The Reaction of bis(1,2,4-tri-t-butylcyclopentadienyl)ceriumbenzyl, Cp’₂CeCH₂Ph with Methylhalides: a Metathesis Reaction that does not proceed by a Metathesis Transition State.

Evan L. Werkema, Richard A. Andersen, Laurent Maron, and Odile Eisenstein

a) Department of Chemistry and Chemical Sciences Division of Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720-1460. b) LPCNO, Université de Toulouse, INSA, UPS, LPCNO, 135 avenue de Rangueil, F-31077 Toulouse, France, and CNRS, LPCNO, F-31077 Toulouse, France, c) Institut Charles Gerhardt, Université Montpellier 2, CNRS 5253, cc 1501 Place E. Bataillon, F-34095 Montpellier France

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.
Abstract

The experimental reaction between \([1,2,4-(\text{Me}_3\text{C})_3\text{C}_5\text{H}_2]_2\text{CeCH}_2\text{Ph}\) and \(\text{CH}_3\text{X}\), \(\text{X} = \text{F}, \text{Cl}, \text{Br}, \text{and I}\), yields the metathetical exchange products, \([1,2,4-(\text{Me}_3\text{C})_3\text{C}_5\text{H}_2]_2\text{CeX}\) and \(\text{CH}_3\text{CH}_2\text{Ph}\). The reaction is complicated by the equilibrium between the benzyl derivative and the metallacycle \([(1,2,4-(\text{Me}_3\text{C})_3\text{C}_5\text{H}_2)](\text{Me}_3\text{C})_2\text{C}_5\text{H}_2\text{C}(\text{CH}_3)_2\text{CH}_2\text{Ce}\), plus toluene since the metallacycle reacts with \(\text{CH}_3\text{X}\). Labelling studies show that the methyl group of the methylhalide is transferred intact to the benzyl group. The mechanism, as revealed by DFT calculations on \((\text{C}_5\text{H}_5)_2\text{CeCH}_2\text{Ph}\) and \(\text{CH}_3\text{F}\), does not proceed by way of a four-center mechanism, \((\sigma\text{-bond metathesis})\) but a lower barrier process involves a haptotropic shift of the \(\text{Cp}_2\text{Ce}\) fragment so that at the transition state the para-carbon of the benzene ring is attached to the \(\text{Cp}_2\text{Ce}\) fragment while the \(\text{CH}_2\) fragment of the benzyl group attacks \(\text{CH}_3\text{F}\) that is activated by coordination to the metal ion. As a result the mechanism is classified as an associative interchange process.

Introduction

The preparation and reactions of \([1,2,4-(\text{Me}_3\text{C})_3\text{C}_5\text{H}_2]_2\text{CeH}\), abbreviated as \(\text{Cp'}_2\text{CeH}\), with aliphatic and aromatic hydrofluorocarbon \(\text{CH}_3\text{F}\) and \(\text{C}_6\text{H}_{6-n}\text{F}_n, n = 1-6\), respectively, have been published\(^{1,2,3}\). These studies were extended to other methylhalides and related compounds, \(\text{CH}_3\text{X}, \text{X} = \text{Cl}, \text{Br}, \text{I}, \text{OMe}, \text{NMe}_2\) recently.\(^4\) The reactions of these methyl-derivatives with \(\text{Cp'}_2\text{CeH}\), illustrated by the net reaction in eq.1 are, at first glance, a simple metathetical \(\text{H for X exchange reaction}\) but the reaction mechanism does not proceed by a four-center metathesis transition state.

\[
\text{Cp'}_2\text{CeH} + \text{CH}_3\text{X} \rightarrow \text{Cp'}_2\text{CeX} + \text{CH}_4 \quad \text{X} = \text{F}, \text{Cl}, \text{Br}, \text{I}, \text{OMe} \quad (1)
\]
The combined experimental and computational studies1,4 showed that the reaction proceeds by a two-step process, the first of which is an intermolecular C-H activation, eq 2a, that is followed by ejection of CH\textsubscript{2} and trapping by H\textsubscript{2}, eq 2b.

\[
\text{Cp'}_2\text{CeH} + \text{CH}_3\text{X} \rightarrow \text{Cp'}_2\text{CeCH}_2\text{X} + \text{H}_2 \quad (2a)
\]

\[
\text{Cp'}_2\text{CeH} + \text{H}_2 \rightarrow \text{Cp'}_2\text{CeX} + \text{CH}_4 \quad (2b)
\]

The calculated free energy barriers (called hereafter activation barriers) for the C-H activation step are relatively low, ΔG^\neq ranges from 18 kcal mol-1 (F) to 14 kcal mol-1 (OMe), but the activation barrier for the second step is higher in all cases studied. The calculated activation barrier for a synchronous process that proceeds by way of a metathesis transition state is higher, by about 6 to 8 kcal mol-1, than the second, rate determining step. The physical picture that emerges from the calculations is that the metathesis transition state \textbf{A} has negative charge accumulation on H and X and positive charges on Cp\textsubscript{2}Ce and on CH\textsubscript{3}. It has a higher activation barrier since it resembles Cp\textsubscript{2}Ce+CH\textsubscript{4}X− and CH\textsubscript{4}X− is a high energy species. Accordingly, the reactants choose a two-step pathway in which the transition state for C-H activation, \textbf{B}, forms Cp\textsubscript{2}CeCH\textsubscript{2}X. This is followed by a step in which CH\textsubscript{2} inserts into H\textsubscript{2} and Cp\textsubscript{2}CeX by cleavage of the C-X bond. Experimental evidence for the two-step mechanism was derived by observing that (a) the Me\textsubscript{3}C-groups on the Cp’-rings can act as an intramolecular trap for CH\textsubscript{2}, when H\textsubscript{2} is absent, as can added cyclohexene, which formed norcarane, and cyclohexane-d\textsubscript{12} solvent, which formed methylcyclohexane-d\textsubscript{12}, (b) NMR evidence was obtained for Cp’\textsubscript{2}CeCH\textsubscript{2}X, X = Cl, Br, I and (c) when X = OMe, Cp’\textsubscript{2}Ce(\eta2-CH\textsubscript{2}OMe) was isolated.1,4 Thus, the combined computational and experimental studies showed that the two-step pathway
proceeding by way of a carbenoid intermediate is general for the \(\text{CH}_3X \) derivatives studied.

