In situ mercury stabilization

PDF Version Also Available for Download.

Description

BNL Royalty Project Internal Status Report. The funds from the allotment of royalty income were used to experimentally explore feasibility of related, potential new techniques based on the Environmental Sciences Department successful technology licensed for the ex situ treatment of mercury. Specifically, this work is exploring the concept of using Sulfur Polymer Cement (SPC) in an in situ application to stabilize and/or remove mercury (Hg) from surficial soil. Patent disclosure forms have been filed for this process. Soil was artificially spiked with 500 ppm Hg and a series of experiments were set up in which SPC rods were placed in ... continued below

Creation Information

Fuhrmann, M.; Kalb, P. & Adams, J. September 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

BNL Royalty Project Internal Status Report. The funds from the allotment of royalty income were used to experimentally explore feasibility of related, potential new techniques based on the Environmental Sciences Department successful technology licensed for the ex situ treatment of mercury. Specifically, this work is exploring the concept of using Sulfur Polymer Cement (SPC) in an in situ application to stabilize and/or remove mercury (Hg) from surficial soil. Patent disclosure forms have been filed for this process. Soil was artificially spiked with 500 ppm Hg and a series of experiments were set up in which SPC rods were placed in the center of a mass of this soil. Some experiments were conducted at 20 C and others at 50 C. After times ranging from 11 to 24 days, these experiments were opened, photographed and the soil was sampled from discrete locations in the containers. The soil and SPC samples were analyzed for Fe and Hg by x-ray fluorescence. The Hg profile in the soil was significantly altered, with concentrations along the outer edge of the soil reduced by as much as 80% from the starting concentration. Conversely, closer to the treatment rod containing SPC, concentrations of Hg were significantly increased over the original concentration. Preliminary results for elevated temperature sample are shown graphically in Figure 2. Apparently the Hg had migrated toward the SPC and reacted with sulfur to form Hg S. This appears to be a reaction between gaseous phases of both S and Hg, with Hg having a greater vapor pressure. The concentration of low solubility HgS (i.e., low leaching properties) developed within 11 days at 50 C and 21 days at 20 C, confirming the potential of this concept.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: BNL--91410-2004-IR
  • Grant Number: DE-AC02-98CH10886
  • DOI: 10.2172/1015129 | External Link
  • Office of Scientific & Technical Information Report Number: 1015129
  • Archival Resource Key: ark:/67531/metadc845713

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2004

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • July 21, 2016, 8:01 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fuhrmann, M.; Kalb, P. & Adams, J. In situ mercury stabilization, report, September 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc845713/: accessed September 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.