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Abstract   

The sudden release of toxic contaminants that reach indoor spaces can be hazardous to 

building occupants. For an acutely toxic contaminant, the speed of the emergency response 

strongly influences the consequences to occupants.  The design of a real-time sensor system is 

made challenging both by the urgency and complex nature of the event, and by the imperfect 

sensors and models available to describe it.  In this research, we use Bayesian modeling to 

combine information from multiple types of sensors to improve the characterization of a release.  

We discuss conceptual and algorithmic considerations for selecting and fusing information from 

disparate sensors. To explore system performance, we use both real tracer gas data from 

experiments in a three-story building, along with synthetic data, including information from 

door-position sensors.  The added information from door-position sensors is found to be useful 

for many scenarios, but not always.  We discuss the physical conditions and design factors that 

affect these results, such as the influence of the door positions on contaminant transport. We 
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highlight potential benefits of multisensor data fusion, challenges in realizing those benefits, and 

opportunities for further improvement.  

1 Introduction  

The ultimate goal of the research described in this paper is to develop approaches for the 

design and implementation of sensor systems that can detect and diagnose — in real time — 

chemical or biological contaminant releases that pose acute hazards for building occupants.  

Such sensor systems should perform robustly — for example, identifying the location and mass 

of the release and suggesting safe evacuation routes — under diverse release circumstances, for 

different building operating conditions, and with limited and imperfect sensor information.  

As building scale increases, the physical processes that govern indoor contaminant transport 

and fate become more complex and simple engineering rules of thumb may be insufficient for 

designing effective sensor networks.  Instead, an integrated-design approach that considers 

contaminant transport processes, sensor characteristics, and sensor interpretation algorithms can 

help to develop a system that performs well in diverse conditions.  The present paper builds on 

our previous efforts to develop system design methods and model-based algorithms capable of 

reconstructing and estimating the unobserved parameters of a release event [1-3].   

Our previous research explored data interpretation based solely on contaminant 

measurements. The present paper considers fusing information from multiple sensor types.  First, 

contaminant sensors are relatively expensive, so that adding different types of sensors may 

decrease the system cost without compromising performance. Second, some inexpensive-to-

detect aspects associated with the state of the building, such as the operating mode of the air 

handling system or window and door positions, can play a significant role influencing 

contaminant transport. In general, the designer would wish to consider incorporating any 
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information that would improve the predictive power or robustness of the detection and 

diagnostic system. 

In this paper, we present elements of a conceptual framework and an algorithmic approach 

to integrate information from heterogeneous sensors into a diagnostic sensor system.  Under 

ideal conditions — perfect information and a perfect interpretive model — many types of 

information would help to improve the event reconstruction, albeit to varying degrees.  Under 

nonideal conditions, however, can a type of information improve event reconstruction in some 

cases, but confound it in others, and why? In this paper, we introduce an approach for 

multisensor system design and illustrate its application in a case study that combines 

door-position sensors with contaminant concentration sensors.   

This research contributes to an emerging literature on indoor contaminant sensor systems. In 

recent related efforts, Liu and Zhai employed the adjoint probability method in combination with 

multizone modeling and computational fluid dynamics (CFD) to locate indoor contaminant 

releases [4,5]. Zhang and Chen developed CFD and probabilistic techniques for locating 

contaminant sources in enclosed spaces [6]. Probabilistic inverse modeling methods have been 

used, also, to reconstruct atmospheric releases [7]. The above efforts explored sensor networks 

composed solely of contaminant sensors.  

More broadly, this paper addresses issues relevant to information fusion and environmental 

system modeling. While heterogeneous (or multisensor) fusion has been applied to problems 

ranging from target tracking to medical diagnostics [8], the development of heterogeneous sensor 

systems for environmental applications is relatively new [9].  The concepts we introduce relate to 

general issues of model accuracy, parsimony, and complexity [10,11].   This paper highlights 

concepts and findings that are reported in greater detail elsewhere [12]. 
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2 Background  

2.1 Algorithm overview  

We interpret sensor data through application of a two-stage Bayes Monte Carlo (BMC) 

algorithm to estimate release parameters and future concentrations, given that a contaminant 

sensor system has detected an event [1]. We briefly review here the key concepts. In the first 

stage, prior to an event, a library of model realizations spanning all possible release conditions is 

generated, with input parameters based on expert judgment. In our application of the BMC 

algorithm, this library contains predicted concentrations, where Yk

The second stage occurs once a release is detected.  The prior probability distributions of 

release conditions and concentration profiles (P(Y

 denotes the predicted 

concentrations from release scenario k. 