The cerium metallocenes used in these studies, \(\text{Cp'}_2\text{CeCH}_2\text{Ph} \), \(\text{Cp'}_2\text{CeH} \) and \(\text{Cp'}_2\text{CeF} \) are monomeric in the solid state and presumably in solution as well. Hence, they are excellent experimental models for the computational studies, which were carried out using the \(\text{C}_5\text{H}_5 \) metallocenes in gas phase.

In this article, a combined experimental and computational study of the reaction of \(\text{Cp'}_2\text{CeCH}_2\text{Ph} \), along with its chemical and physical properties, with \(\text{CH}_3X \), \(X = \text{F}, \text{Cl}, \text{Br}, \) or \(\text{I} \), a stoichiometric C-C bond forming reaction, are described, eq 3.

\[
\text{Cp'}_2\text{CeCH}_2\text{Ph} + \text{CH}_3X \rightarrow \text{Cp'}_2\text{CeX} + \text{CH}_3\text{CH}_2\text{Ph} \quad (3)
\]

Results

Synthetic studies. Solution and Solid State properties of \(\text{Cp'}_2\text{CeCH}_2\text{Ph} \).

The synthesis and some physical properties of \(\text{Cp'}_2\text{CeCH}_2\text{Ph} \) are reported in an earlier article\(^2\) and additional ones are reported here. Some of the chemical reactions described in this article, along with those reported earlier, are shown in Scheme 1. The benzyl derivative is an excellent precursor to two useful derivatives, the hydride and the metallacycle \([1,2,4-(\text{Me}_3\text{C})_3\text{C}_5\text{H}_2] [(\text{Me}_3\text{C})_2\text{C}_5\text{H}_2\text{C}(\text{CH}_3)_2\text{CH}_2]\text{Ce} \), and their deuterated analogues. Although the benzyl and the 4-methylbenzyl derivatives are isolable, these are the only alkyl derivatives that are thermally stable at...
room temperature; all attempts to make Me, CH$_2$CMe$_3$ or CH$_2$SiMe$_3$ derivatives results in alkane elimination and formation of the metallacycle at low temperature.

Scheme 1

The 1H NMR spectrum of the benzyl derivative in C$_6$D$_6$ at 19°C was mentioned previously. The spectrum shows the Me$_3$C group resonances as three broad singlets in a 1:1:1 area ratio, inequivalent Cp’-ring CH resonances and one other resonance of area 1 that is assumed to be the para-H resonance of the benzyl group; the CH$_2$ and the benzene ring ortho and meta resonances are not observed. In order to confirm this assignment, Cp’$_2$Ce(4-methylbenzyl) is prepared and isolated as outlined in the Experimental Section. The variable temperature 1H NMR spectrum in C$_7$D$_8$ of Cp’$_2$CeCH$_2$Ph shows that the Me$_3$C-resonances are in a 2:1 area ratio at temperatures greater than 300K but as the temperature is lowered they decoalesce and reappear as a 1:1:1 area ratio pattern, see ESI for the δ vs. T$^{-1}$ plots for this and the 4-methylbenzyl derivative. The spectra show that Cp’$_2$CeCH$_2$Ph is a fluxional molecule
with average \(C_{2v} \) symmetry at high temperature but \(C_{3} \) symmetry at lower temperature. In addition, a resonance assigned to the meta-H’s of the benzyl group is observed at -80°C as a single resonance in the benzyl and 4-methylbenzyl derivatives, implying that the phenyl ring is either in the plane of symmetry, perpendicular to it, or oscillating about CeCH\(_2\)-C(ipso) bond generating a time averaged plane of symmetry.

In the solid state, two molecules are found in the asymmetric unit of \(\text{Cp'}_2\text{CeCH}_2\text{Ph} \) in equal amounts as shown in Fig. 1. The two molecules in the asymmetric unit, \(\text{a} \) and \(\text{b} \) in Fig. 1 have different orientations of their \(\text{Cp'} \) rings and \(\text{CH}_2\text{Ph} \) groups. Since the population of each conformer in the unit cell is equal, their individual free energies are equal, see ESI for crystallographic details. In conformer \(\text{a} \), the \(\text{Cp'} \) ring carbon atoms are eclipsed, which results in two of the Me\(_3\)C groups at the back of the wedge avoiding each other as much as possible resulting in the four Me\(_3\)C groups in the front of the wedge being pairwise eclipsed. The \(\text{Cp'}\text{ring centroid)-Ce(2)-Cp'}\text{ring centroid} \) angle is 149\(^\circ\) and the Ce(2)-C(76)-C(77) angle is 130.4(3)\(^\circ\); the open Ce(2)-C(76)-C(77) angle results in a Ce(2)-C(77) distance greater than 3.7 Å. The other conformer, \(\text{b} \), is rather different, since the \(\text{Cp'} \) -ring carbons atoms are staggered with a closed \(\text{Cp'}\text{ring centroid)-Ce(1)-C'}\text{ring centroid} \) angle of 138\(^\circ\), 11\(^\circ\) less than in \(\text{a} \). In addition, the Ce(1)-C(35)-C(36) angle of 93.1(4)\(^\circ\) is some 37\(^\circ\) less than the equivalent angle in \(\text{a} \), which results in a short Ce(1)-C(36) distance of 3.023(4) Å. The flat phenyl ring is orientated more or less perpendicular to the open wedge of the \(\text{Cp'}_2\text{Ce} \) fragment, and the Ce(1)-C(37) and Ce(1)-C(41) distances are 3.996 and 3.253 Å, respectively, thus, the classification of the benzyl group bonding as \(\eta^2 \) or \(\eta^3 \) is ambiguous; the representation Ce(\(\eta^2/\eta^3 \)-CH\(_2\)Ph) seems appropriate.
Fig. 1: ORTEP of Cp’₂CeCH₂Ph showing the two molecules in the asymmetric unit,
a, the conformer with Ce(η¹-CH₂Ph) and, b, the conformer with Ce(η²/η³-CH₂Ph).

