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Abstract

Changes in the electricity consumption of commercial bogd and industrial facilities (C&l facilities) during Deand
Response (DR) events are usually estimated using couctigafebaseline models. Model error makes it difficult to sely
guantify these changes in consumption and understand if f@dilities exhibit event-to-event variability in their sponse to
DR signals. This paper seeks to understand baseline madelagrd DR variability in C&lI facilities facing dynamic eleity
prices. Using a regression-based baseline model, we praseathod to compute the error associated with estimatesvefal
DR parameters. We also develop a metric to determine how rabshrved DR variability results from baseline model error
rather than real variability in response. We analyze 38 C&dilities participating in an automated DR program and find
that DR parameter errors are large. Though some facilitteibi real DR variability, most observed variability rétsufrom
baseline model error. Therefore, facilities with variablR parameters may actually respond consistently from eweavent.
Consequently, in DR programs in which repeatability is edluindividual buildings may be performing better than pasly
thought. In some cases, however, aggregations of C&I fasliexhibit real DR variability, which could create chaliges for
power system operation.

Keywords: demand response, baseline models, load prediction, emadysas, variability, measurement & verification

I. INTRODUCTION

Buildings are becoming increasingly important as actiwouoeces that support power system operations. Thoughifgsid
have played a small role in power systems operations in tee-paither with relays that interrupt power to air condigosn
and water heaters [1], [2], or by “voice dispatch” of largerspercial and industrial loads [3] — recent Smart Grid inrestts
are demonstrating the potential for buildings to becomd-grieractive resources that are just as controllable aseven
more controllable than — electricity generators [4].

In “demand response” (DR) programs, power system operatorsachieve system-wide demand reductions by providing
financial incentives for buildings to change their eledtyiconsumption patterns through both “shifts” in energy @nd
load reductions, or “sheds.” Buildings generally partidg in DR by enrolling in dynamic electricity pricing progna
or demand/capacity bidding programs. In dynamic pricinggpams, buildings face high electricity prices during hour
when the grid is stressed, encouraging them to shed loadifboresiergy use to less expensive hours. In capacity/demand
bidding programs, buildings bid load reductions and, ifezhlupon, shed load at certain times in exchange for paynent.
this paper, we focus on commercial buildings and indusfaailities (C&l facilities) participating in a dynamic edtricity
pricing program. These facilities use the Open Automatech&e Response (OpenADR) Communication Specification
[5] to receive DR event notifications from the utility, androhg events they automatically execute pre-programmed DR
strategies [6].

The central challenge we address in this paper is that DRypeas, such as Average Demand Shed, Rebound, Daily
Peak Demand, and Daily Energy (which we define in Table 2),trhasmeasured relative to an estimate of how much
electricity a facility would have consumed in the absence¢hef DR event. DR parameters are computed by subtracting a
counterfactual baseline from the actual power consumpifahe facility. Therefore, DR parameters will exhibit eility
due to both baseline model error and real variability in theility’s response. We will use the following terms throogh
the paper:

1) Unmodeled load variability, or baseline model error, is load variability that is not ttepd by a baseline model
and not due to a DR signal. Unmodeled load variability coogits DR programs that use baselines for financial
settlement (e.g., demand/capacity bidding programs aadrams in which loads participate in wholesale ancillary
services markets). Moreover, even DR programs that do notbaselines for settlement (e.g., dynamic electricity
pricing programs) use baselines for Measurement and \@idic (M&V) and to calculate the cost-effectiveness of
the DR programs [7].

2) Real DR variability is event-to-event variability in a facility’s actual respse, for example, due to building managers
and/or occupants overriding pre-programmed DR stratelgieken equipment; and variability in responses as a fancti
of occupancy, weather, and other variables.

3) Observed DR variability occurs as a result of the combination of unmodeled load biéitiaand real DR variability.

*This paper is based on “Examining Uncertainty in Demandp@ase Baseline Models and Variability in Automated Respsrte Dynamic Pricing”
by J.L. Mathieu, D.S. Callaway, and S. Kiliccote which appea the proceedings of the IEEE Conference on Decision amir@ and European Control
Conference (CDC-ECC) 201102011 IEEE. Johanna L. Mathieu is with the Department of Maitsd Engineering at the University of California at
Berkeley; Duncan S. Callaway (corresponding author) id e Energy and Resources Group at the University of Caldoat Berkeley, 310 Barrows
Hall, Berkeley, CA 94720-3050, USA,; Sila Kiliccote is withe Lawrence Berkeley National Laboratory.
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Fig. 1. Actual and baseline-predicted demand for an offidiling on three different days during the summer of 2007. Tefeand middle plots show
data from DR event days (the difference between the actubtl@nbaseline prediction is a combination of the responskee®R signal and model error),
while the right plot shows data from a normal day (the diffee between the actual and the baseline prediction is mods).e

