃(x, y) = (x, f 2
x(y)),

then f̃ is clearly a one-to-one, onto, and continuos map, thus f̃ ∈ Hom(I2).

Remark 4.8. In some special cases when A ⊆ Int(I), with the same construction as above,

we are able to find a homeomorphism f̃ ∈ Hom(I2) such that its restriction on the boundary

points of I2 is the identity map and it maps (an, λ
n
i ) to (an, µ

n
i ) for all n, i ∈ N.

In particular, if there are two distinct interior points (a, λa), (b, λb) ∈ Int(I2), we can

always find a map f̃ ∈ Hom(I2) such that f̃((a, λa)) = (b, λb) and the restriction of f̃ on the

boundary of I2 is the identity map.
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Theorem 4.9. The restricted homeomorphic relation on closed subsets of I is Borel reducible

to the one on the closed subsets of I2, i.e. R1 ≤B R2.

Proof. The direction from I(I, A) ∼=R2 I(I, B) ⇒ A ∼=R1 B is an application of Theorem

3.16. So we will only show the other direction.

Suppose A,B ⊆ I are closed subsets and f ∈ Hom(I) is a homeomorphism with

f(A) = B, we need to extend f into a homeomorphism F ∈ Hom(I2) such that F (I(I, A)) =

I(I, B).

Note that the map f × id ∈ Hom(I2) sends I(I, A) onto I× {0} ∪D′B, where D′B :=

(f × id)(DA) is the countable set of isolated points with D′B − D′B = B × {0}. Then

Proposition 3.2 implies that there exists a homeomorphism f̃ between I × {0} ∪ D′B and

I(I, B) such that f̃ �I×{0}= id. Thus, we have the following maps

I(I, A)
f×id−−→ I× {0} ∪D′B

f̃−→ I(I, B).

So it is enough to extend the map f̃ into some F ∈ Hom(I2) such that F �I×{0}= id and

F (D′B) = DB.

By the way we constructed the sets DA, DB, it is possible that D′B ∩DB 6= ∅. We will

construct a set D′′B ⊆ I× (0, 1), with D′′B ∩D′B = ∅, so that I× {0} ∪DB
∼=R2 I× {0} ∪D′′B.

This is made possible by the construction at the beginning of this section. Hence, without

loss of generality, we assume D′B ∩DB = ∅.

Suppose we have assigned a one-one correspondence f̃ between D′B and DB, now

we need to extend f̃ to F . For each pair b ∈ D′B and f̃(b) ∈ DB, we can find a union

of rectangles of the form Lb :=
⋃k
i=1[xi1, x

i
2] × [yi1, y

i
2] for some k ∈ N, where Lb is simply

connected (Figure 4.4) such that

(1) {b, f̃(b)} ⊆ Lb are interior points,

(2) Lb intersects with D′B, DB only at b, f̃(b), respectively,

(3) and for all b′ ∈ D′B,b′ 6= b, we have Lb ∩ Lb′ = ∅.

Note that each Lb is homeomorphic to the unit square I2.
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b

f̃(b)

Figure 4.4

As stated in Remark 4.8, we could define a homeomorphism fb on Lb with fb(b) =

f̃(b) and such that fb = id on the boundary points of Lb. We can glue these maps together

to form
⋃
b fb :

⋃
b Lb →

⋃
b Lb. It is one-to-one, onto, and continuous. Finally, define F as

the union of the map
⋃

b fb and the identity map on the rest of I2. F is clearly a bijective

and continuous map, thus a homeomorphism on I2. This completes the proof. �

Now that we are able to extend a restricted homeomorphic relation A ∼=R1 B into

I(I, A) ∼=R2 I(I, B), the next question would naturally be whether we could extend I(I, A) ∼=R2

I(I, B) into a restricted homeomorphic relation on the connected subsets of I3, i.e. is

Ĩ(I, A) ∼=CR3 Ĩ(I, B)?

