Innovative Cold-Formed Steel Shear Walls with Corrugated Steel Sheathing

Use of this thesis is restricted to the UNT Community. Off-campus users must log in to read.

Description

This thesis presents two major sections with the objective of introducing a new cold-formed steel (CFS) shear wall system with corrugated steel sheathings. The work shown herein includes the development of an optimal shear wall system as well as an optimal slit configuration for the CFS corrugated sheathings which result in a CFS shear wall with high ductility, high strength, high stiffness and overall high performance. The conclusion is based on the results of 36 full-scale shear wall tests performed in the structural laboratory of the University of North Texas. A variety of shear walls were the subject of this ... continued below

Creation Information

Mahdavian, Mahsa May 2016.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 212 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Mahdavian, Mahsa

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

This thesis presents two major sections with the objective of introducing a new cold-formed steel (CFS) shear wall system with corrugated steel sheathings. The work shown herein includes the development of an optimal shear wall system as well as an optimal slit configuration for the CFS corrugated sheathings which result in a CFS shear wall with high ductility, high strength, high stiffness and overall high performance. The conclusion is based on the results of 36 full-scale shear wall tests performed in the structural laboratory of the University of North Texas. A variety of shear walls were the subject of this research to make further discussions and conclusions based on different sheathing materials, slit configurations, wall configurations, sheathing connection methods, wall dimensions, shear wall member thicknesses, and etc. The walls were subject to cyclic (CUREE protocol) lateral loading to study their deformations and structural performances. The optimal sit configuration for CFS shear walls with corrugated steel sheathings was found to be 12×2 in. vertical slits in 6 rows. The failure mode observed in this shear wall system was the connection failure between the sheathing and the framing members. Also, most of the shear walls tested displayed local buckling of the chord framing members located above the hold-down locations. The second section includes details of developing a Finite Element Model (FEM) in ABAQUS software to analyze the lateral response of the new shear wall systems. Different modeling techniques were used to define each element of the CFS shear wall and are reported herein. Material properties from coupon test results are applied. Connection tests are performed to define pinching paths to model fasteners with hysteretic user-defined elements. Element interactions, boundary conditions and loading applications are consistent with full scale tests. CFS members and corrugated sheathings are modeled with shell elements, sheathing-to-frame fasteners are modeled using nonlinear springs (SPRING2 elements) for monotonic models and a general user defined element (user subroutine UEL) for cyclic models. Hold-downs are defined by boundary conditions. A total of three models were developed and validated by comparing ABAQUS results to full scale test results.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2016

Added to The UNT Digital Library

  • June 28, 2016, 4:28 p.m.

Description Last Updated

  • March 6, 2017, 11:33 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 212

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Mahdavian, Mahsa. Innovative Cold-Formed Steel Shear Walls with Corrugated Steel Sheathing, thesis, May 2016; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc849608/: accessed April 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .