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Abstract 
 

It is often necessary to protect sensitive electrical 
equipment from pulsed electric and magnetic fields.  To 
accomplish this electromagnetic shielding structures 
similar to Faraday Cages are often implemented.  If the 
equipment is inside a facility that has been reinforced with 
rebar, the rebar can be used as part of a lighting protection 
system.  Unfortunately, such shields are not perfect and 
allow electromagnetic fields to be created inside due to 
discontinuities in the structure, penetrations, and finite 
conductivity of the shield.  In order to perform an analysis 
of such a structure it is important to first determine the 
effect of the finite impedance of the conductors used in 
the shield.  In this paper we will discuss the impedances 
of different cylindrical conductors in the time domain. 

For a time varying pulse the currents created in the 
conductor will have different spectral components, which 
will affect the current density due to skin effects.  Many 
construction materials use iron and different types of 
steels that have a nonlinear permeability.  The nonlinear 
material can have an effect on the impedance of the 
conductor depending on the B-H curve.  Although closed 
form solutions exist for the impedances of cylindrical 
conductors made of linear materials, computational 
techniques are needed for nonlinear materials.  
Simulations of such impedances are often technically 
challenging due to the need for a computational mesh to 
be able to resolve the skin depths for the different spectral 
components in the pulse.  The results of such simulations 
in the time domain will be shown and used to determine 
the impedances of cylindrical conductors for lightning 
current pulses that have low frequency content. 

 
 

 

I.  INTRODUCTION 
 

 Lightning is composed of current pulses which can be 
appreciable on the millisecond time scale and derivatives 
on the microsecond time scale.  For facilities made with 
good conductors that have little loss, the E-field in the 
facility will be mainly inductive and the B-field will be 
related to the current.  Thus, for objects that behave as 
small monopole and loop type antennas [1], [2], the 
voltages at the terminals of the antennas will be related to 
the derivative of the current.  Two current waveforms 
commonly used to approximate lightning, the Double 
Exponential and the Heidler, were used to represent an 
extreme (1%) negative lightning strike that satisfies the 
parameters discussed in [3].  Their current waveforms, 
derivatives, and spectrums are shown in figure 1.   
 

 
Figure 1.  Zoomed in and expanded plot of lightning 
current as well as its derivative and amplitude spectrum.
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 Figure 2 illustrates the peak E-fields and B-fields 
developed at the center of a small facility that has a 
penetration which has been struck by lightning.  The rebar 
of the facility, modeled as PEC for this example, creates a 
lightning protection system.  For the two figures on the 
left, the penetration attaches to the right side of the facility 
and is not connected to the rebar where it enters the 
facility.  For the two figures on the right, the penetration 
is attached to the rebar structure using a bond wire where 
it enters the facility on the left and also attaches to the 
right side of the facility.  The fields in the structure were 
significantly reduced by adding the bond wire.  This 
reduction in fields is beneficial in lowering the coupling 
to electrical equipment inside the facility that may behave 
as small monopole and loop type antennas. 
 

 

 
Figure 2.  E-fields and B-fields developed in a small 
facility when a penetration is struck by lightning for 
examples without and with a bond wire. 
 
 In order to accurately determine the fields inside a 
facility that has been struck by lightning, the importance 
of the internal impedances of the conductors used in the 
lighting protection system must first be determined.  
Because rebar is commonly made of materials that have 
non-linear B-H curves, such as steel, computational 
techniques are needed in order to find the internal 
impedances.  The problem is further complicated due to 
the diffusion of the E- and B-fields into the conductors. 

 
 

II.  METHODOLOGY  
 
 The voltage for a section of rebar or bond wire consists 
of time changing inductive and resistive components as 
shown in Eqs. (1) and (2). 

   𝑣(𝑡) = 𝑑 𝑑𝑡⁄ [𝑖(𝑡)𝐿𝑡𝑜𝑡𝑎𝑙(𝑡)] + 𝑖(𝑡)𝑅(𝑡)      (1) 
   𝐿𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝑡) + 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙         (2) 
 
The total inductance for the section of conductor given by 
Eq. (2) consists of a constant external inductance as well 
as the time changing internal inductance.  In order to 
determine the time changing resistance and internal 
inductance Maxwell’s equations must be solved.  From 
the spectrum for the lightning pulses shown in Fig. 1 we 
can see that lightning is a low frequency phenomena, thus 
low frequency approximations can be made.  The low 
frequency form of Maxwell’s equations to solve is given 
by Eqs. (3)-(6).   
 