k)) are revised by applying a sequential 

Bayesian updating technique as sensor measurements (O) become available.  In the case of a 

network comprising contaminant concentration sensors, Bayes’ rule calculates P(Yk|O), i.e., the 

probability that the array of observed concentrations O corresponds to scenario k and its 

corresponding modeled concentration values, Yk
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, as follows: 

 (1) 

where p(O|Yk) is the likelihood function, P(Yk) is the prior probability of Yk, and N is the number 

of realizations in the library. The likelihood of observing a set of concentrations (O), for an 

assumed release condition and its associated concentrations (Yk

Bayesian updating is not restricted to interpreting contaminant information.  Brand and 

), is influenced by both sensor 

and modeling error. The updated probabilities of the library realizations contain useful 

information, for example, that there is a less than a specified probability that the release 

originated in a particular room.  
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Small [13] describe how the BMC algorithm can reduce the uncertainties of outputs from 

interconnected risk models, providing a natural framework for fusing disparate sensor 

information.  Sohn et al. [14] used hydraulic head and chemical sensors to reduce the 

uncertainties of coupled groundwater flow and contaminant transport models.  In the present 

work, the fate and transport model predicts airflows, and so, for example, heating, ventilating 

and air conditioning (HVAC) duct airflow measurements could be used to help determine the 

relative probability of each scenario in the library.  Other models could be linked with a 

multizone model, such as an energy model that better captures the influence of a building’s 

thermal characteristics on airflow conditions.  These would provide additional sensor fusion 

opportunities.  

2.2 Case study  

Fan pressurization and tracer gas experiments were conducted in a three-story building 

(Figure 1) for which a multizone pollutant dispersion model was applied [15]. In this building, a 

single mechanical air-handling unit (AHU) recirculates the air to the first and second floors.  Air 

exchange with the outdoors occurs by infiltration, and intrazonal flows are induced by a 

combination of mechanical and natural convective forces. Tracer experiments consisted of an 

interior 20 g pulse release of an inert gas from a single point, after which concentrations in each 

room and staircase were sampled at regular intervals. 

The case study AHU differs from a typical HVAC system for a commercial building.  A 

typical HVAC system uses several sensors for operational control, many of which are 

unavailable in the test unit.  However, hypothetical sensor outputs can be simulated for the 

purposes of evaluating multisensor fusion.  For example, known door positions and AHU 

operating status during the tracer experiment can be used to simulate door position sensors and 
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control-system input signals, respectively. 

3 Conceptual framing of sensor fusion   

3.1 Identifying useful information  

A sensor fusion algorithm potentially can use any information that can be monitored and is 

mathematically represented in a contaminant transport and fate model.  Environmental and 

building operating conditions such as temperatures, pressure differences, door positions, damper 

positions, duct static pressure, and HVAC operating conditions influence the transport and fate 

of contaminants and are therefore candidates for inclusion in the sensor system. Building 

conditions should be considered for incorporation into the design of a sensor network depending 

on their information richness, i.e., their relative importance influencing contaminant transport 

and fate in the building.  For example, infiltration and natural convective-driven airflow are 

likely to be small in a well-sealed building maintained at uniform temperatures under mild 

weather conditions.  In this case, outdoor temperature and wind information may not be helpful, 

since the airflows are mainly driven by HVAC system operation.  In contrast, window position in 

a building with operable windows may have significant influence on airflow, and sensors 

providing this information would be good candidates for inclusion. 

3.2 Mapping measurements to the model  

Identifying how a measurement maps to a contaminant transport and fate model is helpful in 

implementing an appropriate fusion algorithm. Although our present focus is on the BMC 

algorithm, these concepts are more broadly relevant.  

Sensor information can correspond to a model input, a model output, or a model parameter. 

For example, concentration measurements map to model outputs; door positions and 

temperatures map to model inputs. When contaminant transport is simulated with a series of 
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models, a measurement may map to an output of one model and to an input of another. In this 

research, airflow and pressure differences are outputs of airflow models and serve as inputs to a 

contaminant transport model.   

How a measurement maps to a model has computational implications. Model inputs are used 

in the BMC algorithm to generate the contaminant transport library prior to a release event.  

