Fabrication of a 238Pu target

PDF Version Also Available for Download.

Description

Precision neutron-induced reaction data are important for modeling the network of isotope production and destruction within a given diagnostic chain. This network modeling has many applications such as the design of advanced fuel cycle for reactors and the interpretation of radiochemical data related to the stockpile stewardship and nuclear forensics projects. Our current funded effort is to improve the neutron-induced reaction data on the short-lived actinides and the specific goal is to improve the neutron capture data on {sup 238}Pu with a half-life of 87.7 years. In this report, the fabrication of a {sup 238}Pu target for the proposed measurement ... continued below

Physical Description

6 p. (0.2 MB)

Creation Information

Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J & Carter, D November 16, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Precision neutron-induced reaction data are important for modeling the network of isotope production and destruction within a given diagnostic chain. This network modeling has many applications such as the design of advanced fuel cycle for reactors and the interpretation of radiochemical data related to the stockpile stewardship and nuclear forensics projects. Our current funded effort is to improve the neutron-induced reaction data on the short-lived actinides and the specific goal is to improve the neutron capture data on {sup 238}Pu with a half-life of 87.7 years. In this report, the fabrication of a {sup 238}Pu target for the proposed measurement using the DANCE array at LANL is described. The {sup 238}Pu target was fabricated from a sample enriched to 99.35%, acquired from ORNL. A total of 395 {micro}g was electroplated onto both sides of a 3 {micro}m thick Ti foil using a custom-made plating cell, shown in Fig 1. The target-material loaded Ti foil is sandwiched between two double-side aluminized mylar foils with a thickness of 1.4 {micro}m. The mylar foil is glued to a polyimide ring. This arrangement is shown partially in Fig. 2. The assembled target is then inserted into an aluminum container with a wall thickness of 0.76 mm, shown in Fig. 3. A derlin ring is used to keep the target assembly in place. The ends of this cylindrical container are vacuum-sealed by two covers with thin Kapton foils as windows for the beam entrance and exit. Shown in Fig. 4 is details of the arrangement. This target is used for phase I of the proposed measurement on {sup 238}Pu scheduled for Nov 2010 together with the DANCE array to address the safety issues raised by LANL. Shown in Fig. 5 is the preliminary results on the yield spectrum as a function of neutron incident energy with a gate on the total {gamma}-ray energy of equivalent Q value. Since no fission PPAC is employed, the distinction between the capture and fission events cannot be made, which is important for the higher neutron incident energy. However, it indicates that a cross section of less than one barn can be measured. The second phase of this experiment will be carried out in 2011 by assembling a PPAC with the {sup 238}Pu target to extend the measurement to higher neutron incident energies by distinguishing the capture from fission events. The fission cross section becomes dominant for neutron incident energies above 30 keV. This PPAC was developed in FY2010 under the NA22 funding and performed very well for the {sup 239}Pu and {sup 241}Pu measurements. A new {sup 238}Pu target will be fabricated for the phase II measurement using the same electroplating technique.

Physical Description

6 p. (0.2 MB)

Notes

PDF-file: 6 pages; size: 0.2 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LLNL-TR-463091
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/1018777 | External Link
  • Office of Scientific & Technical Information Report Number: 1018777
  • Archival Resource Key: ark:/67531/metadc846876

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 16, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • April 17, 2017, 12:12 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J & Carter, D. Fabrication of a 238Pu target, report, November 16, 2010; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc846876/: accessed August 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.