For one direction, suppose we have constructed the sets Ĩ(I, A), Ĩ(I, B) for some given

closed subsets A,B ⊆ I, and assume Ĩ(I, A) ∼=CR3 Ĩ(I, B), then Theorem 3.16 implies A ∼=R1

B.

On the other hand, given two closed subsets A,B with A ∼=R1 B, we can extend it

into I(I, A) ∼=R2 I(I, B). Let x0 ∈ Int(I3) be an interior point, and we use it as the vertex

and the six sides of the unit cube I3 as the bases to divide the unit cube into six cones.

One of the cones is homeomorphic to Ĩ(I, A), it consists of the points

ΛĨ := {λx + (1− λ)x0 : x ∈ I× I× {0}, λ ∈ I}.

Suppose F ∈ Hom(I2) such that F (I(I, A)) = I(I, B), we can extend F into a homeomor-

phism FĨ on the cone ΛĨ by

FĨ(λx + (1− λ)x0) = λF (x) + (1− λ)x0 for all λ ∈ I and x ∈ I2 × {0}.
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Similarly, we can define a homeomorphism for each of the other five cones so that they agree

on the intersections. Hence, the union of these homeomorphism forms a homeomorphism on

the unit cube I3.

Theorem 4.10. The restricted homeomorphic relation on closed subsets of I is Borel re-

ducible to the one on the connected closed subsets of I3, i.e. R1 ≤B CR3.
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CHAPTER 5

LOCALLY COMPACT TSI NON-ARCHIMEDEAN POLISH GROUPS

5.1. The Characterization Theorem

Recall that if C is a class of topological groups, then a universal element of C is

a group G ∈ C such that any other group H ∈ C is topologically isomorphic to a closed

subgroup of G. Similarly, a surjectively universal element of C is a group G ∈ C such that

for any H ∈ C there is a continuous homomorphism from G onto H.

In this chapter, we consider the class of locally compact TSI non-Archimedean Polish

groups, and we try to answer the questions about the existence (or non-existence) of a

universal or surjectively universal element in that class.

First, we will prove a characterization theorem of all the groups in the class.

Theorem 5.1. Let G be a topological group. Then the following are equivalent:

(1) G is a locally compact TSI non-Archimedean Polish group.

(2) G has a neighborhood base for the identity that consists of compact open normal

subgroups.

(3) There is an inverse system {Γi}i∈N, where each Γi is a discrete countable group and

for all i ≤ j, kerπj,i is finite, such that G is isomorphic to lim←−Γi.

Proof. (1)⇒ (2): By the assumption that G is TSI and Klee’s Theorem 2.13, there exists

a countable open neighborhood {Un} with gUng
−1 = Un for all n ∈ N, then the set of groups

generated by these open neighborhood {〈Un〉} forms a countable open normal subgroups.

Since G is a non-Archimedean Polish group, there exists a countable open neighbor-

hood base {Vn} of 1G consisting of all open subgroups. We claim that {〈Un〉} is a base for

1G.

Let W ⊆ G be any open neighborhood of 1G, we need to find some n ∈ N with

〈Un〉 ⊆ W . For this let m be such that Vm ⊆ W and n be such that Un ⊆ Vm. Since Vm is a

subgroup, we have 〈Un〉 ⊆ Vm ⊆ W , as required.
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Since G is locally compact, then there exists a open subset V of 1G whose closure

is compact. Without loss of generality, we can assume 〈Un〉 ⊆ V for all n ∈ N, so all the

groups 〈Un〉 are compact normal open subgroups.

(2)⇒ (1): This follows from the definition of a locally compact TSI non-Archimedean

Polish group.

(2)⇒ (3) : Suppose {Ui}i∈N is such a base. Without loss of generality, we can assume

U0 ⊇ U1 ⊇ · · · ⊇ Ui ⊇ · · · .Then {G/Ui}i∈N is an inverse system of countable discrete groups.