Typically a range of possible values of each model input is used to generate the library.  If 

measurements of model inputs are available when an event occurs, they can be used to filter 

realizations in the library, narrowing the space that must be searched during the release event. 

Consolidating the solution space reduces the number of computations that need to be completed 

in real time, and serves to reduce the uncertainty of the release parameters.  Alternatively, model 

input information can be applied towards the generation of a library that more closely represents 

actual conditions.  

Some measurements, such as airflows, map to one model’s input and another’s output. 

Airflow measurements can be compared to and synthesized with predicted airflows from the 

airflow model, using the BMC algorithm, or they can substitute entirely for the predicted airflow.  

The number of calculations executed by the BMC algorithm in real time increases with the 

number of model output types interpreted. So, mapping the measurement to a model input may 

reduce the real-time computations if the information is interpreted prior to a release; however, 

the appropriateness of interpreting the information prior to a release depends on the dynamic 

state of that measurement.   

3.3 Dynamic state of the measurement  

The dynamic state of a measurement, in combination with its model mapping, can help 

inform how best to process the information.  One can classify building conditions that pertain to 
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its dynamic state as “static,” “pseudo-static” or “dynamic.”  

Static quantities rarely or never change and commonly map directly to model parameters.  

Examples are the leakage characteristics of the building envelope and the speed of a 

constant-drive fan.  Static measurements are treated as constants in the contaminant fate and 

transport model and in the BMC algorithm.  Repeated or real-time measurements of a static 

quantity are unnecessary.  

Pseudo-static quantities change over time, but are expected to remain approximately 

constant over the time scale of an acute release event.  Pseudo-static quantities can be treated as 

constants in the model and inversion algorithm, but because they change with time, updated 

measurements are needed for monitoring beyond the time scale of single release events.  

Although the sensor interpretation scheme can treat pseudo-static quantities as constants, it must 

also consider multiple possible values.  Window position, air temperature and variable supply 

fan speed are examples of pseudo-static quantities.  

In the BMC algorithm, measurements of pseudo-static model inputs can be used to generate 

a library in real time, as the pseudo-static values change.  This approach may offer computational 

advantages over generating a comprehensive library at an earlier time and processing the larger 

library during a release.  Alternatively, pseudo-static inputs can be interpreted at the start of a 

release event by a prior-filtering algorithm. If a pseudo-static measurement maps to a model 

output as well (e.g., airflow), then factors such as sensor accuracy, simulation time and model 

fidelity can help determine if the measurement should be processed as a model output — such as 

how concentration information is interpreted — or as an input —  which may involve 

substituting the measurement for the model predictions.  

Dynamic quantities change on a time scale that is comparable to or faster than the duration 
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of a release event.  Elevator operation and poorly tuned HVAC systems can generate potentially 

important dynamic quantities, such as unstable duct damper positions or air handling unit control 

valves. The interpretation of sensor information for dynamic model inputs is challenging since 

the algorithm must process the model inputs at a rate comparable to the rate at which the variable 

changes. Although the BMC algorithm easily incorporates dynamic model inputs, it does not 

easily incorporate measurements of dynamic quantities that are model inputs, since future values 

of these measurements are unknown when the library is generated. However, if the building 

condition changes slowly in comparison to the time scale of a release event or if the dynamic 

element has little influence on airflow and the relative concentrations measured by the network, 

accounting for it in the algorithm may not be necessary.   

4 Example: Combining door position and contaminant sensors  

This section further explores heterogeneous sensor fusion concepts by evaluating sensor 

networks that utilize both door-position and contaminant-concentration sensors.  The 

investigations use experimental and simulated data sets, for which the release conditions span 

varying door positions, air handling unit (AHU) operation, source release location, and release 

duration.  We anticipate that door-position sensors are likely to be more informative when the 

AHU is off, because under that condition door positions have a larger influence on airflow. We 

are particularly interested in understanding how and why the performance improves or degrades 

with factors such as the release conditions, network configuration, and use of simulated vs. field 

data.  We are also interested in the consistency of these results.  For the purposes of this paper, 

the system performance is based on the ability of the network to identify the release location to a 

high probability and to estimate the release mass with a narrow confidence interval.   

The analyses and results are reported in two sections: mechanically driven airflow 
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conditions (AHU on) and naturally driven airflow conditions (AHU off).  First, though, we 

describe the approach for utilizing door-position sensor data along with contaminant 

concentration data. 