The non-hydrogen atoms are refined anisotropically and shown as 50% ellipsoids; the
hydrogen atoms are not shown, but they are placed in idealized positions and not refined. Selected bond distances (Å) and angles (deg) are
a: Ce(2)-C(Cp’) = 2.83 ± 0.07 (ave), range 2.752(4)-2.932(4), Ce(2)-Cp’(ring centroid) = 2.54, Cp’(ring centroid)-Ce-Cp’(ring centroid) = 149, Ce(2)-C(76) = 2.577(4), Ce(2)-C(76)-C(77) 130.4(3).

b: Ce(1)-C(Cp’)= 2.87 ± 0.07(ave), range 2.761(4)-3.010(4), Ce(1)-Cp’(ring centroid) = 2.54, Cp’(ring centroid)-Ce(1)-Cp’(ring centroid) = 138, Ce(1)-C(35) = 2.584(4), Ce(1)-C(36) = 3.023(4), Ce(1)-C(37) = 3.996, Ce(1)-C(41) = 3.253, Ce(1)-C(35)-C(36) = 93.1(4).

The solid state molecular structure of Cp’₂Ce(4-methylbenzyl) is shown in Fig. 2. The important distances and angles are given in the caption to Fig. 2. The geometrical parameters for Cp’₂Ce(4-methylbenzyl) are very similar to those of Cp’₂Ce(η²/η³-CH₂Ph), Fig. 1b, including the orientation of the cyclopentadienyl rings in the Cp’₂Ce fragment and the orientation of the planar benzene ring.
Fig. 2 ORTEP of Cp’₂Ce(4-methylbenzyl), the half molecule of pentane in the unit cell is not shown. The non-hydrogen atoms are refined anisotropically and shown as 50% ellipsoids, the hydrogen atoms are not refined but they are placed in idealized positions and not shown. Selected distances (Å) and angles (deg): Ce-C(Cp’) = 2.86 ± 0.08, range 2.743(8) to 2.995(7), Ce-Cp’(ring centroid) = 2.60, Cp’(ring centroid)-Ce-Cp’(ring centroid) = 138.5, Ce-C(35) = 2.576(7), Ce-C(36) = 2.969(7), Ce-C(37) = 3.933, Ce-C(41) = 3.228, Ce-C(35)-C(36) = 91.7(4°).

The geometry of the Ce(η²/η³-CH₂Ph) and Ce(η²/η³-4-methylbenzyl) fragments, Figs. 1b and 2 respectively, is similar to that found in (C₅Me₅)₂Ce(η³-CH₂Ph). In the latter example, the Ce-CH₂-C(ipso) angle of 86.0(3)° is even more acute than the equivalent angle in the molecule shown in Fig. 1b, resulting in a Ce···C(ipso) and one Ce···C(ortho) distance of 2.885(5) Å and 2.882(6) Å, respectively. The Ce-CH₂Ph distance of 2.596(5) Å is identical, to within 3σ, of the equivalent distances in the molecules shown in Figs. 1a, 1b and 2. The benzyl group in the C₅Me₅ derivative has three Ce-C distances less than 3 Å and therefore is classified as a η¹-benzyl, whereas the benzyl group in the 1,2,4-(Me₃C)₃C₅H₂ derivatives has only one or two Ce-C distances less than 3 Å and it is classified as a η¹- and η²-benzyl. The differing classification clearly is the result of intramolecular steric effects in the metallocene fragments. The solid state crystal structures of metal-
benzyl derivatives often have structures in which the M-CH₂-C(ipso) angle is much less than 120°, resulting in short M-C(ipso) and M-C(ortho) distances. This type of structure was first observed in the crystal structure of Ti(CH₂Ph)₄,⁶,⁷ Zr(CH₂Ph)₄⁸ and in f-block benzyl derivatives.⁹,¹⁰,¹¹

Solid state behavior of Cp’₂CeCD₂C₆D₅

Since the studies described in this article are aimed at understanding the mechanism of the C-C bond formation, eq. 3, it is important to study the deuterated benzyl derivative in order to show whether or not the methyl group of the methylhalide is transferred intact in the ethylbenzene product. The deuterated derivative, Cp’₂Ce CD₂C₆D₅ is prepared as described in the Experimental Section; the d⁷-derivative behaves similarly to the d₀-derivative in solution. However, on prolonged storage in the solid state at 20-25°C in absence of air and moisture for about three years, the deuteria in the α-CD₂ sites are replaced by hydrogen and one of the Me₃C-groups is enriched with deuteria. The extent of the H/D exchange is determined by solution ¹H and ²H NMR spectroscopy. Thus, when first prepared and isolated the ¹H NMR spectrum in C₆D₆ consists of three equal area resonances due to the inequivalent Me₃C groups at δ -0.53, -1.80 and -13.19 in addition to the ring methyne resonances. The ²H NMR spectrum shows only two resonances assigned to deuteria on the para and meta positions. After standing for about three years, a small portion of the solid was dissolved in C₆D₆ and examined by ¹H NMR spectroscopy. The spectrum is qualitatively the same as that obtained originally, but the ²H NMR spectrum contains a resonance at δ -13.2 with an area of approximately 2 relative to the para and meta D-resonances. The resonance at δ -13.2 is identical to one of the cyclopentadienyl ring Me₃C groups mentioned above. Examination of the ¹H NMR
spectrum shows that the intensity ratio of the three Me$_3$C resonances is no longer 9:9:9 but approximately 9:9:6.5. In order to confirm the result, the sample was hydrolyzed (H$_2$O) and the resulting 1H NMR spectrum shows that the liberated toluene was a mixture of CH$_3$C$_6$D$_3$ and CH$_2$DC$_6$D$_3$. Hydrolysis (H$_2$O) of another sample and examination of the 2H NMR spectrum in C$_6$D$_{12}$ shows the ortho, meta, and para resonances of toluene in a ratio of 2:2:1. Since the freshly liberated (Me$_3$C)$_3$C$_5$H$_3$ is a mixture of two isomers that isomerizes to a single isomer on heating,12 the sample in C$_6$D$_6$ was heated at 60°C for two days. Examination of the 1H NMR spectrum shows the Me$_3$C resonances in a 9:6.5:9 area ratio showing that all of the deuteria are on a single Me$_3$C group. The 13C NMR spectrum shows three Me$_3$C resonances, only one of which has a shifted 1:1:1 resonance associated with it, that is clearly due to a Me$_2$CCH$_2$D group. Examination of the GCMS shows the presence of CH$_3$D$_{1-x}$C$_6$D$_5$ isotopologues and Cp’H molecular ion is an envelope that contains the d$_0$, d$_1$, d$_2$ and d$_3$ isotopologues. Thus, over a prolonged period of time, both deuteria on the α-CD$_2$ of the benzyl group exchange with one of the CH$_3$ groups on the Cp’ ring in the solid state. The solid state behavior of Cp’$_2$Ce(CH$_2$Ph) is rather different from that in solution; in solution equilibration occurs between the benzyl derivative and the metallacycle and toluene, Scheme 1. Over reasonably short periods of times in the solid state the equilibration is not observed, but, H/D exchange occurs over long periods of time. The difference is clearly a solid state effect, where the ensemble prevents the equilibrium with metallacycle and toluene, guides the H for D exchange into the unique Me$_3$C group of the cyclopentadienyl ring; unfortunately, we do not know the mechanism of the exchange. A somewhat related solid state isomerization of Cp’$_2$Ce(2,3,4,5-C$_6$H$_4$F$_4$) was observed earlier.3