   ∇ × 𝐸(𝑥, 𝑡) = −𝜕𝐵(𝑥, 𝑡) 𝜕𝑡⁄            (3) 
   ∇ × 𝐻(𝑥, 𝑡) = 𝐽(𝑥, 𝑡)                  (4) 
   𝐽(𝑥, 𝑡) = 𝜎𝐸(𝑥, 𝑡)                (5) 
   𝐵(𝑥, 𝑡) = 𝜇𝑜𝜇𝑟�𝐻(𝑥, 𝑡)�𝐻(𝑥, 𝑡)          (6) 
 

In Eq. (4) the displacement current has been neglected 
due to the low frequency approximation.  We also see that 
the relationship between B and H is given using the 
nonlinear permeability.  We will model the rebar as steel 
1008 with a diameter of 0.75”.  This is representative of 
rebar commonly used in many facilities.  We will assume 
that the bond wire is made of copper with a diameter of 
0.162”.  The finite element code Maxwell 3D was used to 
solve Eqs. (3)-(6) in the time domain [4], [5]. 
 Using the results from Maxwell, the resistance can be 
computed from the relation between power dissipation in 
field form and lumped element form given by Eq. (7).  
Similarly, the internal inductance can be found from the 
relation of magnetic energy in field form and lumped 
element form as given by Eq. (8).  In Eqs. (7) and (8) the 
volume integral is over the volume of the conductor and 
the surface integral is over the cross section of the 
conductor.  The internal inductance was also calculated 
using the flux linkage as shown in Eq. (9).  Good 
agreement was found between the results using Eqs. (8) 
and (9), with the percent difference reaching a maximum 
of ~10% for the cases modeled, presumably due to the 
simplified integration scheme implemented for Eq. (9). 
 
𝑅(𝑡) = 𝑃𝑑(𝑡) 𝑖2(𝑡)⁄ =
   ∭𝐸(𝑥, 𝑡) ∙ 𝐽(𝑥, 𝑡)𝑑𝑉 (∬ 𝐽(𝑥, 𝑡) ∙ 𝑑𝑠)2⁄          (7) 
𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝑡) = 2𝑊𝑚(𝑡) 𝑖2⁄ (𝑡) =
   ∭𝐵(𝑥, 𝑡) ∙ 𝐻(𝑥, 𝑡)𝑑𝑉 (∬ 𝐽(𝑥, 𝑡) ∙ 𝑑𝑠)2⁄         (8) 
𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝑡)𝑖(𝑡) = Λ(𝑡) = ∫ 𝐵(𝑟, 𝑡) 𝑖′(𝑟, 𝑡) 𝑖𝑡𝑜𝑡(𝑡)𝑑𝑟⁄𝑎

0  =

   ∫ 𝑑𝑟𝐵(𝑟, 𝑡) ∫ 𝜌𝐽(𝜌, 𝑡)𝑑𝜌𝑟
0

𝑎
0 ∫ 𝜌𝐽(𝜌, 𝑡)𝑑𝜌𝑎

0�         (9) 



 Because of the nonlinear relationship between B and H 
Eqs. (7)-(9) are nonlinear.  The nonlinear B-H curve for 
steel 1008 is shown in Fig. 3.  The permeability is given 
by the slope of the B-H curve.  For large H-fields the 
value saturates to approximately that of free space, 
whereas for small H-fields a large value of permeability 
results.  We will refer to conductors that have the 
conductivity of steel 1008 with 𝜇𝑟 = 1.03 throughout the 
entire conductor as saturated and with 𝜇𝑟 = 1206 
throughout the entire conductor as unsaturated.  Also 
shown Fig. 3 are the skin depths, given by 
(𝜋𝑓𝜎𝜇𝑜𝜇𝑟)−0.5, over the lightning frequencies.  The 
conductivities of copper and steel 1008 are 5.8E7 S/m and 
2E6 S/m.  The skin depth for steel 1008 will be bounded 
by the saturated and unsaturated cases.  One challenge to 
overcome in modeling the problem is to resolve the large 
variation in skin depth that occurs during lightning pulses. 
 