4.1 Door position fusion algorithm: derivation and implementation 

For the purposes of this paper, we classify door positions as pseudo-static, binary model 

inputs (i.e., the door is either open or closed). (We do not consider here the effect that different 

extents of openness may have on interzonal airflow.)  Information from real-time measurements 

of door-position sensors can be integrated into the BMC algorithm by adjusting the prior 

probabilities of the library realizations.  

A prior-filtering algorithm was developed to determine the prior probability adjustment in 

which library realizations with simulated door positions that more closely match the actual door 

positions are preferentially weighted.  The algorithm assumes uniform initial probabilities of 

each realization. The degree of fit, di

  

 

di =
nmatch

nsensors

, measures how well the actual door positions match those 

assumed for realization i. Equation 2 calculates the degree of fit of each realization. 

 (2) 

where nmatch is the number of sensors in the network that match the positions of realization i, 

given a total number of sensors, nsensors.  A realization is determined to have a favorable match if 

di

Equations 3 and 4 combine d

 is greater than a user defined threshold, δ. A second user defined parameter, γ, reflects the 

confidence that is assigned to the measurement-to-model fit and influences the adjustment to a 

realization’s prior probability. The user-defined parameters are constrained such that 0 ≤ δ, γ ≤ 1. 

i, γ and δ to determine the adjustments to be applied to the prior 

probability of each realization with a favorable match, where θmax is the upper limit of the 

adjustment and ensures that ∑Pi for δ >di over all realizations in the library does not exceed 1. 



 

13 

    

 

θmax =
1−

Ndi ≥δ
N

di
i=1,di ≥δ

N
∑

 (3)   

 

θ = γθmax (4) 

In these equations, Ndi≥ δ is the number of realizations with di

The prior probabilities of each realization with a favorable match are adjusted using 

equation 5a. All other realization priors are adjusted using equation 5b, which was derived by 

setting ∑P

≥ δ.  

i

N
dPd iii

1: +×=≥ θδ

  = 1 over all realizations in the library.  For clarification, equations 5a and 5b adjust 

the prior probabilities of the realizations in the library, based on the door-position measurements. 

They do not reflect the sensitivity of the model to the door positions.   

 (5a) 
δ

δδ
≥

≥=

−

−

=<
∑

i

i

d

N

di
i

ii NN

P

Pd ,1
1

:  (5b) 

When di = 1, all sensors present in the system match the values of the ith realization.  As 

δ → 1 and γ → 1, the probabilities of all realizations with exact matches are maximally weighted 

and the prior probabilities of all other realizations approach 0.  By adjusting γ, the degree to 

which the prior probabilities (Pi

In this paper, all the door positions during a release are treated as hypothetical door sensor 

information available to the sensor system, simulating a maximum possible number of door 

sensors.  Both adjustable parameters are set to unity, that is γ = δ = 1. By assuming no model 

specification and sensor error from the simulations, there is greater chance of performance 

enhancement, but also, an increased risk of performance deterioration.   

) are shifted from a uniform distribution is varied.  The 

parameters δ and γ provide flexibility in treating the sensor measurements, collectively 

accounting for door position sensor error and model uncertainty (owing to the limited ability of 

the model to accurately capture the physical effect of door position on contaminant transport).  
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4.2 Mechanically driven airflow conditions  

4.2.1 Library and likelihood function  

The library and likelihood function from Sreedharan et al. [3], which were developed for the 

same field experiments, are used in this section.  Table 1 reviews the model input sample 

distributions that were used to generate the library.  Although there are seven doors (Figure 1), 

each pair of interior doors separating the rooms on levels one and two are assumed to be in one 

position, reducing the number of independent door settings to five, and thereby yielding 25

Equation 6, which represents the empirical likelihood function for instantaneous or 

short-duration releases [3], was applied to the “Experiment 1” data in which 20 g of tracer gas 

was instantaneously released at the AHU return.  The standard deviation of the error (units: g/m

 = 32 

possible door configurations. 

