R&D Status for In-Situ Plasma Surface Cleaning of SRF Cavities at Spallation Neutron Source

PDF Version Also Available for Download.

Description

The SNS SCL is reliably operating at 0.93 GeV output energy with an energy reserve of 10MeV with high availability. Most of the cavities exhibit field emission, which directly or indirectly (through heating of end groups) limits the gradients achievable in the high beta cavities in normal operation with the beam. One of the field emission sources would be surface contaminations during surface processing for which mild surface cleaning, if any, will help in reducing field emission. An R&D effort is in progress to develop in-situ surface processing for the cryomodules in the tunnel without disassembly. As the first attempt, ... continued below

Creation Information

S.-H. Kim, M.T. Crofford, M. Doleans, J.D. Mammosser, J. Saunders March 1, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The SNS SCL is reliably operating at 0.93 GeV output energy with an energy reserve of 10MeV with high availability. Most of the cavities exhibit field emission, which directly or indirectly (through heating of end groups) limits the gradients achievable in the high beta cavities in normal operation with the beam. One of the field emission sources would be surface contaminations during surface processing for which mild surface cleaning, if any, will help in reducing field emission. An R&D effort is in progress to develop in-situ surface processing for the cryomodules in the tunnel without disassembly. As the first attempt, in-situ plasma processing has been applied to the CM12 in the SNS SRF facility after the repair work with a promising result. This paper will report the R&D status of plasma processing in the SNS.

Source

  • 2011 Particle Accelerator Conference (PAC'11), New York, NY, 28 Mar - 1 Apr 2011

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-ACC-11-1326
  • Report No.: DOE/OR/23177-1629
  • Grant Number: AC05-00OR22725
  • Grant Number: AC05-06OR23177
  • Office of Scientific & Technical Information Report Number: 1032457
  • Archival Resource Key: ark:/67531/metadc846295

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 3, 2016, 4:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

S.-H. Kim, M.T. Crofford, M. Doleans, J.D. Mammosser, J. Saunders. R&D Status for In-Situ Plasma Surface Cleaning of SRF Cavities at Spallation Neutron Source, article, March 1, 2011; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc846295/: accessed August 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.