For all i ≤ j, let πj,i : G/Uj −→ G/Ui be the natural homomorphism. Then ker πj,i = Ui/Uj

is finite, since Ui is compact.

To see that G is isomorphic to lim←−G/Ui, define a map ϕ : G →
∏
G/Ui by ϕ(g) =

(gUi). First, ϕ is injective, since for all g 6= g′, there exists Un for some n ∈ N such that

g′ 6∈ gUn, so g′Un 6= gUn, i.e. ϕ(g) 6= ϕ(g′). Secondly, ϕ maps G onto lim←−G/Ui. For all

(giUi) ∈ lim←−G/Ui, we have
⋂
giUi 6= ∅, as each giUi is compact for all i and {giUi} satisfies

finite intersection property. Since
⋂
Ui = {1G}, so

⋂
giUi is a unique element in G with

ϕ(
⋂
giUi) = (giUi).

ϕ is a clearly a continuous map. Finally, we check ϕ−1 is also continuous. It is enough

to check ϕ−1 is continuous at (1GUi) ∈
∏
G/Ui. Suppose U ⊆ G is an open neighborhood

of 1G, then there exists Un ⊆ U for some n ∈ N, and
∏n−1

i=0 G/Ui × Un ×
∏∞

i=n+1G/Ui is a

basic open set in
∏
G/Ui such that the ϕ−1 image of it is contained in U . This shows ϕ is

an isomorphism between G and lim←−G/Ui.

(3)⇒ (2) : Let {Γi}i∈N be such an inverse system. Then the countable set {
∏n

i=0{1Γi}×∏∞
i=n+1 Γi}n, where 1Γi is the identity element in Γi, is an open neighborhood of 1∏

Γi con-

sisting of open normal subgroups. Thus
∏

Γi is a TSI non-Archimedean Polish group. G

being isomorphic to a closed subgroup lim←−Γi of
∏

Γi is then a TSI non-Archimedean Polish

group as well.

We just need to show there is an open compact subgroup in G. Or equivalently,

we need to show there is an open compact subgroup in lim←−Γi. Consider the projection

π0 : lim←−Γi −→ Γ0, π−1
0 (1Γ0) is an open subgroup of lim←−Γi. Let’s check it is also compact.
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Note that {kerπi,0}i∈N is an inverse system, and each kerπi,0 is finite by the assumption.

Since π−1
0 (1Γ0) = lim←− kerπi,0 is a closed subset of

∏
kerπi,0, and

∏
kerπi,0 is a compact

space, we have that π−1
0 (1Γ0) is compact. �

Remark 5.2. If G is a TSI non-Archimedean Polish group (without the condition of locally

compact), we are still able to express G as the inverse limit of an inverse system {Γi}i∈N,

where each Γi is a discrete countable group.

5.2. Universal Groups

We will now show that there does not exist a universal element in the class of locally

compact TSI non-Archimedean Polish groups. In order to achieve this, we will need the

following fact.

Theorem 5.3 ([15]). There are uncountably many non-isomorphic finitely generated simple

groups.

Note that each finitely generated simple group falls into the class of our interest. Then

by the characterization theorem of locally compact TSI non-Archimedean Polish groups, it

turns out that there is no such a group in which uncountably many non-isomorphic countable

simple groups can be embedded.

Definition 5.4. Let DCG denote the class of all discrete countable groups; and let TSI

non-Arch denote all TSI non-Archimedean Polish groups.

DCG contains all finitely generated simple groups. And all the groups in TSI non-

Arch have a very nice form as stated in Remark 5.2. So the next theorem shows that any

class of groups containing DCG and contained in TSI non-Arch does not have a universal

element.

Theorem 5.5. Let L be a class of topological groups, and assume

DCG ⊆ L ⊆ TSI non-Arch.