3

    

 

σ(t ) = Ae−Ct + B 
 
  

 
 t

τrelease

) 

is obtained by multiplying the normalized parameters from equation 6 by the idealized 

well-mixed concentration (assuming instantaneous, complete mixing throughout the building). 

 t ≤ τrelease

    

 

σ(t ) = Ae−Ct + B

 (6a) 

 t > τrelease

where A = 1.74, B = 0.46, C = 0.37 min

  (6b)  

-1, and τrelease

Throughout this paper, the release time is treated as an additional unknown parameter that is 

estimated using the BMC algorithm.  The library is augmented to represent realizations with 

release times that begin 1 s, 1 min, 2 min and 3 min prior to when the first datum is received. 

 is the release duration in minutes. 

4.2.2 Results using experimental data   

In Experiment 1, the AHU was on and all interior doors were open.  We compare the 

performance of the data fusion algorithm on hypothetical sensor networks both with and without 
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door position sensors.  To make our conclusions more general, we explore a wide design space 

by comparing every possible configuration of contaminant sensor, with 1 to 11 sensors in the 

building, and with each room having either one sensor or none.   

In Figure 2, the left-hand frames compare the ability of networks with and without door 

position sensors to correctly identify the release location at time t = 10 min after the release.  

Each frame reports the mean and standard deviation of the performance difference, ∆, which is 

defined as the probability of the network finding the release location with door sensors minus the 

probability without door sensors.  The right-hand frames of Figure 2 show network performance 

for identifying either the return intake or the room containing the intake (Room 1.2a) as the 

release location — a less strict, but still useful metric. 

In this example, where door positions have relatively low influence on airflow, 

door-position sensors improve the identification of the release location on average by ~ 0–10%.  

They are helpful for many, but not all, 2-sensor networks (left-hand frames of Figure 2).  Using 

the less strict outcome metric, fewer networks are negatively impacted (right-hand frames of 

Figure 2).  Networks that contain 6 contaminant sensors show similar results, although the 

average performance advantage attributable to door sensors is less than for the 2-sensor 

networks. For some 6-sensor and 2-sensor networks, door sensors degrade system performance. 

There is little-to-no impact from using door sensors for networks with 10 contaminant sensors.   

Overall, while we observe an average performance improvement from augmenting 

contaminant sensor networks, there is considerable variability in the performance among 

sensor-network configurations, and even degradation for some networks.  The performance 

improvement occurs when the AHU is on, a condition in which door positions should exhibit 

relatively small influence on airflow and contaminant transport. For these networks, sensor 
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fusion may improve performance simply by reducing the library scale to a more optimal subset.  

Model error is likely to account for the networks that exhibited degraded performance. The 

addition of physically irrelevant parameters (and values) into the library may act as a buffer and 

can camouflage modeling error; this buffer is decreased when the library space is consolidated 

through sensor fusion.  On a practical level, information on parameter values may not be helpful 

when one is utilizing a model that is inherently inaccurate or in which error structures are poorly 

characterized.   

4.2.3 Generation of simulated data, likelihood function and updating  

To investigate system performance over a broader range of conditions, we augmented the 

small number of actual tracer-gas experiments by generating concentration data for simulated 

releases. An additional advantage of using simulated data is that the error structure is more easily 

characterized, eliminating the confounding factor of model-specification error. The COMIS 

model (which was used to generate the library) was exercised to model spatially and temporally 

varying concentrations from a hypothetical 20 g pulse release originating in Stairwell 2.  All 

doors were assumed to be open and the AHU fan was assumed to be on.  The modeled 

concentrations were perturbed to simulate sensor error that was assumed to follow a lognormal 

distribution (equation 7).   

    

 

f ( X ) =
1

2π ln(GSD) X
exp −

1
2

ln X − ln(GM )
ln(GSD)

 

 
 

 

 
 
2 

 
 

  

 
 
 

  
 (7) 

where the geometric mean, GM, and geometric standard deviation, GSD, are set to the modeled 

concentration, and to e0.2 = 1.22, respectively.  For each model prediction, a random variate was 

generated by sampling from f(X).  In cases where the modeled concentration was 0, the sensor 

measurement was also set to 0.  The perturbed concentrations were adjusted to reflect the sensor 
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resolution and detection limits of the tracer data.  

Because the likelihood function represents the assumed error structure of the model-data fit, 

equation 7 also serves as the appropriate basis for the likelihood function.  The likelihood of 

“measurement” Oi given modeled concentration Yk,i, p(Oi|Yk,i

    

 

p(Oi | Yk ,i ) =
1

2π ln(GSD) × Oi
exp −

1
2

lnOi − lnYk ,i
ln(GSD)

 

 
 

 

 
 
2 

 

 
 

 

 

 
 

), is calculated using equation 8. 

