Design of Genomic Signatures of Pathogen Identification & Characterization

PDF Version Also Available for Download.

Description

This chapter will address some of the many issues associated with the identification of signatures based on genomic DNA/RNA, which can be used to identify and characterize pathogens for biodefense and microbial forensic goals. For the purposes of this chapter, we define a signature as one or more strings of contiguous genomic DNA or RNA bases that are sufficient to identify a pathogenic target of interest at the desired resolution and which could be instantiated with particular detection chemistry on a particular platform. The target may be a whole organism, an individual functional mechanism (e.g., a toxin gene), or simply ... continued below

Physical Description

PDF-file: 16 pages; size: 0.4 Mbytes

Creation Information

Slezak, T.; Gardner, S.; Allen, J.; Vitalis, E. & Jaing, C. February 9, 2010.

Context

This book is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this book can be viewed below.

Who

People and organizations associated with either the creation of this book or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this book. Follow the links below to find similar items on the Digital Library.

Description

This chapter will address some of the many issues associated with the identification of signatures based on genomic DNA/RNA, which can be used to identify and characterize pathogens for biodefense and microbial forensic goals. For the purposes of this chapter, we define a signature as one or more strings of contiguous genomic DNA or RNA bases that are sufficient to identify a pathogenic target of interest at the desired resolution and which could be instantiated with particular detection chemistry on a particular platform. The target may be a whole organism, an individual functional mechanism (e.g., a toxin gene), or simply a nucleic acid indicative of the organism. The desired resolution will vary with each program's goals but could easily range from family to genus to species to strain to isolate. The resolution may not be taxonomically based but rather pan-mechanistic in nature: detecting virulence or antibiotic-resistance genes shared by multiple microbes. Entire industries exist around different detection chemistries and instrument platforms for identification of pathogens, and we will only briefly mention a few of the techniques that we have used at Lawrence Livermore National Laboratory (LLNL) to support our biosecurity-related work since 2000. Most nucleic acid based detection chemistries involve the ability to isolate and amplify the signature target region(s), combined with a technique to detect the amplification. Genomic signature based identification techniques have the advantage of being precise, highly sensitive and relatively fast in comparison to biochemical typing methods and protein signatures. Classical biochemical typing methods were developed long before knowledge of DNA and resulted in dozens of tests (Gram's stain, differential growth characteristics media, etc.) that could be used to roughly characterize the major known pathogens (of course some are uncultivable). These tests could take many days to complete and precise resolution of species and strains is not always possible. In contrast, protein recognition signatures composed of antibodies or synthetic high-affinity ligands offer extremely fast results but require a large quantity of the target to be present. False positives/negatives are also a problem with some protein-based techniques (home pregnancy kits use this basic approach).

Physical Description

PDF-file: 16 pages; size: 0.4 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this book in the Digital Library or other systems.

  • Report No.: LLNL-BOOK-425971
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 1010848
  • Archival Resource Key: ark:/67531/metadc845795

Collections

This book is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this book?

When

Dates and time periods associated with this book.

Creation Date

  • February 9, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • May 31, 2016, 5:17 p.m.

Usage Statistics

When was this book last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Book

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Slezak, T.; Gardner, S.; Allen, J.; Vitalis, E. & Jaing, C. Design of Genomic Signatures of Pathogen Identification & Characterization, book, February 9, 2010; (digital.library.unt.edu/ark:/67531/metadc845795/: accessed July 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.