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In  this  paper  we  modify  the constitutive  relation  derived  by Reiner  (1945),  to  describe  dilatancy  in  wet
sand,  by  suggesting  that the  shear  viscosity  would  depend  on  the  shear  rate  and  the  volume  fraction.  We
then  look  at the  flow  of a  saturated  densely  packed  bed  of particles  (with  liquid  in  the  pores)  between
two  horizontal  flat  plates.  We  obtain  exact  solutions  for a  very  special  case.
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. Introduction

Reynolds (1885) observed that for a shearing motion to occur in
 bed of closely packed particles, the bed must expand to increase
he volume of its voids. He termed this phenomena “dilatancy”.
eynolds (1886) used this idea to describe the capillary action in
et sand. The concept of dilatancy is generally taken to be the

xpansion of the voidage that occurs in a tightly packed gran-
lar arrangement when it is subjected to a deformation (shear).
hat is, in order for a shearing motion to occur in a bed of closely
acked spheres, the bed must expand by increasing its void volume.
he work of Reynolds was followed by the experimental stud-
es of Jenkin (1931),  Rowe (1962),  Andrade and Fox (1949), and
olton (1986) to name a few (see Massoudi and Mehrabadi, 2001

or details). In fact, Reiner (1945, 1948, 1958) was  one of the first
ho derived a non-Newtonian fluid model to predict dilatancy in
et sand. Even though this model does not take into account how

he voidage (volume fraction) affects the stress, Reiner was able to
how that application of a non-zero shear stress produces a change

n volume.

Reiner’s paper (1945) has had a major impact on the devel-
pments of constitutive modeling of non-linear fluids. In fact, as

∗ Tel.: +1 412 386 4975.
E-mail addresses: Massoudi@netl.doe.gov, mehrdad.massoudi@netl.doe.gov

093-6413/$ – see front matter. Published by Elsevier Ltd.
oi:10.1016/j.mechrescom.2011.05.002
Truesdell (1965, p. 1) in his introduction to Reiner’s paper, which
is part of an edited collection of important articles on rational
mechanics, says: “The paper here reprinted begins the rebirth of con-
tinuum mechanics as a rational science. In spirit it is transitional
between the older work and the new. . .While the fraction of this paper
containing results that are both correct and new is a small one, it is
that fraction that matters. . .While none of its results or proofs can now
be accepted, this paper has had influence, direct and indirect, on par-
ticularly all subsequent work in rational continuum mechanics.”  It is
in this spirit that we will try to generalize, or in a sense improve,
Reiner’s model, by making its shear viscosity dependent not only
on the shear rate but also on the volume fraction. In fact, it needs
to be mentioned that as far as the rheological issues are concerned,
it is widely accepted that the Reiner–Rivlin fluid has been replaced
by the Rivlin–Ericksen (1955) fluids of grade two.

In general, the behavior of granular materials (wet or dry) is
governed by interparticle cohesion, friction, collisions, etc. Granu-
lar materials present a special challenge to engineers and scientists.
It is a multi-disciplinary field, and one can study it from many dif-
ferent perspectives (see the books by Mehta, 1994; Duran, 2000;
Antony et al., 2004). From a theoretical perspective, there are fun-
damentally two  different and distinct, yet related methods that can

be used: one is the statistical theories and the other the continuum
theories.

In the statistical theories, either a particle dynamics approach
(simulation) or modified forms of the kinetic theory of gases are

dx.doi.org/10.1016/j.mechrescom.2011.05.002
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
mailto:Massoudi@netl.doe.gov
mailto:mehrdad.massoudi@netl.doe.gov
dx.doi.org/10.1016/j.mechrescom.2011.05.002
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sed. These two techniques, especially with the advent of faster
nd more efficient computers have become very popular in the last
wo decades. There are many review articles which deal with the
tatistical theories (Hermann, 1999; Hermann and Luding, 1998)
nd kinetic theories as applied to granular materials (Massoudi
nd Boyle, 2001; Goldhirsch, 2003). In the continuum approach
ne assumes that the material properties of the ensemble may
e represented by continuous functions so that the medium may
e divided infinitely without losing any of its defining properties
Massoudi, 2004). There are also studies which focus on the onset of
he flow, or the yield condition, and therefore techniques of theory
f plasticity have been used. Theories of structured continua have
lso been used (Ahmadi, 1980) and there have been other attempts
here the stress tensor is assumed to be composed of two parts: a

ate-independent part, similar to a yield condition, for the frictional
ow regime, and a rate-dependent part for the viscous flow regime
Tardos, 1997).