Modeled and sensor concentrations of zero were set to the sensor detection limit. 

  (8) 

4.2.4 Results using simulated data  

Because the AHU does not directly serve the stairwell, the stairwell door positions were 

expected to exhibit strong influence on the rate at which the Stairwell 2 release disperses. 

Modeling indicated that the concentrations in the stairwell are impacted as the door positions are 

altered, although concentrations in many zones are less affected.  A full set of hypothetical 

sensor network data streams, ranging from 1 to 11 contaminant sensors, was generated from the 

simulated data.  Each network was investigated with and without a full set of door sensors.  

Figure 3 compares the ability of the sensor systems to identify the release location at 5 min 

and 10 min after the release.  Door-position sensors help the system to identify the release 

location to a higher probability on average ~ 0–3% at 5 min and ~0–0.5% at 10 min, but with 

significant variability and not consistently, as indicated by the placement of the points both 

above and below the diagonal lines.  The networks for which door sensors impose a penalty 

appear to be those with moderately poor sensor placements, as indicated by their relatively low 

probabilities in the “without door sensors” cases.  In some cases, door sensors may exacerbate 

the effects of poor contaminant sensor placement. 
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4.3 Naturally driven airflow conditions  

Door-position sensors were also investigated for naturally driven airflow conditions. They 

are expected to be more useful here, and consistently so, because door positions exhibit greater 

influence on contaminant transport in the absence of forced flow through ducts.  

4.3.1 Library, data generation and likelihood function  

A library was generated as described in Section 4.2.1 for release conditions with the AHU 

fan off.  Hypothetical release data were generated using the methods described in Section 4.2.3.  

In each case, 20 g of contaminant was released and various door positions, release locations and 

durations were simulated.   

The first analysis evaluates performance of a single “typical” contaminant sensor network 

against each release scenario. The second analysis evaluates the performance of a combinatorial 

set of networks against releases originating in Stairwell 2.  Table 2 lists the release conditions 

and networks evaluated. The likelihood function follows the description in Section 4.2.1. 

4.3.2 “Typical” network performance  

In this case, we deployed five contaminant sensors in the network. No sensor was placed in 

the release zone. Sensors were deployed on each floor, but no two sensors were placed in 

adjacent zones. If a floor had two sensors, one sensor was located in the stairwell and one in the 

main interior space (Table 2). 

Figures 4 and 5 illustrate the time-dependent capability of the networks to locate the release 

and to estimate the released mass.  As shown, door-position sensors improve the source 

identification by ~ 2–20% and reduce the uncertainty of the release mass estimated by ~ 40–

85%.  Because there are many release conditions that might explain the few sensor readings, the 

uncertainty bounds are not immediately narrowed.  
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For the Room 1.1 release, the system has difficulty locating the release, either with or 

without door-position sensors, suggesting that the contaminant sensor placements are suboptimal 

for this release location. However, both networks characterize the released mass with reasonable 

confidence intervals within 10 min, likely because releases of similar magnitude originating from 

the different locations generate similar concentrations at the sensed locations. This result is also 

consistent with the notion that information pertaining to the release mass persists even after 

information about the release location dissipates [3].  

For each of the other simulated experiments, door-position sensors help to correctly identify 

the release location to higher probabilities and to estimate the release mass to narrower 

confidence intervals for a given monitoring time.  The performance disparity among individual 

networks underscores the need to evaluate multiple networks against multiple release conditions. 

Incorporating multiple sensor types may improve estimation of past and future 

concentrations.  Figure 6 shows the concentration profiles for the Room 2.2 release for networks 

with and without door-position sensors, prior to receiving data and after receiving 5 min of data.  

Concentrations in one zone from each floor are plotted, none of which had sensors.  

The left frames illustrate the prior confidence intervals of the concentrations in each of the 

selected zones.  The “measured” concentrations for the release zone (Room 2.2) are not within 

the confidence interval.  This outcome is reasonable given that there are eleven other equally 

likely release zones possible.  After 5 min of updating, both networks (see central and right 

frames) are able to determine with narrow confidence intervals that the past and future 

concentrations in Stair 3 are small.  The wider confidence intervals in Rooms 1.2a and 2.2 

suggest that either zone may have been proximate to the release source.  The networks with door 

sensors further reduce the uncertainty of the concentrations in these rooms. The distribution 
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without door sensors, however, is preferable for Room 2.2, as it fully spans the data; still, the 

reconstruction with door position sensors is an improvement over the prior uncertainty 

distribution.   