Then L does not have a universal group.
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Proof. By way of contradiction, suppose there is a universal group in L, then it isomorphic

to a close subgroup of
∏

Γi, where each Γi is a countable discrete group. In particular, every

countable group can be embedded into
∏

Γi. Since L ⊇ DCG, so every finitely generated

simple group is isomorphic to a closed subgroup of
∏

Γi.

Let Gλ, λ ∈ Λ, be an uncountable family of non-isomorphic finitely generated simple

groups. For each λ ∈ Λ let eλ be an embedding from Gλ into
∏

Γn. For each i ∈ N, let

πi :
∏

Γi → Γi be the projection map. Then each πi◦eλ : Gλ → Γi is a group homomorphism.

Since Gλ is simple, ker(πi ◦ eλ) is either {1Gλ} or Gλ itself. For each λ, there exists some

i ∈ N such that ker(πi ◦ eλ) = {1Gλ}, because eλ is a group isomorphism (and therefore a

nontrivial homomorphism). For such an i, πi ◦ eλ is an embedding from Gλ into Γi.

We have concluded that for each λ ∈ Λ there is i ∈ N such that Gλ is isomorphic to

a subgroup of Γn. However, the collection

{G : G ≤ Γi for some i ∈ N}

is countable, whereas {Gλ : λ ∈ Λ} is uncountable. A contradiction. �

Corollary 5.6. There does not exists a universal group for all locally compact TSI non-

Archimedean Polish gorups.

5.3. Surjectively Universal Groups

Suppose we have two inverse systems {Γn}n and {Γ′n}n,

Γ0 Γ1 · · ·

Γ′0 Γ′1 · · ·

π1,0 π2,1

π′1,0 π′2,1
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if there are surjective homomorphisms φn : Γn → Γ′n such that the following diagram com-

mutes

Γ0 Γ1 · · ·

Γ′0 Γ′1 · · ·

φ0 φ1

π1,0 π2,1

π′1,0 π′2,1

Then (φn)n is a homomorphism from lim←−Γn into lim←−Γ′n.

Let Fω be the free group generated by some countable set X. We have a natural

inverse system:

Fω
id←− Fω

id←− · · ·

Then for an arbitrary inverse system {Γn}n∈N of countable discrete groups, it is easy to find

surjective homomorphisms φn : Fω → Γn such that the following diagram commutes

Fω Fω · · ·

Γ0 Γ1 · · ·

φ0 φ1

id id

π1,0 π2,1

However, the map (φn)n is in general not surjective from lim←−Fω into lim←−Γn.

In the next theorem, we will construct an inverse system consisting of a certain class

of quotient groups of Fω and show its inverse limit is a surjectively universal group.

Theorem 5.7. There exists a surjectively universal group for all locally compact TSI non-

Archimedean Polish groups.

Proof. Let X be a countable free generating set of Fω. Write X =
⋃
n∈NXn as a disjoint

union, where each Xn is infinite. Define M0 to be the kernel of the homomorphism ϕ0 :

Fω −→ 〈X0〉, where ϕ0 is generated by the map:

ϕ0(g) =


g, if g ∈ X0;

1, if g ∈
⋃
i≥1Xi.
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Consider the set

N = {N E Fω : N ≤M0,M0/N is finite, {n ≥ 1 : Xn −N 6= ∅} is finite} .

Claim 5.8. N is countable and is closed under intersection.

Proof of Claim. N is clearly closed under intersection, so we will just show it is count-

able. Note that

N ⊆ {N EM0 : M0/N is finite, {n ≥ 1 : Xn −N 6= ∅} is finite}

⊆ {N EM0 : M0/N is finite} .

Then it is enough to show that {N EM0 : M0/N is finite} is countable.