Fig. 1 illustrates the concepts of baseline model error dmgkrved DR variability. In this figure, we plot the actual and
baseline-predicted load for an office building on two DR daysl one normal day. The left and middle plots show that
responses to DR signals can seem variable — and may, in &aggriable. The right plot demonstrates baseline modet.erro

The purpose of this paper is to understand the variabilityC& facility responses to DR events. The question is
important for two reasons. First, in order to efficientlyoalte generating resources, power system operators maditipr
how aggregations of facilities will respond on demand raespadays. If all observed DR variability resulted from uneled
load variability, a power system operator could expect tast DR behavior and would only need to deal with the usual
amount of demand-side variability. However, if real DR wadility is present, the DR program may create an extra burden
of variability for the system operator to manage. This coudduire additional power system services (e.g., reseryas)
extreme cases, real DR variability could result in significdeviations in grid frequency or expected power flow.

The second reason variability is important is because DRraros are evaluated on the basis of whether or not facilities
(individually or in sum) appear to have reliable response & days. M&V of utility DR programs, including those that
do not use baselines for settlement, often include analgbéise DR performance (versus a baseline) of both individual
facilities and aggregations of facilities [6]. Variabjlimay affect the evaluation of the DR program and deternonatabout
whether or not a facility is suitable for DR [8]. Moreover,s@vved DR variability in an individual facility affects hothie
facility perceives its own DR performance from event-temtv A facility whose performance seems inconsistent frora o
event to another may be tempted to modify its DR strategy;avew the perceived inconsistency may have been caused by
baseline model error.

Real DR variability is the most relevant measure for powestesy operators and DR program evaluators. However, real
DR variability can only be estimated indirectly, by thordyg characterizing unmodeled load variability and relgtimh
to observed DR variability. Therefore, in this paper, wetftempute the error associated with DR parameter estimates
(e.g., demand shed estimates) for 38 C&I facilities thatippated in an automated dynamic electricity pricing peog
in California. We then construct a variability metric thaiptures the relative importance of real DR variability wsrs
unmodeled load variability, and compute this metric foradlthe facilties. We find that most observed DR variabilitythe
result of baseline model error.

A note on terminology: The DR community uses several diffeterms to denote the counterfactual power usage on DR
days: baselines, predictions, and forecasts. In this pageuse the term ‘baseline predictions’ to refer to ex-pssitreates
of counterfactual power usage computed with regressioanpaters (identified with historical demand/temperatur@a)da
and actual temperature data for the purpose of M&V. We reserve the tdomecast’ for ex-ante estimates computed with
forecasted temperature data, which we do not discuss in this paper. Wehesterm ‘DR parameter estimates’ to refer to
values, such as demand sheds, computed with actual demtmndrahbaseline predictions. The DR community often refers
to these values as ‘DR calculations’; however, we preferteuminology because it makes clear that the values are taircer
The term ‘DR parameter estimates’ should not be confuseld WIR estimates,’” engineering estimates of expected demand
sheds.

The rest of this paper is organized as follows: In Sectiomsd |1, we describe our data and baseline model. In Section |
we explain our error analysis. Then, in Section V, we presentesults and discussion with respect to baseline modet er
and DR variability. Lastly, in Section VI, we conclude.

Il. DATA

We use 15-minute interval whole building electric load d&tam 38 large C&l facilities (peak demand200 kW)
in California that participatied in Pacific Gas and Elect@ompany’s (PG&E’s) Automated Critical Peak Pricing (CPP)
Program between 2006 and 2009. PG&E called CPP DR events tmipsummer business days (non-holiday, weekdays)



Table 1: Number of facilities by year and facility type.

Office Industrial  Retail Retail Prisons
Buildings  Facilities  Stores  with PV* & Jails Museams | TOTAL
2006 (Zone 1) 3 0 1 0 0 0
2006 (Zone 2) 6 0 1 0 1 1
2007 7 1 3 1 1 1 14
2008 12 8 2 3 1 1 27
2009 17 8 1 3 3 1 33
TOTAL 45 17 8 7 6 4 87

*Retail stores with solar photovoltaics (PV).

per year when system-wide load was expected to be high, wirnc8alifornia, usually occurs on hot summer days as a
result of commercial and residential air conditioning. OR Days, electricity prices were raised to three times thenabr
price from 12 to 3 pm (moderate price period), and five times ribrmal price from 3 to 6 pm (high price period). In
exchange for participating in the program, facilities pkder energy prices on non-DR days. All 38 facilities used th
OpenADR Communication Specification [5] to receive DR ewventifications, which were provided by 3 pm the business
day before the event. Each facility implemented a differggtt of pre-programmed DR strategies and executed the same
strategies from event-to-event. Strategies included gbsuto the heating, ventilation, and air conditioning (HYAYstem,

light dimming/switching, and industrial process sheddshgting [9].