In this paper we modify and generalize the constitutive relation
erived by Reiner (1945) to describe dilatancy in wet  sand by sug-
esting that the shear viscosity would depend on the shear rate and
he volume fraction. We  then study the flow of a densely packed
ed of particles (with liquid in the pores) between two  horizontal
at plates. We  show that it is possible to obtain exact solutions for a
ery special case. In Section 2, we present the governing equations,
nd in Section 3, a brief discussion of the constitutive relation for
he stress tensor T is provided. In Section 4 the equations of motion
or the shearing flow between two flat plates along with the exact
olution are presented.

. Governing equations

The balance laws, in the absence of thermo-chemical and
lectromagnetic effects, are the conservation of mass, linear
omentum, and angular momentum (Truesdell and Noll, 1992).

he conservation of mass in the Eulerian form is given by:

∂�

∂t
+ div(�u) = 0 (1)

here ∂/∂t is the partial derivative with respect to time. The balance
f linear momentum is

du
dt

= div T + �b (2)

here d/dt is the total time derivative, given by
d(·)/dt) = (∂(·)/∂t) + [grad(·)]u, b is the body force, and T is the
auchy stress tensor. The balance of angular momentum (in the
bsence of couple stresses) yields the result that the Cauchy
tress is symmetric. For a complete study of a thermo-mechanical
roblem, the Second Law of Thermodynamics has to be considered.
ince there is no general agreement on the functional form of
he constitutive relation and since the Helmholtz free energy
s not known, a complete thermodynamical treatment of the
resent model used in our studies is lacking. In order to ‘close’ the
overning equations, we need constitutive relations for T.

. Constitutive equations

Most granular materials exhibit two unusual and peculiar char-
cteristics: (i) normal stress differences, and (ii) yield criterion. The
rst was observed by Reynolds (1885, 1886) who called it dilatancy.
he second peculiarity is that for a granular material to flow there is
ften a yield stress below which the particles do not undergo defor-

ation. The yield condition is often related to the angle of repose,

riction, and cohesion among other things. After the pioneering
ork of Bagnold (1954, 1956) many non-Newtonian models have

een proposed. For a review of this aspect of the modeling activi-
munications 38 (2011) 378– 381 379

ties we  refer the reader to the recent article by Elaskar and Godoy
(1998).

Reiner (1945, 1948) proposed and derived a constitutive relation
for wet  sand whereby the concept of dilatancy is given a math-
ematical structure. This was accomplished through the relation
between two tensors and the resulting second order effects in vis-
cous and elastic media. This model does not take into account how
the voidage (volume fraction) affects the stress. However, using this
model, Reiner showed that application of a non-zero shear stress
produces a change in volume. The constitutive relation of the type

Tij = F0ıij + 2�Dij + 4�cDilDlj (3)

describing the rheological behavior of a non-linear fluid was named
by Truesdell (see Truesdell and Noll, 1992) as the Reiner–Rivlin (see
Rivlin, 1948) fluid, where in tensor notation the stress tensor T is
related to D, where D is the symmetric part of the velocity gradient
(see Serrin, 1959 for a discussion of this model and the Stokesian
fluid):

T = −p(�)I + ˛0I + ˛1D + ˛2D2 (4)

where p is a function of the density and the ˛’s are function of
�, trD, and trD2. To incorporate the effects of volume fraction and
its gradient Rajagopal and Massoudi (1990) and Rajagopal et al.
(1994) derived a constitutive model that predicts the possibility of
normal stress-differences and is also properly frame invariant (see
also Cowin, 1974; Savage, 1979):

T = [ˇ0 + ˇ1∇� · ∇� + ˇ2 trD]1 + ˇ3D + ˇ4∇� ⊗ ∇� + ˇ5D2 (5)

where

D = 1
2

[∇v + (∇v)T ] (6)

Where ‘tr’ and O denote the trace and the gradient operators,
respectively, ‘·’ designates the inner product, ‘⊗’  indicates the outer
(dyadic) product of two vectors, � = �s�, with �s being constant, �(x,
t) is an independent kinematical variable called the volume dis-
tribution function and has the property 0 ≤ �(x, t) < �max < 1; and
the ˇ’s are material properties, which in general are functions of
the appropriate principal invariants of the density gradient and
the symmetric part of the velocity gradient. They also assumed
(Massoudi, 2001):

