Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H{sub 2}/CO{sub 2} Separation in WGS Reactors

PDF Version Also Available for Download.

Description

The main aim of this work is to synthesize low temperature bimetallic nanocatalysts for Water Gas Shift reaction (WGS) for hydrogen production from CO and steam mixture; and develop low-cost metal (Nb/Ta)/ceramic membranes for H{sub 2} separation and Cellulose Acetate membranes for CO{sub 2} separation. Cu-Ni-Ce/alumina, Fe-Ni-Ce/alumina granular WGS catalysts incorporating metal oxide nanoparticles into alumina support were prepared using sol-gel/oil-drop methods. The catalysts were characterized by Powder X-ray Diffractometer (PXRD), Scanning Electron Microscope (SEM), Differential Thermal Analyzer (DTA), Thermal Gravitational Analyzer (TGA), and Brunauer, Emmett and Teller (BET) techniques. TGA shows sharp weight loss at approximately 215°C and DTA ... continued below

Creation Information

Seetala, Naidu & Siriwardane, Upali June 30, 2011.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The main aim of this work is to synthesize low temperature bimetallic nanocatalysts for Water Gas Shift reaction (WGS) for hydrogen production from CO and steam mixture; and develop low-cost metal (Nb/Ta)/ceramic membranes for H{sub 2} separation and Cellulose Acetate membranes for CO{sub 2} separation. Cu-Ni-Ce/alumina, Fe-Ni-Ce/alumina granular WGS catalysts incorporating metal oxide nanoparticles into alumina support were prepared using sol-gel/oil-drop methods. The catalysts were characterized by Powder X-ray Diffractometer (PXRD), Scanning Electron Microscope (SEM), Differential Thermal Analyzer (DTA), Thermal Gravitational Analyzer (TGA), and Brunauer, Emmett and Teller (BET) techniques. TGA shows sharp weight loss at approximately 215°C and DTA shows dehydration of metal hydroxides between 200°C and 250°C. The PXRD spectra show an increase in crystallinity as a result of heating to 1000°C, and indicating a fine dispersion of the metal oxide nanoparticles in alumina supports during the sol-gel synthesis and calcination at 450°C. BET analysis indicated a mesoporous structure of the granules with high surface area. A gas-phase dynamic flow reactor is used to optimize the reaction temperatures. A gas-phase batch reactor was used to obtain kinetic data and the parameters for maximum CO conversion. In Cu-Ni-Ce/alumina category, Cu(0%)Ni(10%)Ce(11%) was found to be the best WGS catalyst among six Low Temperature Shift (LTS) catalysts with optimum temperatures between 200-300°C, while Ni(5%)Cu(5%)Ce(11%) was found to be the best among four High Temperature Shift (HTS) catalysts with optimum temperature between 350-400°C. In the Fe-Ni-Ce/alumina category catalysts, Fe(8%)Ni(0%)Ce(8%)/alumina and Fe(6%)Ni(2%)Ce(8%)/alumina catalysts showed optimum WGS reaction temperature below 150°C. All Ni(8-x%)Fe(x%)Ce(8%) had lower WGS reaction efficiencies compared to Ni(8-x%)Cu(x%)Ce(8%). Metal (Nb or Ta)/ceramic membranes for hydrogen separation from the WGS reaction gas products have been prepared using a) sputtering and b) aluminothermic techniques. A polyvinyl-glass permeability tester was used with a gas chromatograph (GC) for H{sub 2}/CO permeability testing. Nb films showed a higher permeability than Ta at a given disk porosity. The aluminothermically deposited membranes have higher H{sub 2} permeability compared to the sputtered films, and Nb-film coated disks showed lower H{sub 2} permeability than Ta-film. A three-stage prototype stainless steel reactor with integrated housing for 1) WGS reaction catalysts, 2) H{sub 2}/CO{sub 2} separation metal/ceramic or metal/asbestos membranes, and 3) CO/CO{sub 2} separation cellulose acetate /filter-paper membranes has been designed and tested to have capabilities to perform WGS reactions at temperatures up to 400°C and withstand gas pressures up to 15 bars. The cracking of ceramic disks and gas leaks were successfully prevented by replacing ceramic disks with asbestos sheets that can easily withstand 400°C. Kinetic studies of H{sub 2} and CO permeabilities were performed through the single and double layer Nb and Ta membranes. Cellulose acetate (CA) films with 25% triethyl citrate (TEC) as plasticizer were prepared for H{sub 2}/CO/CO{sub 2} gas separation with varying thickness of the films by acetone solutions at different concentrations and by dip-coating onto filter papers. The AFM analysis of the CA membrane showed that the uniform coating had fewer and smaller pores as the film thickness increased, and corroborated by gas permeability studies. The CO{sub 2} permeability has decreased faster than CO permeability with the CA/TEC membrane thickness, and findings support that the CA membrane could be used to entrap CO{sub 2}. Several CA/TEC membranes were also staked to increase the separation efficiency. Positron Lifetime Spectroscopy (PLS) was used to estimate the micro-porosity (pore size and concentration) and fractional free volume changes of CA/TEC films, and used to understand the variations observed in the CO{sub 2}/CO permeabilities.

Subjects

STI Subject Categories

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FG26-07NT43064
  • DOI: 10.2172/1043820 | External Link
  • Office of Scientific & Technical Information Report Number: 1043820
  • Archival Resource Key: ark:/67531/metadc847157

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 30, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 8, 2016, 3:37 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Seetala, Naidu & Siriwardane, Upali. Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H{sub 2}/CO{sub 2} Separation in WGS Reactors, report, June 30, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc847157/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.