Improvement of Laser Damage Resistance and Diffraction Efficiency of Multilayer Dielectric Diffraction Gratings by HF-Etchback Linewidth Tailoring

PDF Version Also Available for Download.

Description

Multilayer dielectric (MLD) diffraction gratings for Petawatt-class laser systems possess unique laser damage characteristics. Details of the shape of the grating lines and the concentration of absorbing impurities on the surface of the grating structures both have strong effects on laser damage threshold. It is known that electric field enhancement in the solid material comprising the grating lines varies directly with the linewidth and inversely with the line height for equivalent diffraction efficiency. Here, they present an overview of laser damage characteristics of MLD gratings, and describe a process for post-processing ion-beam etched grating lines using very dilute buffered hydrofluoric ... continued below

Physical Description

PDF-file: 9 pages; size: 2.6 Mbytes

Creation Information

Nguyen, H T; Larson, C C & Britten, J A October 28, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Multilayer dielectric (MLD) diffraction gratings for Petawatt-class laser systems possess unique laser damage characteristics. Details of the shape of the grating lines and the concentration of absorbing impurities on the surface of the grating structures both have strong effects on laser damage threshold. It is known that electric field enhancement in the solid material comprising the grating lines varies directly with the linewidth and inversely with the line height for equivalent diffraction efficiency. Here, they present an overview of laser damage characteristics of MLD gratings, and describe a process for post-processing ion-beam etched grating lines using very dilute buffered hydrofluoric acid solutions. This process acts simultaneously to reduce grating linewidth and remove surface contaminants, thereby improving laser damage thresholds through two pathways.

Physical Description

PDF-file: 9 pages; size: 2.6 Mbytes

Source

  • Presented at: SPIE Laser Damage Conference, Boulder, CO, United States, Sep 26 - Sep 29, 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LLNL-PROC-461723
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 1016933
  • Archival Resource Key: ark:/67531/metadc845790

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 28, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 29, 2016, 2:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Nguyen, H T; Larson, C C & Britten, J A. Improvement of Laser Damage Resistance and Diffraction Efficiency of Multilayer Dielectric Diffraction Gratings by HF-Etchback Linewidth Tailoring, article, October 28, 2010; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc845790/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.