Understanding of Defect Physics in Polycrystalline Photovoltaic Materials: Preprint

PDF Version Also Available for Download.

Description

The performance of thin-film solar cells is influenced by the quality of interfaces and formation of defects such as point defects, stacking faults, twins, dislocations, and grain boundaries. It is important to understand the defect physics so that appropriate methods may be developed to suppress the formation of harmful defects. Here, we review our understanding of defect physics in thin-film photovoltaic (PV) materials such as Si, CdTe, Cu(In,Ga)Se2 (CIGS), Cu2ZnSnSe2 (CZTSe), and Cu2ZnSnS2 (CZTS) using the combination of nanoscale electron microscopy characterization and density-functional theory (DFT). Although these thin-film PV materials share the same basic structural feature - diamond structure ... continued below

Physical Description

7 p.

Creation Information

Yan, Y. July 1, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The performance of thin-film solar cells is influenced by the quality of interfaces and formation of defects such as point defects, stacking faults, twins, dislocations, and grain boundaries. It is important to understand the defect physics so that appropriate methods may be developed to suppress the formation of harmful defects. Here, we review our understanding of defect physics in thin-film photovoltaic (PV) materials such as Si, CdTe, Cu(In,Ga)Se2 (CIGS), Cu2ZnSnSe2 (CZTSe), and Cu2ZnSnS2 (CZTS) using the combination of nanoscale electron microscopy characterization and density-functional theory (DFT). Although these thin-film PV materials share the same basic structural feature - diamond structure based - the defect physics in them could be very different. Some defects, such as stacking faults and special twins, have similar electronic properties in these thin-film materials. However, some other defects, such as grain boundaries and interfaces, have very different electronic properties in these materials. For example, grain boundaries produce harmful deep levels in Si and CdTe, but they do not produce significant deep levels in CIGS, CZTSe, and CZTS. These explain why passivation is critical for Si and CdTe solar cells, but is less important in CIS and CZTS solar cells. We further provide understanding of the effects of interfaces on the performance of solar cells made of these PV materials.

Physical Description

7 p.

Source

  • Presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), 19-24 June 2011, Seattle, Washington

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NREL/CP-5200-50650
  • Grant Number: AC36-08GO28308
  • Office of Scientific & Technical Information Report Number: 1022289
  • Archival Resource Key: ark:/67531/metadc846378

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • April 6, 2017, 1:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yan, Y. Understanding of Defect Physics in Polycrystalline Photovoltaic Materials: Preprint, article, July 1, 2011; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc846378/: accessed July 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.