PERMEABILITY TESTING OF SIMULATED SALTSTONE CORE AND VAULT 4 CELL E SALTSTONE

PDF Version Also Available for Download.

Description

The Engineering Process Development Group (EPD) of the Savannah River National Laboratory (SRNL) prepared simulated saltstone core samples to evaluate the effect of sample collection by coring on the permeability of saltstone. The Environmental Restoration Technology Section (ERTS) of the SRNL was given the task of measuring the permeability of cores of simulated saltstone. Saltstone samples collected from Vault 4 Cell E using both dry and wet coring methods were also submitted for permeability analysis. The cores from Vault 4 Cell E were in multiple pieces when they were recovered (Smith, 2008 Cheng et.al, 2009). Permeability testing was only performed ... continued below

Creation Information

Nichols, R. & Dixon, K. August 22, 2011.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Engineering Process Development Group (EPD) of the Savannah River National Laboratory (SRNL) prepared simulated saltstone core samples to evaluate the effect of sample collection by coring on the permeability of saltstone. The Environmental Restoration Technology Section (ERTS) of the SRNL was given the task of measuring the permeability of cores of simulated saltstone. Saltstone samples collected from Vault 4 Cell E using both dry and wet coring methods were also submitted for permeability analysis. The cores from Vault 4 Cell E were in multiple pieces when they were recovered (Smith, 2008 Cheng et.al, 2009). Permeability testing was only performed on the portions of the core sample that were intact, had no visible fractures or cracks, and met the specifications for 'undisturbed specimens' identified in Method ASTM D5084-03 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter that was used for the testing. Permeability values for cores of simulated saltstone compared with values from permeability tests conducted on molded saltstone samples by an independent laboratory using the same method. All hydraulic conductivity results for Vault 4 samples exceeded results for both molded and cored saltstone simulant samples. The average hydraulic conductivity result for Vault 4 Cell E samples of 3.9 x 10{sup -7} cm/sec is approximately two orders of magnitude greater than that of the simulated saltstone with an average of 4.1 x 10{sup -9} cm/sec. Numerical flow and transport simulations of moisture movement through saltstone performed for the performance assessment of the Saltstone Disposal Facility (SDF) used 2.0 x 10{sup -9} cm/sec for the hydraulic conductivity of saltstone (Flach et al, 2009). The results for simulated versus actual saltstone were further compared using non-parametric statistics. The results from non-parametric statistical analysis of results indicate that there is at least a 98% probability that the hydraulic conductivity of saltstone samples collected from Vault 4 Cell E saltstone is greater than that of the baseline simulant mix.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SRNL-STI-2010-00657
  • Grant Number: DE-AC09-08SR22470
  • DOI: 10.2172/1023612 | External Link
  • Office of Scientific & Technical Information Report Number: 1023612
  • Archival Resource Key: ark:/67531/metadc845512

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 22, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 12, 2016, 6:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Nichols, R. & Dixon, K. PERMEABILITY TESTING OF SIMULATED SALTSTONE CORE AND VAULT 4 CELL E SALTSTONE, report, August 22, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc845512/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.