ˇ0 = k�;  k < 0 (7)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ˇ1 = ˇ∗
1(1 + � + �2)

ˇ2 = ˇ∗
2(� + �2)

ˇ3 = ˇ∗
3(� + �2)

ˇ4 = ˇ∗
4(1 + � + �2)

ˇ5 = ˇ∗
5(� + �2)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8)

Such a quadratic dependence, at least for the viscosity ˇ3 is on
the basis of dynamic simulations of particle interactions (Walton
and Braun, 1986). For a detailed discussion of this model where
specific interpretations are given to the coefficients and experi-
mental techniques to measure these parameters are suggested (see
Massoudi, 2004). For example, ˇ0(�) is similar to pressure in a com-
pressible fluid and is to be given by an equation of state, ˇ2(�) is like
the second coefficient of viscosity in a compressible fluid, ˇ1(�) and
ˇ4(�) are the material parameters connected with the distribution
of the granular materials, ˇ3(�) is the viscosity of the granular mate-

rials, and ˇ5(�) is similar to the viscosity term in the Reiner–Rivlin
model often referred to as the cross-viscosity.  This model has a sim-
ilar structure to the Reiner–Rivlin model, whereby the effects of
density (or volume fraction) gradients are also included.
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In this paper, we modify this model in such a way  that the coef-
cient of viscosity can also depend on the shear rate. Specifically
e make the additional assumptions:

ˇ0 = −p(�)

ˇ1 = ˇ4 = 0

ˇ2(�) = ˇ20(� + �2)

ˇ3(�, trD) = ˇ30(� + �2)˘m/2

ˇ5(�) = ˇ50(� + �2)

(9)

here

 = 1
2

tr[2D]2 (10)

When m < 0, the material is shear-thinning, and if m > 0, it is
hear-thickening. The justification for the dependence of the vis-
osities on the volume fraction, at least for the shear viscosity,
tems from the numerical simulations of Walton and Braun (1986).
he specific form of the pressure term is left open for now, but it
hould have a structure at least similar to p = pf + pf� which can be
e-written as p = pf(1 + �) indicating that as �(x, t) approaches zero
r becomes zero, the stress reduces to the pure pressure of the fluid.
ubstituting Eq. (9) into Eq. (5),  we obtain:

= [−p(�) + ˇ20(� + �2)trD]1 + ˇ30(� + �2)˘m/2D

+ ˇ50(� + �2)D2 (11)

If for simplicity, we define

� = ˇ20(� + �2)

� = ˇ30(� + �2)˘m/2

ı = ˇ50(� + �2)

(12)

Then,

 = [−p(�) + � trD]1 + �D + ıD2 (13)

hich has the same structure as a Reiner–Rivlin fluid where the
aterial coefficients are now given by Eq. (12). This is the modified

r generalized Reiner’s model; in the next section we will use this
quation to study the flow of wet sand (granules) between two  flat
lates.

It needs to be mentioned that among the many models that have
een proposed for granular materials one can name the generalized
ewtonian fluid (GNF) models, the visco-plastic (for example, the
ingham type) fluid models, the rate-dependent models (for exam-
le the hypo-plastic models), etc. (see Ancey, 2007; Gudehus, 1996;
olymbas, 1991). Recently Jop et al. (2006) proposed a power-law
odel for granular materials where not only the viscosity depends

n the shear rate, but also there is a yield criterion similar to the
rucker–Prager model (1952).  The model presented in our paper
s given by Eq. (11) or (13), also includes a shear rate dependent
iscosity, but it differs from Jop et al. (2006) in the sense that: (1)
he current model includes the term D2, thus it is a higher order

odel and in theory is capable of predicting at least one of the nor-
al  stress differences; and (2) all the material parameters depend

n the volume fraction. Furthermore, in general, if we had used Eq.
5) as the basis of deriving a generalization of the Reiner’s model,
t would have been possible by giving a special structure to the
aterial parameters, ˇ0(�), ˇ1(�) and ˇ4(�) to include the effects
f yield stress via a Mohr–Coulomb type criterion but also the pos-
ibility of capturing both normal stress differences in a simple shear
ow (see Massoudi and Mehrabadi, 2001 for details).
munications 38 (2011) 378– 381

4. Simple shear flow

For a simple shear flow, i.e., flow between two horizontal plates
a distance ‘h’ apart, with the lower plate fixed and the upper plate
moving with a constant speed, the velocity field v and the volume
function � are assumed to be of the form

v = u(y)i

� = �(y)
(14a,b)