Solution behavior of Cp’$_2$CeCH$_2$Ph
Heating a toluene-h$_8$ solution of Cp’$_2$CeCH$_2$Ph at 60°C for a day, then storing the sample at 20°C for an additional day while monitoring the 1H NMR spectrum, shows resonances due to the benzyl derivative and the metallacycle in a ratio of 12:1, in addition to four new paramagnetic resonances due, presumably, to the Me$_3$C groups of at least two Cp’$_2$Ce(Ar) metallocenes, where Ar represents the isomeric xylyl groups. Hydrolysis (D$_2$O) and examination of the 2H NMR spectrum shows singlets in the aromatic region and a triplet ($J_{HD} = 2.1$ Hz) in the methyl region in an area ratio of 2.5:1:1:6. This result is consistent with the presence of the four possible toluene-d$_1$ isotopomers in which deuteria are in the four possible sites, implying that all possible xylyl metallocenes as well as the benzyl metallocene are formed in toluene solvent. The 4-methylbenzyl complex, though stable in the solid state, is also in equilibrium with the metallacycle and p-xylene analogous to that of the benzyl complex.

This deduction is strengthened by allowing the deuterated metallacycle-d$_{53}$, to react with an excess of C$_7$D$_8$ in an NMR tube for one day at 60°C and an additional day at 20°C. After removing the C$_7$D$_8$ and redissolving the residue in C$_6$D$_{12}$, the 2H NMR spectrum shows resonances due to (Cp’-d$_{27}$)$_2$CeCD$_2$C$_6$D$_5$ and four additional resonances at the same chemical shift and with comparable intensities as above. Upon hydrolysis (H$_2$O), the 1H NMR spectrum in C$_6$D$_{12}$ shows two new aromatic and one aliphatic resonances of toluene. These results strengthen the deduction reached above, viz. the metallacycle reacts with the aromatic and aliphatic C-H bonds of toluene; a similar H for D exchange was shown earlier for methane. Accordingly, solvents for reactions of the benzyl derivative must be chosen carefully in order to minimize complications due to H/D exchange reactions. Thus in pentane or in cyclohexane, the metallacycle is isolated or generated in pure form. In benzene, the phenyl derivative
may be isolated or generated in pure form. Although the equilibrium between the benzyl and the metallacycle is, on one hand, useful as it allows access to labeled cyclopentadienyl compounds, on the other hand, it complicates the reactions studied in this article, since the metallacycle reacts with the methylhalides and deuterium labeling is essential to unravel these pathways.

Reactions of Cp’2CeCH₂Ph with CH₃X, X = F, Cl, Br, I

Addition of CH₃F to a solution of Cp’₂CeCH₂Ph in C₆D₆ at 20°C in an NMR tube results in a decrease in the resonances due to the benzyl and an increase in the resonances due to Cp’₂CeF. After one day the ratio of Cp’₂CeCH₂Ph to Cp’₂CeF is about 2:1 and after two days, the resonances due to Cp’₂CeCH₂Ph are absent and those due to Cp’₂CeF and Cp’Cp”CeF [Cp” = (Me₃C)₂(EtMe₂C)C₅H₂] are present in comparable amount. The appearance of Cp’Cp”CeF is a clear indication that Cp’₂CeCH₂F forms, due to the equilibration shown in scheme 1. The ¹H NMR spectrum also contains resonances due to CH₃CH₂Ph and CH₃Ph in an approximate area ratio of 1:4 and the total amount of these two aromatic hydrocarbons corresponds to that expected from the amount of Cp’CeCH₂Ph originally present. Qualitatively, the ratio of CH₃CH₂Ph to CH₃Ph (1:4) shows that the reaction of Cp’₂CeCH₂Ph with CH₃F is slower than that of the benzyl dissociating to the metallacycle and toluene.

In order to be sure that ethylbenzene is formed from Cp’₂CeCH₂Ph, the reaction of Cp’₂Ce(CD₂C₆D₅) and CH₃F in C₆D₆ was followed by NMR spectroscopy. After two days at 20°C, all of the resonances due to Cp’₂Ce(CD₂C₆D₅) are gone and the only resonances observed in the ²H NMR spectrum are due to CH₃CD₂C₆D₅ and CHD₂C₆D₅. Hydrolysis (H₂O) and analysis of the hydrolysates by GCMS shows the presence of Cp’H, Cp”H, CHD₂C₆D₅ and CH₃CD₂C₆D₅. These
results clearly show that the methyl group in CH$_3$F is transferred intact to the benzyl group and that the toluene is derived from the equilibrium reaction of the benzyl and the metallacycle.

The reaction of Cp’$_2$CeCH$_2$Ph with MeX, X = Cl, Br and I in C$_6$D$_{12}$ proceeds in a manner similar to that of CH$_3$F, except that resonances due to Cp’$_2$CeCH$_2$X appear and disappear over time. As shown previously, the formation of Cp’$_2$CeCH$_2$X is due to reaction of the metallacycle with CH$_3$X, which rearranges to Cp’$_2$CeX and Cp’Cp”CeX. In addition, CH$_3$CH$_2$Ph is observed in each case. In order to show that the ethylbenzene is formed by direct reaction of Cp’$_2$CeCH$_2$Ph with CH$_3$X, rather than insertion of CH$_2$ from Cp’$_2$CeCH$_2$X into toluene formed along with the metallacycle, the reactions with CD$_3$Br and CD$_3$I were studied. Addition of either CD$_3$Br or CD$_3$I to Cp’$_2$CeCH$_2$Ph in an NMR tube in C$_6$D$_{12}$ proceeds similar to that of CH$_3$Br or CH$_3$I. After hydrolysis (H$_2$O), analysis by GCMS shows the presence of Cp’H, Cp’H-d$_2$, CH$_3$Ph-d$_0$ and CH$_3$CH$_2$Ph-d$_3$. The 2H NMR spectrum of the solution, before hydrolysis, shows that all of the deuteria in the ethylbenzene are on the terminal carbon, CD$_3$CH$_2$Ph, and no CHD$_2$CH$_2$Ph or is CHD$_2$CHDPh are detected. Repeating the reaction between Cp’$_2$CeCH$_2$Ph and CD$_3$Br in C$_6$H$_6$ solvent and monitoring the reaction by 2H NMR spectroscopy shows only resonances due to CD$_3$CH$_2$Ph. Thus, the methyl group of either CD$_3$Br or CD$_3$I are transferred intact and the toluene, formed from the equilibrium between the benzyl derivative and the metallacycle, does not trap the CD$_2$ fragment nor does the benzyl group accept a deuteron from CD$_3$X to form CH$_2$DPh that traps the CD$_2$ fragment, Scheme 1.