In 2006, DR events were called separately in two geograpitiez Zone 1 included San Francisco and the San Francisco
Peninsula, while Zone 2 included the rest of PG&E’s servareitbry. Nine DR events were called in Zone 1 and eleven
in Zone 2. In both 2007 and 2009, twelve events were calledlewih 2008 eleven events were called. Several facilities
participated in only a portion of the DR events in a year. Ifkmew that a facility did not participate in a certain DR event
we did not analyze data from that DR day.

Facilities’ demand profiles change year-to-year due tomgant upgrades, changes in usage patterns, etc. To reduce th
chance of creating baseline models with data from beforeadtst significant structural changes only one year worth of
data were used to create each model. In total, we have 8Ttyfaelars worth of data (Table 1), where a facility-year is
defined as one year of data for one facility. Twelve faciligars of available data were not analyzed because of sigmific
structural changes visible in the data.

Aggregate metrics were computed by summing power for allifi@s for each year (and, in 2006, for each zone). We
excluded facilities that did not participate in all of the [@Rents in a year and facility-years for which we were missiragge
than one week of data. In sum, nine facility-years were noluitied in the aggregate populations (hence the discrepancy
in number of facilities between Tables 1 and 4). All aggregaisults are computed from baseline models built with the
aggregate data, not the aggregate output of individuallibaseodes.

From the National Climatic Data Center [10], we acquiredrhoautdoor air temperature data for each facility from the
nearest weather station. Unfortunately, some of the teatyper data are spotty. We linearly interpolated the datesssiga
an approximate temperature to every 15-minute intervalygh when six or more hours of data are missing we do not
interpolate. In some cases, when the data for a station watecyarly spotty, we have filled the holes with data from
another nearby station. Temperature data for the aggrpgptdations were generated by weighting and averagingfdata
the individual stations. Weights are determined by the nemald facilities in the aggregate population associateth wech
station. For example, ifV; facilities are associated with Station 1, which measuresperaturesl’(¢), and N, facilities
are associated with Station 2, which measured temper@ift¢, and so on, then aggregate temperatilg,, at time step
t is computed as follows:

Z{\il NiTi(t)
Tagg(t) = lMi

Zi:l Ni

where M is the total number of weather stations associated witHitiasiin the aggregate population.

: 1)

I1l. BASELINE MODEL & DR PARAMETERS

Electric utilities generally use simple models to deterriiaseline electric load on DR days for financial settlemedfa
M&V. Many of these models involve averaging the daily electlemand over several days (e.g., those with the highest
energy usage) before the DR day [11], [12]. Unfortunatehsdiine models built by averaging can be biased. Regression
based baseline models, which are less likely to suffer frams,thave long been used for M&V by the energy efficiency



community [13], [14], [15], [16] and are increasingly used DR M&V [11], [12], [17], [18]. These models typically reia
electric demand to weather and, sometimes, other releaateters. More sophisticated baseline modeling metheds (
neural networks) have been proposed, but are seldom useddtice.

We use the regression-based baseline model described Jib¢tause it performs similarly to or better than baseline
models commonly used for DR M&V. Therefore, the magnitudehaf error associated with this model is comparable to
or less than that associated with common baseline modeisg Wetter baseline models not only allows one to compute
more accurate DR parameter estimates, but also allows obetter determine if a facility exhibits real variability its
responses to DR events.

A brief description of the baseline model is as follows: Weent demand to be a function of time-of-week. Regression
coefficients,«;, are assigned to each each 15-minute interval from Mondd&yittay, t; wherei = 1...480. We also expect
demand to be a piecewise linear and continuous function tofoau air temperaturel, as described in [13], [15]. Observed
temperatures are divided into six equal-sized temperdtine and a regression coefficient; wherej = 1...6, is assigned
to each bin. In each time step, each coefficient is multipligca temperature componefit ; computed from the current
T using the following algorithm which ensures piecewise airity and continuity [19]:

1) Let By for k = 1...5 be the interior bounds of the temperature intervals.

2) If T > By, thenT,; = B;. Otherwise,I.; = T andT. ,, = 0 for m=2...6 and algorithm is ended.

3) Forn=2..4,if T > B,, thenT,,, = B,, — B,_1. Otherwise,T.,, =T — B,_1 andT,,,, =0 form = (n+1)...6

and algorithm is ended.