It then follows that

D = 1
2

⎛
⎜⎝

0 u′ 0

u′ 0 0

0 0 0

⎞
⎟⎠ , D2 = 1

4

⎛
⎜⎝

(u′)2 0 0

0 (u′)2 0

0 0 0

⎞
⎟⎠ (15)

Also, notice that

trD = 0, trD2 = 1
2

(
du

dy

)2

, and ˘m/2 =
∣∣∣du

dy

∣∣∣m

(16a,b,c)

Now, using Eqs. (14)–(16) in (13), we  find that

Txy = 1
2

[
�

du

dy

]
Txx − Tyy = 0

Tyy − Tzz = [ˇ50(� + �2)]
(

du

dy

)2

(17a,b,c)

If the term ˇ(�)O� ⊗ O� were kept in the constitutive expression
in Eq. (5),  the model would be capable of exhibiting both of the
normal stress differences. For the flowfield assumed by (14), Eq.
(2), using (13), reduces to the three components in the x, y, and z
direction, respectively,

1
2

d

dy

[
�

du

dy

]
+ �bx = 0

d

dy

[
−p(�) + ˇ50(� + �2)

4

(
du

dy

)2
]

+ �by = 0

�bz = 0

(18a,b,c)

where bx, by, and bz are the components of the external body force,
and � is given by Eq. (12). Notice that with Eq. (14), the conserva-
tion of mass, Eq. (1) is automatically satisfied. Thus, we  see that a
motion of the form of Eq. (14) is only possible if the z-component
of the body forces field is zero. Eqs. (18a,b) form a system of two
coupled second order non-linear ordinary differential equations,
and in general have to be solved numerically. Appropriate bound-
ary conditions are needed in order to have a well-posed problem.
For the simple shearing motion assumed by (14), we have

u(0) = 0

u(h) = V
(19a,b)

where ‘h’ is the distance between the two plates.1 And for this
special case, we only need one boundary condition for �,

�(0) = �0 (20)

where �0 is a constant. To obtain an analytical solution (closed form
solution) to the above Eqs. (18a,b) under some idealized conditions,
bx = by = bz = 0 (21)

1 It is possible that the no-slip condition may  not be appropriate for all cases.
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Then, Eq. (18a) can be integrated once to give:

�
du

dy

]
= C1 (22)

here C1 is a constant. Recalling that

m/2 =
∣∣∣du

dy

∣∣∣m

(23)

e have

 = ˇ30(� + �2)
∣∣∣du

dy

∣∣∣m

(24)

Substituting this in Eq. (22), we have

ˇ30(� + �2)
∣∣∣du

dy

∣∣∣m
]

du

dy
= C1 (25)

Eq. (18b) can be also integrated once to give us

p(�) + ˇ50(� + �2)
4

(
du

dy

)2

= C2 (26)

here C2 is a constant. Now, it can be shown that the above Eqs.
25) and (26) admit a solution of the form

u = ˛y

� = k
(27)

here  ̨ and k are constants. However, the system of Eqs. (18a,b)
s non-linear and in general will admit additional solutions. This
imple boundary value problem with all the basic assumptions
pecified should serve as a limiting case for more complicated flow
eometries and flow conditions. Obviously, the effects of the inter-
titial fluid, slip at the wall, particle shape.  . . are important issues
hich need to be studied.

. Concluding remarks

In summary we have looked at the flow of a densely packed
ed of particles (with liquid in the pores) between two  horizontal
at plates. We  have modified the constitutive relation originally
erived by Reiner (1945),  to describe dilatancy in wet  sand, by sug-
esting that the shear viscosity would also depend on the shear rate
nd the volume fraction. As a result of this modification, the fluid
eferred to as the Reiner–Rivlin equation, now has the possibility
f being shear-thickening (dilatant) not only due to shear rate, but
lso due to the dependence of the viscosity on the volume fraction.
inally, even though Reiner’s model and its generalization in this
aper are derived for wet sand, the effects of the moisture content,
ther than the pressure term which appears in the isotropic part
f the stress tensor, are ignored [see Eq. (11)]. To include dynami-
al effects due to moisture or the presence of the fluid in the pores
ne needs to, in general, use a multi-component approach to fluid-
aturated granular materials (see for example Wang and Hutter,
999; Lagree and Lhuillier, 2006; Massoudi, 2010).
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