The reaction of Cp’$_2$Ce(4-methylbenzyl) with CH$_3$F in C$_6$D$_{12}$ is similar to that of the benzyl, viz., Cp’$_2$CeF and Cp’Cp”CeF are formed along with p-xylene and 4-ethyl-toluene; the latter two products are formed from the equilibrium between the 4-
methylbenzyl derivative and the metallacycle, and direct reaction with CH$_3$F, respectively. The reactions of Cp’$_2$Ce(4-methylbenzyl) with CH$_3$X, X = Cl, Br, and I, proceed with similar rates and products as with Cp’$_2$CH$_2$Ph.

Reactions of Cp’$_2$CePh with CH$_3$F

During the studies described above, some of the reactions of Cp’$_2$CeCH$_2$Ph with methylhalides are studied in C$_6$D$_6$ or C$_6$H$_6$ solvents rather than in C$_6$D$_{12}$. A potential complication of reactions in C$_6$H$_6$ is exchange that results in the formation of Cp’$_2$CePh and toluene, as noted previously. If the phenyl derivative reacts with CH$_3$X then another route for formation of toluene is available. In order to examine this possibility, Cp’$_2$CePh and Cp’$_2$Ce(C$_6$D$_5$) were prepared and allowed to react with CH$_3$F. When Cp’$_2$CePh and CH$_3$F are mixed in an NMR tube in C$_6$H$_6$, resonances due to Cp’$_2$CeF and Cp’Cp”CeF appear within an hour. After two days at 20°C, the ratio of Cp’$_2$CePh to the fluorides (Cp’$_2$CeF and Cp’Cp”CeF) is 6:5 and after five days the ratio is 1:4. Hydrolysis (H$_2$O) and analysis by GCMS shows the presence of toluene as well as Cp’H and Cp”H. Repeating the reaction of CH$_3$F with Cp’$_2$Ce(C$_6$D$_5$) in C$_6$D$_6$ shows that the toluene formed is CH$_3$C$_6$D$_5$ by 2H NMR spectroscopy and examination of the hydrolysate (H$_2$O) by GCMS after the resonances due to Cp’$_2$Ce(C$_6$D$_5$) have disappeared (42 days). Thus, the reaction of Cp’CePh with CH$_3$F to give CH$_3$Ph is much slower than that of Cp’$_2$CeCH$_2$Ph. In addition these two experiments show that benzene does not trap the CH$_2$-fragment resulting from Cp’$_2$CeCH$_2$F.

Computational studies

Model
The reaction mechanism for the reaction of \(\text{Cp}’\text{CH}_2\text{Ph} \) and \(\text{CH}_3\text{F} \) was analyzed by DFT(B3PW91) calculations with the methodology used in all our previous studies on the reactivity of lanthanide complexes with a variety of small molecules, including \(\text{CH}_3\text{X} \).\(^{1,2,4,13}\) \(\text{Cp}’\text{CeCH}_2\text{Ph} \) is modeled by \(\text{Cp}_2\text{CeCH}_2\text{Ph} \), which decreases significantly the steric effects of the metallocene fragment. This model was appropriate in the study of the reaction of \(\text{CH}_3\text{X} \) (\(\text{X} = \text{F}, \text{Cl}, \text{Br}, \text{I}, \text{OMe}, \text{NMe}_2 \)) with \(\text{Cp}’\text{CeH} \).

Structure of \(\text{Cp}_2\text{Ce(CH}_2\text{Ph)} \)

The calculated structure of the benzyl complex shown in Fig. 3 is in good agreement with the structure shown in Fig. 1b, one of the two molecules found in the crystal structure of \(\text{Cp}’\text{CeCH}_2\text{Ph} \) and in Fig. 2, the 4-methylbenzyl structure. The C(1)-C(2) distance of 1.44 Å, is between that expected for a single and a double bond. The cerium is bonded to the benzyl group by way of C(1) at a distance of 2.64 Å but the cerium atom is also close to C(2) (2.78 Å) and the two ortho carbon atoms, C(3) and C(7), of the phenyl ring (3.0 and 3.4 Å) are somewhat further away. This leads to an acute Ce-C(1)-C(2) angle of 80°, which compares reasonably well with the experimental angle of 92-93°. As a consequence of the more acute Ce-C(1)-C(2) angle in the calculated structure, the distances between Ce and the ortho carbons are significantly shorter than in the crystal structures. The modeling of the \(\text{Cp}’ \) ligand by the less bulky \(\text{Cp} \) ligand is most likely the origin of the smaller Ce-C(1)-C(2) angle in the calculated structure. The benzyl group is not an \(\eta^1 \)-benzyl since the benzene ring is orientated with its flat, open-face towards the open wedge of the \(\text{Cp}_2\text{Ce} \) fragment. This orientation is the result of the acute Ce-C(1)-C(2) angle and the negative charge density distribution around the benzene ring. Since this stereochemistry is observed in one of the two molecules in the crystal structure of \(\text{Cp}’\text{Ce}(\text{benzyl}) \) and in
Cp'\textsubscript{2}Ce(4-methylbenzyl), this orientation is not due to steric effects. The calculated structure of Cp\textsubscript{2}Ce(4-methylbenzyl), is similar to that of the benzyl, including the acute Ce-C(1)-C(2) angle of 80°. The other molecule in the solid state crystal structure of Cp'\textsubscript{2}Ce(benzyl) shows an η1-benzyl group with a Ce-C(1)-C(2) angle of 130°. No calculated structure with a large Ce-C(1)-C(2) angle is located as a minimum on the potential energy surface, an additional indication that the η3-benzyl is an energy minimum.