4) IfT > Bs, thenTC’5 =Bs — By andTCﬁ =T — Bs.
We model the same temperature effect across all occupiect fnodrs (transitions between occupied and unoccupied are
manually determined by looking at plots of average daily dechprofiles on non-DR days). Estimated occupied mode
demand,D, is:

6
Do(ti, T(t:)) = o + > _ BiTej(ti) 2
j=1

We model a different temperature effect across all unoemipiode hours. Since the facility often experiences a smalle
range of temperatures during unoccupied mode (usuallyttimgt), we model the temperature effect as linear with omig o
regression coefficient3,,, which is multiplied by outdoor air temperatufe Estimated unoccupied mode demand, is:

Du(t;, T(t)) = i + BuT(t:) . ©)

Since all 2006-2009 DR days were called May 1 to Sept 30, imeseiodels were constructed with non-DR day demand
data during the same period. We did not use data from holjdesskends, or days that appeared to have had power outages
(i.e. days when the minimum power use is less than a percenthghe average minimum daily power use during the
summer) to build the baseline models.

The parameters,, 3, and 3, are estimated with Ordinary Least Squares (OLS). We use ¢ &timator because,
though it not ‘best’ (in a Gauss Markov sense) due to autetation and heteroscedasticity (see Section V), it still
produces unbiased regression coefficients [20], [21]. Hewehe standard errors associated with the regressidficiests
are underestimated, so we do not use them.

The parameter estimates and temperatures on DR days aragbéno predict demand on DR days. Four DR parameters
(Table 2), computed from the baseline predicted demandtenddtual demand, are used to characterize changes irictgctr
use on DR days. These parameters are computed with 15-nmitereal data and 15-minute interval predictions. For egbm
average demand shed is computed by averaging the 15-mimet¥dl demand data during the event, averaging the 15-
minute interval demand predictions during the event, andmgding the difference of the averages. These parametars we
first defined in [19]; however, here we define Daily Peak Demand Daily Energy slightly differently: as absolutes, not
percentages.

IV. ERRORANALYSIS

Most error analyses on regression-based baseline modeth@istandard errors associated with the regression dgerftic
[13], [16], [18]. However, these errors underestimate the error due to a number of issues. First, the regressi@ampeters
are correlated. Specifically, time-of-week is correlatetemperature: the highest temperatures tend to occur iafteeoon
and the lowest temperatures occur overnight. Second, tipession residuals are autocorrelated. In Fig. 2, we show
autocorrelation functions (ACF) and partial autocoriielafunctions (PACF) computed with regression residuadsnfitwo
facility-years. In both cases, the residuals are lag 1 amtetated, which is the case for all facility-years. In sooases,
we find higher order autocorrelation.

IThrough trial and error, six bins were found to allow for egbwhange points and not cause over-fitting problems. Thigevia not optimized.



Table 2: DR parameter definitions, meanings, and importance.

Parameter

Definition

If this value is positive...

Importance

Average Demand Shed (kW)

Rebound (kW)

Daily Peak Demand (kW)

Daily Energy (kWh)

Predicted minus actual average

demand during the DR event.*

Actual minus predicted aver-
age demand in the hour after

the DR event (6-7pm).

Actual minus predicted max-
imum demand on the DR
day‘**
Actual minus predicted total

energy use on the DR day.

...the facility reduced power

use during the event.

...the facility increased power

use after the event.

...the facility had a higher de-
mand peak than it would have

if there was no DR event.

...the facility used more energy
than it would have if there was

no DR event.

Key indicator for how well the facility per-

formed.

Could affect a facility’s demand charges; syn-
chronized rebounds could create a new system-

wide peak.

Could affect a facility’s demand charges; will
not affect the system-wide peak unless the in-

dividual peaks are synchronized.

Suggests whether energy shifting or shedding
strategies predominate; implicated in under-
standing DR’s effect on energy use and the en-

vironment, a research gap [23].

* The average demand shed is computed separately for each price period: ‘Shed 1’ refers to the moderate price period (12-3pm) and ‘Shed 2’ refers

to the high price period (3-6pm).

** The actual and the baseline peak could happen at different times during the day.
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Fig. 2. ACF and PACF computed with the regression residual® fan office building (left) and a retail store (right) in B)®Each line was created with

data from a week (Mon-Fri) in which there were no DR days,d®s, or power outage days. Dashed lines show the 95% cocéideterval (-2/+/7,
wheren is the number of data points in the data set).
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Fig. 3. Error versus Time-of-Week for an office building {Jeind a retail store (right) in 2008.