 
Figure 3.  Nonlinear B-H curve for steel 1008 as well as 
skin depths for copper, saturated steel, and unsaturated 
steel over the frequencies of interest for lightning pulses. 
 
 The skin effect is illustrated in Fig. 4 in the frequency 
domain at 100 Hz and 1MHz for the saturated case.  We 
can see that for 100 Hz the current density is uniform 
throughout the conductor but at 1 MHz the current density 
has been moved to the outside of the conductor due to the 
skin effect.  Because resistance is related to the amount of 
area the current density occupies, the low frequency case 
will have a lower resistance than the high frequency case.  
The H-field is related to the amount of current density it 
encloses.  For the low frequency case the H-field 
increases as r up to the radius then decreases as r-1. For the 
high frequency case the H-field is pushed out of the 
conductor due to the skin effect.  Because the internal 
inductance is related to the amount of magnetic energy 
inside the conductor, the low frequency case will have a 
higher inductance than the high frequency case.  We will 
see in Sect. IV that it is convenient to use frequency 
domain methods for linear materials to determine the 
response of the conductor to lighting pulses. 

   

   
Figure 4.  Current Density and H-field for 1 amp of 
current at 100 Hz and 1 MHz for saturated steel. 
 

In order to resolve the skin depths over the frequencies 
of interest eight nested cylinders were used.  The finite 
element code Maxwell will ensure that each cylinder is 
meshed.  This gives us more control over the initial mesh.  
The difference between the outer two cylinders was 40 
µm.  The large scale difference between the 40 µm 
spacing and the 19 mm diameter leads to a 
computationally intensive problem.   

 The computational mesh was created in the frequency 
domain by first solving at one frequency.  The frequency 
was then changed and the mesh that was created for the 
initial frequency was used as the input mesh for the next 
frequency.  This mesh was refined 30% and used to solve 
the problem.  Then a different frequency was simulated 
using the previous mesh as the input mesh, which was 
once gain refined 30%.  This process was then repeated 
over the frequencies of interest for lightning pulses.  This 
mesh that was created in the frequency domain was then 
used for time domain simulations.  The algorithm 
discussed above for creating the mesh was critical in order 
to achieve accurate results.  Without such a procedure, the 
mesh would not be resolved fine enough to be able to 
resolve the skin depths in the time domain and large 
errors could result due to the large range of skin depths. 

 

                               
Figure 5.  Eight nested cylinders used to model rebar 
sized cylindrical conductors. 



III.  FINITE ELEMENT RESULTS 
 
 The procedure discussed above for creating the finite 
element mesh can be tested by comparing conductor 
impedances for frequency and time domain simulations.  
For the frequency domain simulations the nested cylinders 
were not used and the mesh was only refined using the 
one frequency the problem was solved at.  This leads to 
an independent mesh than that used for the time domain 
simulations.  In the time domain a current waveform of 
sin(2𝜋𝑓𝑡) was used as the input.  The internal inductance 
and resistance was calculated for each case.  The results 
are shown in Fig. 6.  In Fig. 6, rebar sized cylinders were 
used and simulated for copper, the saturated and 
unsaturated steel cases, as well as the copper bond wire.  
The maximum percent difference over the entire band was 
less than 8%, giving us confidence in the mesh created in 
the time domain. 
 

 
Figure 6.  Comparison of internal inductances and 
resistances for a cylindrical conductor.  The dotted lines 
(on top of solid lines) are frequency domain results and 
the solid lines are time domain results. 
 