4.3.3 Combinatorial network analyses 

Combinatorial network analyses were performed to assess the consistency and variability of 

the performance benefit (and penalty) from fusing information from door-position sensors with 

data from contaminant-concentration sensors.  We evaluated all networks containing either 3 or 8 

contaminant sensors, with and without a full set of door-position sensors, against the two 

Stairwell 2 releases.  

Excepting a few anomalous networks, door-position sensors consistently improve the 

identification of the release location, by an average of ~ 6–7% for three-sensor networks and 

~ 2–3% for eight-sensor networks as illustrated in Figure 7.  The average performance 

improvement in these scenarios is higher than what was observed with the AHU on, and there 

are fewer scenarios for which fusing door-position information imposes a penalty.  However, the 

results also suggest that chemical sensor placement is the more significant design factor, and that 

door sensors do not compensate for poor contaminant-sensor placement. Similarly, door sensors 

are of limited value for cases in which chemical sensors are optimally located; there is little 

advantage to knowing the door positions when the information content of the chemical sensors is 

rich. 

Quickly identifying the release location is important because information pertaining to the 

release location erodes as the interzonal transport time scale is exceeded.  If a sensor-system goal 

is to locate the release to a minimum probability of 0.9, then several multisensor networks have a 

clear advantage on the order of minutes (Figure 8).  Many three-sensor networks without door 
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sensors are unable to identify the source to at least a 0.9 probability within 10 min.  

Door-position sensors are more consistently valuable under (simulated) naturally driven 

airflow conditions, where door positions have a relatively greater effect on airflow. A concept 

that we term the “degree of influence” may help to identify which sensors (in addition to 

contaminant sensors) may be useful in a hybrid sensor network. To be useful for sensor-system 

design, this concept should ideally be embodied in a metric that would quantify the extent to 

which a measurable model input affects contaminant transport over a range of operating and 

release conditions. Modeling analysis can help identify high-value measurements; however, 

these explorations would be limited by the fidelity of the model to the underlying physical 

processes. Field experiments can also help identify influential physical factors, although 

conducting experiments over a broad range of conditions is expensive.   

A key challenge is that the actual or realized influence of any factor for a release event — as 

exhibited by the empirical results in this study — depends on specific release conditions, such as 

the magnitude and location. For example, the door positions may significantly affect the relative 

concentrations among sensed zones for some release scenarios, but less so for others. 

Furthermore, leveraging the degree of influence for model-based sensor fusion relies on the 

ability to model the effects of the parameter and an ability to characterize the inherent error 

structures. This task is much simpler when using simulated data. However, adequate fidelity of 

the simulation model for describing the physical system is needed if simulated data are to be 

used to design reliable sensor networks.  

5 Conclusions  

In this paper, we have explored how combining information from different types of sensors 

might improve the diagnosis of an acute contaminant release event that impacts indoor air.  We 
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discuss a conceptual framework for sensor fusion and present an algorithmic approach.  The 

conceptual framework is based on how the measurement is mapped to the model, its relative role 

in influencing contaminant fate and transport, and the dynamic state of the building or 

environmental condition it represents.  

Heterogeneous sensors are more valuable when they characterize a model input that exerts 

larger influence on contaminant transport, as suggested by the illustrative example using 

door-position sensors. Several contaminant-monitoring networks were evaluated in this study, 

with and without door-position sensors, for conditions with the AHU on and off, using 

experimental and synthetic tracer-gas data.  Door-position sensors improved the reconstruction 

of the release event for some scenarios with the AHU on, but did so more consistently for 

conditions with the AHU off for which there were far fewer cases of degraded performance. 

Penalties are more likely to occur when the parameter exhibits low influence on the contaminant 

concentrations at the sensed locations. In such cases, fusing information on what is a 

meaningless parameter may produce a reduced library that is insufficient to accurately 

reconstruct the event.  One possible way of preventing library insufficiency problems is to 

dynamically generate the library using available model input information.  