Since M0 E Fω is a free group, let us enumerate a free generating set of M0, say

{m0,m1, . . . }. Let Ki = 〈mi, . . . 〉N be the normal subgroup in M0 generated by mi,mi+1, . . . ,

or Ki = ker fi, where fi is the homomorphism fi : M0 → 〈m0,m1, . . . ,mi−1〉 generated by

fi(g) =


g, if g ∈ {m0,m1, . . . ,mi−1};

1, if g ∈ {mi,mi+1, . . . }.

Then M0/Ki
∼= 〈m0, . . . ,mi−1〉, i.e. M0/Ki is finitely generated free group.

Note that

{N EM0 : M0/N is finite} =
⋃
i∈N

{N EM0 : N ≥ Ki,M0/N is finite} .

Since suppose N belongs to the left hand side of the equation above, then there exists a

finite subset of the generating set, say {mi0 , . . . ,mij} for some j ∈ N, such that M0 =〈
mi0 , . . . ,mij , N

〉
. Let i−1 = max{i0, . . . , ij} + 1, then {mi−1 ,mi−1+1, . . . } ⊆ N and hence

Ki−1 ≤ N . So it is enough to show that for all i ∈ N,

{N EM0 : N ≥ Ki,M0/N is finite} is countable.

Fix i, for all N ∈ {N EM0 : N ≥ Ki,M0/N is finite}, we have that

M0/N ∼= (M0/Ki)/(N/Ki)
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is finite. Since in addition, M0/Ki is finitely generated, so N/Ki is finitely generated.

Then there are finitely many elements from M0, say n0, n1, . . . , nik , for some ik ∈ N,

such that N/Ki = 〈n0Ki, n1Ki, . . . , nikKi〉.

Let L be the set of all cosets of Ki in M0, i.e. L = {gKi : g ∈ M0}, then L is

countable. And there is a one-to-one map from {N EM0 : N ≥ Ki,M0/N is finite} into a

finite subset of L. Therefore {N EM0 : N ≥ Ki,M0/N is finite} is countable, this completes

the proof of the claim.

�

The inverse inclusion is a directed partial order on N . This gives an inverse system

{Fω/N}N∈N . We claim that lim←−N∈N Fω/N is surjectively universal for all locally compact

TSI non-Archimedean Polish groups. Without loss of generality, we can assume N0 ≤ N1 ≤

· · · ≤ Ni ≤ . . . is a cofinal sequence in N . So lim←−N∈N Fω/N = lim←−i∈N Fω/Ni.

First we need to check lim←−i∈N Fω/Ni is a locally compact TSI non-Archimedean Polish

group. For all i ≤ j, the kernel of the map πj,i : Fω/Nj −→ Fω/Ni is Ni/Nj. And Ni/Nj ⊆

M0/Nj is finite. Thus by Theorem 5.1, lim←−i∈N Fω/Ni is such a group.

Next we need to show lim←−i∈N Fω/Ni is surjectively universal. Let {Γn}n∈N be an

inverse system, where Γn are countable discrete groups, and for all i ≤ j, the homomorphism

γj,i : Γj −→ Γi has a finite kernel. Let D0 be a subset of lim←−Γi such that π0(D0) = Γ0. And

for each i ≥ 1, let Di be a finite subset of lim←−Γi such that πi(Di) = ker γi,0. Fix a surjective

map ki : Xi −→ Di for each i ∈ N. Let D =
⋃
i∈NDi and k =

⋃
i∈N ki, then define φi to be

the group homomorphism generated by the map πi ◦ k, i.e.

Fω
k−→ lim←−Γi

πi−→ Γi.

Clearly, φi(Fω) = Γi, and Fω/ kerφi ∼= Γi. Then we define M ′
i = M0∩kerφi for i ≥ 1.

Claim 5.9. M ′
i ∈ N for all i ∈ N.