 Because of the good agreement in impedances over the 
frequencies of interest, we have confidence to perform 
time domain simulations.  Using the mesh created for the 
time domain, the Double Exponential and Heidler lighting 
current waveforms shown in Fig. 1 were applied as the 
current on a rebar sized cylinder.  The resistances and 
inductances were computed using Eqs. (7)-(9).  The 
results are shown in Fig. 7.  The cases marked steel use 
the nonlinear B-H curve for steel 1008 shown in Fig. 3.  
For these simulations it was important that the lighting 
current had zero current at time zero.  Some waveforms 
used to represent lightning have a small nonzero current at 
time zero.  This introduces an initial condition of the 
conductor having stored energy, which can have an effect 
on the results.  The nonphysical derivative for the Double 
Exponential (not zero at time zero) appears to have had a 
negligible effect on the results. 

 

 
Figure 7.  Time changing resistances and inductances 
calculated for a rebar sized conductor excited by Double 
Exponential and Heidler lighting current waveforms.   
 
 In Fig. 7 we can see that for the Double Exponential 
excitation the resistance decreases as time increases.  This 
is because the Double Exponential has a large amount of 
current earlier in the pulse and fields diffuse into the 
conductor.  The diffusion causes more of the cross 
sectional area of the conductor to be occupied by the 
current density, hence decreasing the resistance.  The 
diffusion of fields into the conductor results in more 
internal magnetic energy, which is why the inductance 
increases.  We can also see that the nonlinear case is close 
to the saturated case.  Inside the conductor of steel the 
nonlinear permeability will change with radius depending 
on how far the fields have diffused into the conductor.  
We can see that the behavior of the impedances for the 
Heidler excitation is similar to that of the Double 
Exponential after there is appreciable current.  However, 
earlier in time the Heidler has much lower current and a 
lower derivative.  This is why the steel saturates slower 
for the cases with the Heidler excitation. 
 The impedances are used to calculate the resistive 
voltages ((𝑖(𝑡)𝑅(𝑡)) and internal inductive voltages  
(𝑑 𝑑𝑡⁄ [𝑖(𝑡)𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝑡)]).   The results are shown in Fig. 
8.  We see from Fig. 8 that near the peak voltages the 
nonlinear steel cases are approximately the same as the 
saturated cases.  The results for the nonlinear steel case 
can be made “smoother” by adjusting the mesh, time step, 
and nonlinear residual of the solver.  Unfortunately this 
will result in longer simulations that require more 
memory. 

 



 

 
Figure 8.  Resistive and internal inductive voltages 
calculated for a rebar sized conductor excited by lighting.    
 
 The total internal voltages for the unsaturated and 
nonlinear steel cases as well as the external inductive 
voltages are shown in Fig. 9.  In the figure the solid lines 
are for the Heidler pulse and the dashed for the Double 
Exponential.  A representative external inductance of   
1E-6 µH/m was chosen.  We can see that if the rebar does 
not saturate the internal voltages is on the same order as 
the external voltage.  However, because of the 
nonlinearity in steel the internal voltage is much less than 
the external voltage.  It is also interesting to note that 
although the derivative of the current goes to zero, the 
inductive contribution cannot be neglected because of 
𝑖(𝑡) 𝑑𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝑡) 𝑑𝑡⁄ .  This can be seen by comparing the 
external voltages in Fig. 9 and the inductive voltages in 
Fig. 8, which are appreciable even for small 𝑑𝑖(𝑡) 𝑑𝑡⁄ .  
Accounting for current division in the facility analysis and 
the effect of concrete is actively under investigation. 
 

 
Figure 9.  Total internal voltages and external inductive 
voltages, as well as the ratio between the peak total 
internal voltage and peak external voltage.    

IV.  TEMPERATURE ESTIMATIONS 
 

The internal impedance of conductors in the time 
domain due to pulse excitations has been investigated by 
other researchers for linear materials [6]-[10].  In [7]-[10] 
solutions specifically for cylindrical conductors were 
found.  For cylindrical conductors made with linear 
materials Eqs. (3)-(6) can be reduced to yield Eq. (9) for 
the current density.  By taking the Laplace transform of 
Eq. (9) the solution in frequency space can be found and 
is given by Eq. (10) [7]-[10]. 
 