Third, the regression residuals are heteroscedastic.ifiSpdg, we find that the variance of the regression residual
(referred to as the ‘error variance’) is a function of timfengeek. For a typical commercial building, error varianeads to
be lower at night and higher during the day when fluctuatincupancy affects loads. For some facilities, the error vaea
is high during transition periods (e.g., when the facilgybieing populated in the morning). Fig. 3 shows plots, cckating
(2) and (3), of error versus time-of-week. For the retaitest@rror is clearly a function of time-of-week, while fortloffice
building, the effect is smaller. These results not only destiate heteroscedasticity, but also the importance ofpcding
errors as a function of time-of-week. We have not computeorexs a function of temperature or predicted demand because
error does not seem to be a strong function of these variables

These issues suggest that one should use caution in irttegptee standard errors associated with the baseline model
regression coefficients. Fortunately, as we will explainhie method description below, we do not need to calculatithi
order to calculate the error associated with DR parametanates.

A. Method

The goal of our error analysis is to determine the error agsst with each DR parameter estimate for each facility-yea
and each aggregation of facilities. Other studies have vsgebssion residuals to generate baseline model erronass
[17]; however, regression residuals are self-influenced:model is built and tested on the same data set. Therefwog, e
estimates generated with regression residuals undegdstifne true error.

To avoid self-influence, we use a resampling technique adlleave One Out Cross Validation’ (LOOCV). LOOCV is a



type of K-fold cross validation, which involves randomlyrfiioning the data into K subsamples, reserving one suptam
building the model with data from the remaining subsampkesting on the reserved subsample, and repeating thisgzoce
for all K subsamples. The results for each subsample are io@eliesulting in an estimate of the prediction accuracy. In
LOOCYV, K is equal to the total number of observations,LOOCYV is useful whem is small, though the technique is
computationally intensive.

We treat the demand on each non-DR day as an observatiorefdresm is equal to the number of non-DR days used
to create the baseline prediction model 0 — 95 days per facility-year). We leave out one non-DR day, build model
with data from the rest of the non-DR days, predict the demamdhe day that has been left out, compute the quantities
associated with the DR parameters (e.g., average demangdretl2 and 3 pm), compare the predictions to the actual
guantities to generate an error observation, and repeaaitht non-DR day. Since we consider error as a function of-time
of-week, only residuals computed with data from Mondayswsed to determine errors on Mondays, etc. Therefore, for
each DR parameter for each day of week there are eny8 — 20 error observations. It is difficult to determine the true
error distribution with so few error observations. Therefove assume that the error observations are normallyitalistd
and report error estimates as one standard deviation ofrtbe @bservations.

We do not recommend using this error analysis method onibaselodels parameterized with DR day data (e.g., morning
adjustments [12]). For those models, this method will uedémate true model error if power use outside of the DR perio
is affected by the DR signal, which is common, especiallyféailities that pre-cool, rebound, or otherwise shift gyyeuse
to the morning or evening on DR days.

B. Other Sources of Error

Ideally, an error analysis should quantify all possiblersea of error associated with an estimate. The methodology
described above accounts for demand/temperature measuiremnor; error resulting from the fact that the weathetiata
are not co-located with the facilities; error resultingrfréemperature data interpolation; and unmodeled load ti@mian
days similar to those used to build the baseline model. Therewo sources of error we have not quantified: over-fitting
and extrapolation. DR days are generally called on the $tadi@ys of the summer which means that, in some cases, l&aselin
predictions are made with temperatures: (1) higher thasettan non-DR days, resulting in extrapolation error; and (2)
experienced only a few times on non DR-days, resulting irr-fitteng error. Over-fitting/extrapolation error coulddrease
error variance and/or introduce bias in predictions madé high outdoor air temperatures.

For 26% of our DR day baseline predictions, the highest teaipee on the DR day is greater than the highest temperature
used to build the baseline model. We found that model ermoc@ated with extrapolated baseline predictions is coatgar
to that associated with non-extrapolated baseline piedit Also, as described previously, error variance doé¢sappear
to be a strong function of temperature, even the highest ¢emgres used to build baseline models (i.e. temperatures
for which we might expect possible over-fitting). Other biame models, such as those that use fewer data to build the
model, may be more susceptible to over-fitting/extrapotagrror. Baseline models that model a load as a purely linear
function of temperature may suffer from extrapolation erfoover-fitting/extrapolation error is present, the nadipresented
in Section IV-A will underestimate DR parameter error. Hee® if error variance is not a function of temperature and
consequently over-fitting/extrapolation introduces ohigs, over-fitting/extrapolation error will not affect ttaecuracy of
the DR parameter variability metrics (introduced in Setti6B).