Proof of Claim. Note that M0 ⊆ kerφ0. Actually, if g ∈ M0 then g must be generated

by elements from
⋃
i≥1Xi, so φ0(g) = 1Γ0 .
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Fix i ∈ N. Suppose gM ′
i 6= g′M ′

i in M0/M
′
i , then gg′−1 /∈ kerφi ∩M0. Since gg′−1 ∈

M0, so gg′−1 /∈ kerφi, i.e. g kerφi 6= g′ kerφi. By assumption, kerφ0/ kerφi is finite, so there

are at most finitely many cosets in M0/M
′
i . This completes the proof of the claim. �

Note that M0,M
′
1, . . . , may not be cofinal in N , so we need to define a new sequence

that is cofinal in N . Let Mi = M ′
i ∩ Ni for i ≥ 1, then lim←−i∈N Fω/Ni

∼= lim←−i∈N Fω/Mi. Now

consider the following diagram:

Fω/M0 Fω/M1 Fω/M2 · · ·

Fω/ kerφ0 Fω/ kerφ1 Fω/ kerφ2 · · ·

Γ0 Γ1 Γ2 · · ·

φ0 φ1

γ1,0

φ2

γ2,1 γ3,2

All the unidentified maps are natural homomorphism π. It is clear that

lim←−Fω/ kerφi ∼= lim←−Γi.

So it’s enough to show that there is a map from lim←−Fω/Mi onto lim←−Fω/ kerφi. We first prove

a lemma.

Lemma 5.10. For each i ∈ N, gM0 ∩ r kerφi+1 6= ∅ for all g, r ∈ kerφ0.

Proof of Lemma. It’s enough to show gM0 ∩ kerφi+1 6= ∅ for all g ∈ kerφ0. By taking

φi+1 on both sides, it’s enough to show that for all g ∈ kerφ0, there exists g′ ∈M0 such that

φi+1(gg′) = 1.

Fix g ∈ kerφ0, i.e. φ0(g) = 1, then φi+1(g) ∈ ker γi+1,0. Hence there exists g′′ ∈ Xi+1

such that φi+1(g′′) = φi+1(g). Note that Xi+1 ⊆ M0 for all i ∈ N, then let g′ = g′′−1 ∈ M0.

And this completes the proof. �

Claim 5.11. The map (π)i : lim←−Fω/Mi → lim←−Fω/ kerφi is surjective.
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Proof. Pick an arbitrary (ri kerφi)i ∈ lim←−Fω/ kerφi. Fix g0M0 ∈ π−1(r0 kerφ0) ⊆ Fω/M0,

then π−1(g0M0) ⊆ Fω/Mi is a finite subset, where π : Fω/Mi → Fω/M0 is the natural

homomorphism.

For all i ≥ 1, since ri kerφi ⊆ r0 kerφ0 and g0M0 ⊆ r0 kerφ0, so both r−1
0 ri and r−1

0 g0

belong to kerφ0. By Lemma 5.10, r−1
0 g0M0 ∩ r−1

0 ri kerφi 6= ∅, i.e. g0M0 ∩ ri kerφi 6= ∅, for

all i ≥ 1.

Hence there exists some element in π−1(g0M0) ⊆ Fω/Mi that can be mapped to

ri kerφi, say g0M0 ∩ ri kerφi (see the following diagram).

(g0M0) Fω/M0 Fω/Mi (g0M0 ∩ ri kerφi)

(r0 kerφ0) Fω/ kerφ0 Fω/ kerφi (ri kerφi)

π π

π

π

Now we get a tree with root g0M0 and finitely many nodes π−1(g0M0) ⊆ Fω/Mi of

length i, and π−1(g0M0) ⊆ Fω/Mi is non-empty, for all i ∈ N, so the tree is infinite. By

König’s Lemma (c.f. [13], p.20), there exists an infinite branch (g0M0, g1M1, . . . ). Clearly,

(g0M0, g1M1, . . . ) ∈ lim←−i∈N Fω/Mi. �

�

Remark 5.12. With the same method, we can show that there exists a surjectively universal

group for the class of locally compact abelian Polish groups. But it is still unknown whether

there is a universal one.
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