The calculated structure, with a Ce-C(1)-C(2) angle of 80°, can be understood by considering how the Cp\textsubscript{2}Ce+ fragment interacts with a benzyl anion. In an isolated benzyl anion, the π density is mostly on C(1), the ortho C(3) and C(7) and the para carbon C(5). Interaction between the Cp\textsubscript{2}Ce+ fragment and the benzyl ligand polarizes the π electron density. In the optimal structure, the electron π density of the benzyl ligand is mainly localized on C(1), C(2) and an ortho carbon C(3) with only a small amount localized on the other ortho carbon C(7), the meta and para carbons C(4, 5 and 6). According to the NBO analysis, the charge (sum of the charges on carbon and adjacent hydrogens) on C(1) is -0.48, ipso C(2) is -0.13, ortho C(3) is -0.13. The other carbon atoms have charges smaller than ± 0.04. Therefore the bonding between the Cp\textsubscript{2}Ce fragment and the benzyl group becomes allylic in character and the most stable structure has an η3-benzyl as is found in (C\textsubscript{5}Me\textsubscript{5})\textsubscript{2}Ce(η3-CH\textsubscript{2}Ph).5

Finally the good agreement between the calculated structure and one of the two molecules in the crystal structures validates the choice of Cp\textsubscript{2}CeCH\textsubscript{2}Ph as a model for Cp'\textsubscript{2}CeCH\textsubscript{2}Ph.
Fig. 3. The optimized DFT (B3PW91) structure of Cp₂Ce(η³-CH₂Ph) with, top, distances in Å, and, bottom, NBO charges in the CH or CH₂ groups of the benzyl. [Ce] represents Cp₂Ce. The red color indicates to the most negatively charged atoms in the benzyl group. Numbering of carbon atoms in the benzyl group is in blue.

Pathways for the reaction of Cp₂CeCH₂Ph with CH₃F

The σ-bond metathesis pathway is considered first. In this one-step concerted reaction, the transition state has the usual kite-shaped structure. The CH₂ group of the benzyl and F of CH₃F occupy the α–positions of the four-membered ring and the CH₃ group occupies the β-site. The four-membered ring has angles which are close to 90° and a long C–C distance. The Gibbs free energy of this transition state is 50.6 kcal mol⁻¹, a barrier that is significantly higher than the 31.1 kcal mol⁻¹ free energy barrier for the metathesis transition state in the H for F exchange in the reaction of Cp₂Ce-H and CH₃-F. The structure of the metathesis transition state is shown in Fig. 4. The high activation barrier makes a σ-bond mechanism improbable.
Fig. 4 Transition state for σ-bond metathesis for the reaction between $\text{Cp}_2\text{CeCH}_2\text{Ph}$ and CH_3F, distances in Å, angles in degrees.

The two-step pathway, which begins by a proton transfer from the methyl group of CH_3F to the benzyl ligand, is the next alternative considered. The starting structure for the proton transfer step is the adduct between $\text{Cp}_2\text{CeCH}_2\text{Ph}$ and CH_3F; the interaction is rather weak and the binding energy of 5.6 kcal mol$^{-1}$ does not compensate fully the loss of entropy, which leads to an adduct 4.8 kcal mol$^{-1}$ above the separated $\text{Cp}_2\text{CeCH}_2\text{Ph}$ and CH_3F reactants. This adduct is not shown in Fig 5. The free energy of the proton transfer transition state is 32.4 kcal mol$^{-1}$, which is again significantly higher than the value of 18 kcal mol$^{-1}$ found for Cp_2CeH and CH_3F and higher than the value of 21.6 kcal mol$^{-1}$ calculated for the proton transfer in the reaction of Cp_2CeCH_3 and CH_3F (Fig. 5). The proton transfer leads to toluene and $\text{Cp}_2\text{CeCH}_2\text{F}$, which is 4.1 kcal mol$^{-1}$ higher in energy than $\text{Cp}_2\text{CeCH}_2\text{Ph}$ and CH_3F.

The transition state for the following step, insertion of CH_2 into an aliphatic C-H bond of toluene forming ethylbenzene and Cp_2CeF, has a free energy barrier of 36.2 kcal mol$^{-1}$. While the activation energy barriers for this two-step process are not low, they are significantly lower than that of the σ-bond metathesis. However, the methyl group is not transferred intact in this process, which disagrees with the experimental result and another physical process needs to be discovered.
A transition state that agrees with the labeling experiment connects directly Cp₂CeCH₂Ph and CH₃F forming Cp₂CeF and ethylbenzene has a Gibbs free energy barrier of 33.3 kcal mol⁻¹. In this transition state, the Cp₂Ce fragment is 2.95 Å from C(5), the para carbon of the benzyl group and 3.15 Å from the two meta carbons C(4) and C(6), and 4.55 Å from the methylene carbon, C(1) (Fig. 6). Thus, the Cp₂Ce fragment is not bonded to the CH₂ group of the benzyl fragment but is attached by way of C(5). The C(1)-C(2) distance of 1.39 Å is shorter than in the benzyl complex where it is 1.44 Å (Fig. 3). The CH₃F molecule is bonded to Ce by way of F, and the CH₃ group is 2.47 Å from the unbound CH₂ group of the benzyl fragment with an C(CH₂)-C(CH₃)-F angle of 160°. Thus the CH₂ group is ideally orientated for a nucleophilic attack on the CH₃ group of CH₃F whose electrophilicity is increased by the coordination of F to the positively charged Cp₂Ce fragment, an associative interchange, Iₐ, mechanism. This transition state forms the C-C bond and cleaves the C-F bond without rearranging the hydrogen atoms and therefore the CH₃ group of CH₃F is transferred intact to form the ethyl benzene in accord with experiment.

This pathway is also examined for the 4-methylbenzyl complex. Remarkably the free energy barrier is 34.3 kcal mol⁻¹, only 1 kcal mol⁻¹ higher than that calculated for the benzyl complex.
Fig. 6 The transition state in the reaction of Cp₂CH₂Ph and CH₃F, distances en Å and angles in degrees.