V. RESULTS& DISCUSSION
A. DR Parameter Errors

The error analysis method presented in Section IV-A allowgauassign error estimates to DR parameter estimates. In
Fig. 4, we show DR parameter and error estimates for all 2@0Bitf-years and the 2009 aggregate population. In most
cases, the error estimates are large relative to the DR péearastimates. For example, on average, across all ybars, t
error associated with Shed 1 is approximately20% of the parameter values and the error associated with Shed 2 i
approximately+180% of the parameter values. In addition, observed DR parametéability is often large. However,
given the magnitude of the error estimates, we would expaoesobserved DR parameter variability.

This interpretation of Fig. 4 illustrates how including @rrestimates along with DR parameter estimates allows us to
draw the right conclusions from the data. Without errorreates, it would be easy to classify a facility with observedds
variability as a variable shedder, and, therefore, corecliit such a facility is difficult to control. However, if theror
associated with that facility’s shed estimates is largenth is possible that the response is actually consistethtvanare
simply unable to measure the exact response because oineaseldel error.

There are several other things to learn from Fig. 4. Soméitfasithat shed power during DR events consume less energy
on DR days, while some do not, meaning that they shift loadidetof the DR period. We also find that the Daily Peak
Demand is often biased low, because regression-basedngageldels tend to under-predict maximum values (i.e. exg)i
The aggregate population results demonstrate that DR wthtksaggregated facilities shed power during DR events and
reduce the peak demand on DR days, despite the fact thatdodivfacilities may become peakier. Also, on average,
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Fig. 4. DR parameter estimates (black) and error estimagiey) for all 2009 facility-years. Facilities are arrangedorder of smallest to largest mean
error for Average Demand Shed 1. For each facility and eachpBf@meter, parameters are arranged in order of smalleatgest. Results for the 2009
aggregate population are shown on the right.

the aggregated facilities exhibit almost no rebound ane sme energy on DR days, indicating that there is some net
curtailment—the facilities do not simply shift all load eigte of the DR period.

We do not discuss the statistical significance of the DR peatarrestimates because the error estimates are not corgidenc
intervals. Since a facility’'s DR behavior from one DR evemtlie next is not independent, Bayesian techniques should be
used to not only determine appropriate confidence interaisalso pinpoint DR parameter estimates. This would weol
pooling information across DR events (i.e. using knowledgeut a facility’s behavior during one DR event to help us
predict its behavior during another DR event). We do not leatkis here because we are interested in using the error
estimates to assess DR parameter variability, not statistignificance.

B. DR Parameter Variability

Observed DR parameter variability has two possible soutgasodeled load variability and real parameter variatieor.
example, consider the Average Demand Shed. We generalpnabshed variability from one DR event to the next. We
would like to know if observed shed variability is a resultrel shed variability (i.e. a facility curtails a differeamount
from event-to-event) or if it results from unmodeled loadiakility (i.e. baseline model error). If observed shediabitity
results exclusively from unmodeled load variability, th&a can expect consistent responses and the system opegatbr n
only deal with the usual level of demand-side variabilifyrdal shed variability exists, the system operator may irequ
additional reserves to deal with more demand-side vaitpliian usual.

In Section V-B.1, we derive a metric, the Average Demand Stathbility Metric (SVM), to discern between unmodeled
load variability and real DR parameter variation. Similaridations yield metrics for each DR parameter: the Rebound
Variability Metric (RVM), Daily Peak Demand Variability Mac (PVM), and Daily Energy Variability Metric (EVM).

In Sections V-B.2 and V-B.3, we present DR parameter vditgbinetric results for the individual facility-years antie
aggregate populations, respectively.

1) SVM Derivation: On a DR day, thébserved Load (OL) is equal to theReal Baseline Load (RBL) minus theReal
Shed (RS):

OL =RBL—-RS . (4)



Neither the real baseline load nor the real shed can be neghsiihe real baseline load is estimated with Bredicted
Baseline Load (PBL). The difference between the real baseline load and thegteetibaseline load is thénmodeled Load
(UL):

UL=RBL—-PBL . (5)
To compute theObserved Shed (O.S), the predicted baseline load is subtracted from the obddpas:
0S=0L—-PBL=UL-RS . (6)

Our goal is to determine the variance of the real shed. Therefve take the variance of (6), which results in:
Var(OS) = Var(UL) + Var(RS) — 2CovW(UL, RS) . (7)

We can estimate Vaf[S) by taking the variance of theé — 12 observed sheds and Var[) by taking the variance of
the ~ 95 error observations (since DR events can occur on any weeledsyr observations are used without regard to
day-of-week). Therefore, we define the shed variabilityrndSVM) as:

SVM: = Var(OS)—-Var(UL)
Var(RS) — 2CoV (UL, RS) . (8)

While the SVM does not tell us the exact value of Via() due to the complicating covariance term, it does tell us if
real shed variability likely exists or not. Also, since V&S) > 0, the SVM may tell us something about the sign of the
covariance term. If the covariance term is positive, themrasodeled load increases, real shed increases. This coalot o
when the equipment that drives the unmodeled load is alsedn@ment that is curtailed. Alternatively, if the covauia
term is negative, then as unmodeled load increases, redldgoeeases. This could occur when load is higher than pegtlic
electricity consuming services are in high demand, and pexcts/building operators override automated DR strasegie
when load is higher than predicted, the HVAC system is opegait or beyond its maximum capability, and consequently
a reduction in HVAC setpoint has a limited effect.

2) Individual Facility-years. To compare facilities by SVM, we normalize the measuremehtie unmodeled load and
the observed shed such that Vai() = 1. Therefore, the minimum value of SVM is -1 (i.e. when \@f) = 0). Each DR
parameter variability metric is normalized similarly.

Histograms showing DR parameter variability metrics fog 8v facility-years are shown in Fig. 5. To understand what
these histograms tell us about real parameter variabilidycan compare them to distributions generated for the casa w
real parameter variability is zero. If real parameter \Jality were zero, the covariance term would also be zerajltieg
in a DR parameter variability metric of zero. However, we ar@able to compute the ‘true’ values of the DR parameter
variability metrics because we can only estimate obsenadmeter variance from 11 observations. Assuming that the
observations are normally-distributed, we would expeetdfstribution of observed parameter variances to follovcalesl
x? distribution with N — 1 degrees of freedom [22]:

(N -1z 2

~ 9
0_2 XN-1 > ( )

where z is the sample variancey is the number of observations, and is the true variance. Therefore, the expected
variability metric distributions for the case when realigbility is zero is that given in (9), shifted left by 1 (refinb
from the subtraction of Vdt/L) = 1 in (8)). These distributions (folN = 11) are plotted in Fig. 5. One caveat associated
with these results is that we have assumed that we know the’ Walue of Var{U L), though, in reality, it is an estimate
(computed from~ 95 observations). When we normalize the measurements of thdeled load and the observed shed
such that Vary L)=1, any error in our estimate of VAr{) will affect our estimate of VHI0S), which, in turn, affects our
estimate of the SVM.

If none of the facility-years exhibited real parameter ahility then we would expect only 5% of facilities to fall cide
of the 95% confidence bounds. However, for each parametefindeéhat substantially more than 5% of the facility-years
fall outside of the bounds (Table 3). This implies that somelity-years exhibit real parameter variability. Fatds with
disproportionally positive variability metrics likely gibit real parameter variability. Facilities with dispranionally negative
variability metrics likely exhibit positive covariance @nsubsequently, real parameter variability. For the renhai of the
facility-years, any observed parameter variability mapmy result from model error and sampling.

Through simulation we find that, in order to achieve the distions shown in Fig. 5, it is likely that a number of fagjlit
years have large real parameter variability, while the migjaf facility-years have little to no real parameter \ability.
Also, it is likely that for the vast majority of facility-yaa the covariance term is positive which implies that as uthehed
load increases, real shed increases, which is consistéhtimtuition. Additionally, we find that all combinations dlfie
variability metrics are positively correlated. Severaimimnations have a population correlation coefficient,,, greater
than 0.5: SVM1 and SVM2(, , = 0.76); SVM1 and PVM g, , = 0.59); and SVM2 and PVM 4, , = 0.56).
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Fig. 5. Histograms showing DR parameter variability metrior the 87 facility-years. Solid lines show the expectestritiutions if real parameter
variability were zero andV = 11 (dashed lines show the 95% confidence interval). Disprapwtly positive variability metrics result from real panater
variability. Disproportionally negative variability nmats result from negative covariance and, subsequenty,parameter variability.

Table 3: Number and percentage of facility-years with variability metrics inside and outside

the 95% confidence bounds.

Outside Bounds

Metric | Inside Bounds

Below Above TOTAL
SVM1 65 (75%) 8 (9%) 14 (16%) 22 (25%)
SVM2 62 (T1%) 4 (5%) 21 (24%) 25 (29%)
RVM 62 (71%) 2 (2%) 23 (26%) 25 (29%)
PVM 71 (82%) 6 (7%) 10 (11%) 16 (18%)
EVM 69 (79%) 6 (7%) 12 (14%) 18 (21%)

* Percentages do not always add properly due to rounding.



Table 4: DR parameter variability metrics computed for the aggregate populations. Bold values indicate p-values <0.05.