  𝜕2𝐽(𝑟, 𝑡) 𝜕𝑟2⁄ + 𝜕𝐽(𝑟, 𝑡) 𝑟𝜕𝑟⁄ = 𝜎𝜇𝑜𝜇𝑟 𝜕𝐽(𝑟, 𝑡) 𝜕𝑡⁄     (9) 
  𝐽(𝑟, 𝑠) = 𝐼(𝑠)𝑗𝑘𝐽𝑜(𝑗𝑘𝑟) 2𝜋𝑎𝑠𝐽1(𝑗𝑘𝑎)⁄             (10) 
 
In Eq. (10), 𝑠 is the Laplace variable, 𝐼(𝑠), is the Laplace 
transform of the current pulse, 𝐽𝑜 and 𝐽1 are Bessel 
functions of the first kind of orders zero and one, 𝑎 is the 
radius of the conductor, and 𝑘 = (𝑠𝜎𝜇𝑜𝜇𝑟)0.5.  It is 
interesting to note that 𝑘 in Eq. (10) is related to the 
inverse of the skin depth. 
 A program was written to compute Eq. (10) then 
inverse transform back into the time domain.  After 
solving for 𝐽(𝑟, 𝑡), 𝐻(𝑟, 𝑡) was found.  The resistances 
and inductances were then found for rebar sized cylinders 
made of copper, and the unsaturated and saturated steel 
cases using Eqs. (7) and (8).  The radial spacing used in 
the program was nonlinear so that the skin depth could be 
resolved.  Excellent agreement was found with the finite 
element results for copper and saturated steel.  There were 
some slight oscillations for the unsaturated steel case due 
to the need to evaluate large argument Bessel functions, 
however good overall agreement was still achieved.   
 Using the computed current density found from the 
transform method discussed above, one can find the 
energy dissipated in the conductor by integrating the 
power dissipation over the time of the pulse.  One can use 
this to obtain a rough estimate of the temperature rise at 
the surface of the conductor using Eq. (11) [8]-[10]. 
 
  ∆𝑇𝑆𝑢𝑟𝑓𝑎𝑐𝑒 ≈ ∫ ∫ 2𝜋𝑟𝐽2(𝑟, 𝑡)𝑑𝑟𝑑𝑡𝑎

0
∞
0 𝜎𝜋𝑎2𝑐⁄          (11) 

 
In Eq. (11), 𝑐 is the specific heat.  Equation (11) was 
derived assuming that there is no heat transport during the 
time of the lightning pulse.  The results are shown in table 
1 for the approximate temperature rise at the surface when 
excited by the Heidler and Double Exponential lightning 
pulses.  The results are given for rebar sized  
 

Case Ratio 
Unsat. Heidler 0.33 
Steel Heidler 0.01 
Unsat. Db. Exp. 0.23 
Steel Db. Exp. 0.01 



Table 1.  Approximate temperature rise at the surface of 
the conductor when excited by a lightning pulse. 

 Cu Sat. Eff. µr Unsat. B.W. 
Heidler 0.6º C 6º C 6º C 90º C 100º C 
Dbl. Exp. 0.4º C 3º C 4º C 70º C 60º C 

 
conductors made of copper, saturated and unsaturated 
steel, an effective permeability with the conductivity of 
steel 1008, and the copper bond wire.  It was found for the 
nonlinear steel 1008 rebar that the impedances were 
approximated well after the current was appreciable by 
using  𝜇𝑟 ≈ 2.  This is referred to as Eff. 𝜇𝑟 in table 1. 
 We can see from the results in table 1 that the 
temperature change at the surface is negligible for copper, 
saturated steel, and effective permeability.  However for 
the unsaturated steel and the bond wire the temperature 
change is not negligible and would result in a small 
change in parameters that we treated as constants with 
temperature, such as the conductivity.  For the analysis 
performed in this paper we have assumed only one return 
stroke for the lightning strike, however as many as 25 
return pulses can occur per strike [3], which would cause 
the temperature at the surface to increase more.  Similarly, 
if the lightning strike was an extreme positive strike rather 
than the negative strike assumed in this report, the peak 
lightning current could be 500 kA or greater [3].  Closely 
related to the temperature rise of the cylindrical 
conductors is the temperature rise and forces that result at 
the joints of the bond wires [11]-[13].  An area of future 
research is to ensure that the large lighting currents do not 
cause the bond wires to rip out of the joints used to 
connect them to the facility. 
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