Discussion

Comparison of the free energy profiles of the three pathways allows us to eliminate the σ-bond metathesis as a pathway for the formation of ethylbenzene since the free energy barrier is significantly higher than the other two calculated pathways (Fig. 7). The present result generalizes the results found for the H for X exchange reactions between Cp₂CeH and CH₃X, for which the σ-bond metathesis pathway is also energetically unfavorable, that is, the kite-shaped transition state is a high energy process when a methyl group is in the β-position, regardless of the nature of the chemical groups at the α-positions.
Fig. 7 Free energy profiles in kcal mol\(^{-1}\) for the reaction of \(\text{Cp}_2\text{CeCH}_2\text{Ph}\) and \(\text{CH}_3\text{F}\). [Ce] represents the \(\text{Cp}_2\text{Ce}\) fragment. The IA process is in green, the two-step process (proton transfer, \(\text{CH}_2\) insertion) is in black and the \(\sigma\)-bond metathesis is in red.

The free energy barrier of the proton transfer step in the reaction of \(\text{Cp}_2\text{CeR}\) with \(\text{CH}_3\text{F}\) increases from 18 kcal mol\(^{-1}\) to 22 and to 32 kcal mol\(^{-1}\) when \(R\) is H, \(\text{CH}_3\) and benzyl, respectively. The proton transfer has the lowest energy barrier when \(R\) is H, since this ligand concentrates a large negative charge in a spherical orbital. In the methyl complex, the negative charge is localized in a hybrid orbital carrying the density on the negatively charged methyl group, \(i.e.\) the overlap with the proton is less. As the bond between the methyl group and the incoming proton develops, the Ce-Me bond distorts significantly as the methyl group tilts in order to share its electron density with the proton (Fig. 5). In the case of benzyl, two factors contribute to the increase in the free energy barrier for proton transfer; i) the negative charge of the benzyl is dispersed over the whole group and its \(\text{CH}_2\) group forms a weaker C…H interaction (this is also shown by the difference between the deprotonation enthalpies of \(\text{CH}_4\) and toluene, which are 417 and 374 kcal mol\(^{-1}\), respectively\(^{15}\)) and ii), the distortion that occurs in the methyl group cannot be as strong in the benzyl group since the distortion will force the benzene ring and the \(\text{Cp}_2\text{Ce}\) fragment in close
contact. As a result, the energy barrier for the proton transfer step between
\(\text{Cp}_2\text{CeCH}_2\text{Ph} \) and \(\text{CH}_3\text{F} \) is higher than in \(\text{Cp}_2\text{CeMe} \).

The calculated free energy barriers for the \(I_A \) mechanism and the proton
transfer pathways are similar (Fig. 7). The relative energy of these transition states are
influenced presumably by the presence of the six bulky \(\text{Me}_3\text{C} \) groups on the two
cyclopentadienyl ligands in the experimental systems. The \(\text{Me}_3\text{C} \) groups not only
create steric effects in the ground and transition states but they modify the angle
between the two cyclopentadienyl rings that influences the interaction between the
metal with the other ligands. The computational model does not indicate a preference
for either pathway but the experiments show that the methyl group is transferred
intact, which is only consistent with the \(I_A \) mechanism.

Experimentally, the reactions between \(\text{Cp'}_2\text{CeCH}_2\text{Ph} \) and \(\text{CH}_3\text{X} \) are
complicated by the equilibrium between the benzyl derivative and the metallacycle
and toluene, since the metallacycle also reacts with \(\text{CH}_3\text{X} \), Scheme 1. The relative
rates of reaction of the benzyl with \(\text{CH}_3\text{X} \) versus the formation of metallacycle and
toluene can be estimated by the relative amount of \(\text{CH}_3\text{CH}_2\text{Ph} \) and \(\text{CH}_3\text{Ph} \) formed.
This is reliable, however, only when \(X = \text{F} \), since the reaction of this halide is clean
and relatively rapid with the benzyl and metallacycle. At 20°C, the ratio of
\(\text{CH}_3\text{CH}_2\text{Ph} \) to \(\text{CH}_3\text{Ph} \) is 1:4, showing that the C-C bond forming reaction is slower
than the elimination of toluene. The ratio of \(\text{CH}_3\text{CH}_2\text{Ph} \), \(p \)-xylene in the reaction of
\(\text{Cp'}_2\text{Ce}(4\text{-methylbenzyl}) \) with \(\text{CH}_3\text{F} \) are similar, implying no appreciable substituent
effect on the rate of reaction, consistent with the calculations. However, the rate of
reaction of the benzyl derivative is much faster than that of the phenyl, presumably
because the benzyl is a better nucleophile than a phenyl group. The experimental
 studies give only qualitative mechanistic information about the C-C bond forming
reaction, however, the computational studies show that the benzyl group is indeed behaving as a nucleophile in the transition state for the PhCH$_2$ for F group exchange reaction. In the transition state, the benzyl group is attached at only one point, the para carbon of the benzene ring. An NBO analysis of the individual atoms in the benzyl group in the ground state and the transition state shows that: i) the variation in the charges at the ipso, ortho and meta carbon are small ii) the negative charge on the para-carbon increases by almost 0.2 e and iii) the negative charge on the methylene carbon decreases by 0.30 e. (Fig. 8). The charge redistribution can be understood by considering three of the valence bond structures that represent the benzyl anion (Fig. 8, bottom). Their relative weights are determined by the position of the Cp$_2$Ce fragment. In the ground state, resonance structures A and B dominate while in the transition state resonance structures A and C dominate. Thus, from the ground to the transition state, the haptotropic shift of the Cp$_2$Ce fragment is energetically facilitated by the continuous interaction with the electron density on the benzyl anion as it moves to the para-carbon. It should be noted that the net charge on the benzyl anion is almost constant during this haptotropic shifts; what changes is the localization of the sites of the density. As mentioned earlier, it is the large positive charge on the Cp$_2$Ce fragment that controls and guides the charge redistribution as the molecules reach the transition state in the exoergic reaction.
Fig. 8 NBO charges on the benzyl ring in, left, Cp₂CeCH₂Ph and right, the I₄ transition state. The position of the Cp₂Ce fragment, is qualitatively reproduced by its projection on the benzyl plane and is indicated by [Ce].