Shed 1 Shed 2 Rebound Daily Peak Demand Daily Energy

Year Facilities (Peak*)

SVM1 p-value | SVM2 p-value RVM  p-value PVM p-value EVM p-value
2006 (Zone 1) 4 (2.7 MW) -0.819  (0.01) | -0.269 (0.67) | 0.077  (0.75) | -0.386 (0.47) | -0.737  (0.04)
2006 (Zone 2) 8 (8.4 MW) 3.039 (<0.01) | 3.399 (<0.01) | 1.044 (0.05) | 1.131 (0.04) | 4.578 (<0.01)
2007 13 (11.7 MW) 0.579 (0.21) | -0.117 (0.90) | -0.454  (0.32) | -0.531 (0.24) | -0.210 (0.78)
2008 21 (14.6 MW) -0.210 (0.72) | -0.142 (0.86) | 1.295  (0.02) | -0.217 (0.71) | 0.163 (0.62)
2009 32 (26.9 MW) | -0.696  (0.03) | -0.331 (0.46) | 0.304  (0.43) | -0.702 (0.04) | -0.227 (0.69)

*Peak demand computed for May 1 - Sept 30.

The Federal Energy Regulatory Commission’s (FERC) hasdadtir better understanding of responses to dynamic prices
as a function of customer type [23], so we attempted to disagde parameter variability results by facility attriéesit
including facility type, HVAC system type, DR strategy, aslded size. Results were inconclusive because of the small
number of facility-years in the data set. It was particylatifficult to disaggregate the facilities by DR strategy &ese
many facilities use more than one strategy. Therefore, we waable to determine what kinds of facilities have more or
less variable DR parameters. In an effort to do this, we arthénprocess of acquiring a larger data set.

3) Aggregate Populations. DR parameter variability metrics for each aggregation oflitees are shown in Table 4. For
each variability metric, we have computed the two-sidedhjpie under the null hypothesis that there is no real paramete
variability. Therefore, real parameter variability ligedxists when p-values are small. Surprisingly, the agdesgapulations
exhibit a wide range of variability metrics, similar to thegen for the individual facility-years. We would expect moeal
DR parameter variability in smaller aggregate populatidfes example, in 2006 Zone 2 (8 facilities), we find likely Irea
variability in each DR parameter. However, we also find kedal variability in both the Average Demand Shed 1 and the
Daily Peak Demand in 2009 (32 facilities). Real variabilitythe aggregate could result from unmodeled correlationssc
facilities and/or large variable facilities dominatingethggregate results.

VI. CONCLUSIONS

We have developed a method to determine the error associdgtiedR parameter estimates. We find that this error is
often large and so DR parameter estimates reported withmrtestimates may be misleading. For example, we may &jassi
a steady shedder as a variable shedder and, therefore,thalfgility to be poorly controlled when, in fact, baselimedel
error simply prevents us from measuring consistent shadse DR parameter estimates have error, all calculationsestk
with these estimates, including cost effectiveness estisnalso have error. Future research should explore the@dg
which DR parameter error affects cost/benefit analyses orpfdlgrams and technologies.

Observed DR variability in both individual facilities andgregations of facilities affects the perception of peesisand
reliable demand sheds. However, we find that observed DRbiéity is driven, in large part, by baseline model error,
not real DR variability. For most facilities, observed DRriahility can likely be explained by baseline model errcorad;
however, a number of facilities likely exhibit high real DRnability. In addition, most facilities exhibit a posiéwcorrelation
between unmodeled load and real shed, which implies thagédngment that drives baseline model error is the equipment
that is curtailed during DR events. We were unable to dis@emw relationship between response variability and facilit
attributes, possibly due to the small number of facilities.

Variability metrics computed for the aggregate populatishow that in some cases the aggregate population likelpiexh
real DR variability, which has implications for utilitiesith respect to M&V of DR programs. It also has implications floe
system operator. If the aggregate response is not consigtensystem operator may have to deal with more demand-side
variability than exists on non-DR days and, therefore, wied to procure more power systems services. In extrems,case
DR variability could result in significant deviations in drirequency or expected power flow. More research is needed
to understand DR variability in aggregate populations coseg of facilities executing manual DR strategies, as thay m
exhibit even more variability than populations composedagflities executing automated strategies.

The DR signal considered here, a critical peak pricing digaapen-loop since the prices do not change in response to
changes in load (though the signal is often implementeddividual facilities as closed-loop indoor air temperatooatrol).

Our results would be different if a closed-loop DR signal evased. Specifically, we would expect less DR variabilityichh
could mitigate some of the issues we have described. This important subject of future research.
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