The potential, limitations, and challenges of divide and conquer quantum electronic structure calculations on energetic materials.

PDF Version Also Available for Download.

Description

High explosives are an important class of energetic materials used in many weapons applications. Even with modern computers, the simulation of the dynamic chemical reactions and energy release is exceedingly challenging. While the scale of the detonation process may be macroscopic, the dynamic bond breaking responsible for the explosive release of energy is fundamentally quantum mechanical. Thus, any method that does not adequately describe bonding is destined to lack predictive capability on some level. Performing quantum mechanics calculations on systems with more than dozens of atoms is a gargantuan task, and severe approximation schemes must be employed in practical calculations. ... continued below

Physical Description

28 p.

Creation Information

Tucker, Jon R. & Magyar, Rudolph J. February 1, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

High explosives are an important class of energetic materials used in many weapons applications. Even with modern computers, the simulation of the dynamic chemical reactions and energy release is exceedingly challenging. While the scale of the detonation process may be macroscopic, the dynamic bond breaking responsible for the explosive release of energy is fundamentally quantum mechanical. Thus, any method that does not adequately describe bonding is destined to lack predictive capability on some level. Performing quantum mechanics calculations on systems with more than dozens of atoms is a gargantuan task, and severe approximation schemes must be employed in practical calculations. We have developed and tested a divide and conquer (DnC) scheme to obtain total energies, forces, and harmonic frequencies within semi-empirical quantum mechanics. The method is intended as an approximate but faster solution to the full problem and is possible due to the sparsity of the density matrix in many applications. The resulting total energy calculation scales linearly as the number of subsystems, and the method provides a path-forward to quantum mechanical simulations of millions of atoms.

Physical Description

28 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2012-1298
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/1038199 | External Link
  • Office of Scientific & Technical Information Report Number: 1038199
  • Archival Resource Key: ark:/67531/metadc847092

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 30, 2016, 5:05 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Tucker, Jon R. & Magyar, Rudolph J. The potential, limitations, and challenges of divide and conquer quantum electronic structure calculations on energetic materials., report, February 1, 2012; United States. (digital.library.unt.edu/ark:/67531/metadc847092/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.