Specifically, this study indicates that while door-position sensors may help the sensor 

system to characterize the release more efficiently, and with less computational effort, they 

cannot compensate for poor contaminant sensor placement nor for an insufficient number of 

sensors.  Further research should develop a metric for the degree of influence concept, to help 

identify and rank useful information in advance. A key challenge to developing this concept is 

that the actual influence depends on unknown release characteristics, such as the release location 

and mass, and will vary by location.  In implementation, the designer may choose to optimize the 
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network for diagnosing certain release conditions, such as for detecting a release that originates 

in a particular room.  Doing so narrows the scope of the technical challenge.  

Although conceptually simple, the door-position sensor example illuminates some important 

aspects of the conceptual framing and suggests that disparate sensors, when used appropriately, 

could complement contaminant sensors in systems that are designed to characterize high-risk 

pollutant releases.  Other sensor types, such as pressure and control-system signals, could be 

evaluated in future work using the concepts introduced and methods employed here.  A more 

sophisticated implementation of the BMC algorithm, or other algorithms, may be required to 

ensure robust sensor system performance in dynamic conditions.  
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Table 1  Parameter values used to simulate the library of 5000 contaminant releases.   

Parameter Values 

Source location Twelve locations: any room, or stairwell and return duct.  Each 
location is equally probable. 

Source duration 1 s to 5 min; log-uniform distribution. 
Source amount 10 to 100 g; log-uniform distribution. 
Door position 32 possible door configurations, based on interior doors on each 

level and stairwell doors acting independently. 
 

Table 2  Description of simulated release conditions with AHU off.  

Release location Internal door position Release 
duration 

Sensor locations 

Typical network analyses 
Room 1.1 Stairwell doors closed, other 

interior doors open 
1 s Rooms 1.2b, 2.3, 

3.1, Stairwells 1 
and 2 

Room 2.2 All doors open   1 s Rooms 1.3, 2.3, 
3.1, Stairwells 1 
and 2 

Stairwell 3 All doors open   1 s Rooms 1.3, 2.3, 
3.1, Stairwells 1 
and 2 

Room 2.2 All doors open 120 s Rooms 1.3, 2.3, 
3.1, Stairwells 1 
and 2 

Combinatorial network analyses  
Stairwell 2 a All doors open     1 s All possible 
Stairwell 2 

b 
Stairwell doors closed, other 
interior doors open  

1 s All possible b 

a 4.2.4 This release scenario is identical to that investigated in Section  (where a release originating in 
Stairwell 2, but with the AHU was on, was explored). 
b

 
 The combinatorial analyses considers all possible network configurations ranging from 1 to 11 sensors. 
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Figure Captions  

Fig 1   Layout indicating location of interior doors for the case study.    

Fig 2 Experiment 1: probability of correctly identifying the release at 10 min (a) return intake 

and (b) return intake or Room 1.2a, for networks containing 2, 6 and 10 contaminant 

sensors, with and without door sensors. (∆ ≡ probability with door – probability without 

door.)  The experiment involved release and sampling of tracer gas data with the AHU 

on. 

Fig 3 Effect of door sensors for correctly identifying Stairwell 2 as the site of the contaminant 

release, using simulated event data.  The air handling unit was on in the simulation.  

Probabilities are plotted for 5 and 10 min of updating for networks containing 3, 5, 7 and 

9 contaminant sensors.   

Fig 4  Time-dependent probability of locating a release with and without door position sensors 

for the “typical” network. The analysis is based on simulated data with the air handling 

unit off. 

Fig 5  Time-dependent estimates of mass released for “typical” network, with and without door-

position sensors. The true released mass is 20 g.  Plotted are the median (dashed line), 

and the 10th and 90th percentiles (solid lines). The analysis is based on simulated data 

with the air handling unit off. 

Fig 6  Confidence intervals of time-dependent concentrations before receiving data and after 

5 min of updating for networks with and without door sensors.  Median (dashed line), 

10th and 90th percentiles (solid lines), and (simulated) concentration data for pulse 

release in Room 2.2 (points) are displayed. The analysis is based on simulated data with 

the air handling unit off. 
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Fig 7   Effect of door-position sensors for identifying the location of releases that occurred in 

Stairwell 2. Probabilities are shown of being correct after 10 min of updating for 

networks containing 3 and 8 contaminant sensors. The analysis is based on simulated data 

with the air handling unit off. 

Fig 8  Time to locate release to 0.9 probability for releases occurring in Stairwell 2 for networks 

with and without door-position sensors. A negative time indicates that a probability of 0.9 

was not reached by 11 min. The analysis is based on simulated data with the air handling 

unit off. 
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