Several X-ray crystal structures of metalbenzyl compounds are informative models for the transition state of the Cp’₂CeCH₂Ph and CH₃F reaction. The solid state structure of the ion-pair, [(C₅Me₅)Zr(CH₂Ph)₂][PhCH₂B(C₆F₅)₃]⁺, shows that the two benzyl groups in the cation are bonded to zirconium in an η³- and η⁷-fasion; in connection to the present article, the geometry of the η⁷-bonded benzyl group is of particular interest, since the ortho- and meta carbons are coplanar while the para- and ipso-carbons are out of the plane by 13° and 15°, respectively, and the CH₂ fragment is out of the plane defined by the ortho- and ipso-carbons by 21°. Thus, the benzene ring is in a “boat conformation” and the C-C distances are consistent with the dominant influence of resonance structure C.¹⁶ Two recent solid state crystal structures are of thorium complexes with benzyl groups are noteworthy, since the benzyl group in the anion in both of them, PhCH₂B(C₆F₅)₃⁻, is attached to a Th⁴⁺ cation in an η⁶-fasion. In both anions, the CH₂ fragment bonded to B(C₆F₅)₃ fragment is out of the plane of the benzene ring by 10-12° and the Th-C distances to the benzene ring vary in the order C(para) < C(meta) < C(ortho) << C(ipso).¹⁷,¹⁸

The possibility of multihapto interactions between a positive ion, Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, and a benzyl anion has been shown with MP2 calculations.¹⁹ The size of
the metal ion is important since there is a preference for η^3-benzyl for Li and Na and η^7-benzyl for the larger ions. In addition, calculations show that in the case of Li$^+$, a haptotropic shift from η^3 to η^5-benzyl occurs with a very low energy barrier. The crystal structures and calculated ground state structures show that the interaction between a benzyl anion and a positively charged metal fragment ranges from η^1 to η^7. In these structures the CH$_2$ group is close to the metal ion fragment and the classification of the bond type is determined by the distance between the metal ion and the carbon atoms of the arene. The calculated transition state for the carbon–carbon bond forming reaction shows that the CH$_2$ group is not attached to the metal and therefore the electron density is available for a nucleophilic attack on the methyl group of CH$_3$F, whose electrophilicity is enhanced by the coordination of the fluorine atom to Cp$_2$Ce.

Conclusion

The net reaction between Cp’$_2$CeCH$_2$Ph and CH$_3$X (X = F, Cl, Br, I) yields Cp’$_2$CeX and CH$_3$CH$_2$Ph. Calculations carried out for X = F show that the mechanism of the benzyl for fluoride exchange reaction does not proceed by way of a simple four-center transition state, since a lower barrier process in which the benzyl group is attached at the para position to the Cp$_2$Ce fragment leaves the CH$_2$ group free to act as a nucleophile forming the C-C bond with CH$_3$F. This yields ethylbenzene or, when Cp’$_2$CeCD$_2$C$_6$D$_5$ is used in the experimental studies, CH$_3$CD$_2$C$_6$D$_5$ without scrambling the hydrogens of the CH$_3$ group. In this mechanism, the metal allows the CH$_2$ fragment of the benzyl group to behave as a nucleophile towards the CH$_3$F molecule, which is itself activated by the metal to behave as an electrophile.
Experimental details

General

All manipulations were performed under an inert atmosphere using standard Schenk and dry box techniques. All solvents were dried and distilled from sodium or sodium benzophenone ketyl. Anhydrous methyl fluoride, methyl chloride, and methyl bromide were used without further purification. Methyl iodide was obtained commercially and purified by distillation onto activated 4 Å molecular sieves. NMR spectra were recorded on Bruker AV-300 or AV-400 spectrometers at 20°C in the solvent specified. J-Young NMR tubes were used for all NMR tube experiments. Electron impact mass spectrometry and elemental analyses were performed by the microanalytical facility at the University of California, Berkeley. The abbreviation Cp' is used for the 1,2,4-tri-tert-butylcyclopentadienyl ligand. Unless otherwise specified, samples for GC-MS were prepared by adding a drop of nitrogen-purged H\textsubscript{2}O, agitating, and allowing the samples to stand closed for 10 min. The samples were then dried over magnesium sulfate, filtered, and diluted ten-fold with pentane. A 1 µL sample was injected into a HP6890 GC system with a J&W DB-XLB universal non-polar column, attached to an HP5973 Mass Selective Detector.

\textbf{Cp'}\textsubscript{2}CeCD\textsubscript{2}C\textsubscript{6}D\textsubscript{5}: C\textsubscript{6}D\textsubscript{5}CD\textsubscript{2}MgCl was prepared by slowly adding a solution of benzyl chloride-d\textsubscript{7} (1g, 7.5 mmol) in 10 mL of diethyl ether to magnesium turnings (0.18g, 7.4 mmol) in 10 mL of diethyl ether and heating the resulting pale blue solution at reflux for 1 hour. The solution was filtered and titrated with a standard 0.1N aqueous HCl solution; the concentration of C\textsubscript{6}D\textsubscript{5}CD\textsubscript{2}MgCl was determined to be 0.25M. Cp'\textsubscript{2}CeOTf • 0.5 hexane2 (3.44 g, 4.3 mmol) was dissolved in 30mL of diethyl ether and C\textsubscript{6}D\textsubscript{5}CD\textsubscript{2}MgCl solution (17 mL, 0.25 M in diethyl ether, 4.25 mmol) was added via syringe. The solution immediately changed from yellow to red, and became cloudy within 5 minutes. After 5 minutes the solvent was removed under...
reduced pressure, yielding a red powder. The 1H NMR spectrum of the crude product contained resonances corresponding to Cp’$_2$CeCl20 and CMe$_3$ resonances identical to those of Cp’$_2$CeCH$_2$C$_6$H$_5$;2 the two species were present in approximately a 1:1 ratio. The red solid was extracted with 25 mL of pentane to isolate Cp’$_2$CeCD$_2$C$_6$D$_5$, and the yellow solid residue was extracted further with 25 mL of toluene to recover the remaining Cp’$_2$CeCl. The volume of the pentane solution was reduced to 10 mL and cooled to -10°C, giving red blocks. Yield, 0.78 g (1.1 mmol, 26%). The 1H NMR spectrum contained resonances identical to the CMe$_3$ and ring C-H resonances observed in Cp’$_2$CeCH$_2$C$_6$H$_5$. 1H NMR (C$_6$D$_6$): δ 50.63 (2H, $\nu_{1/2}$ = 245 Hz), 13.25 (2H, $\nu_{1/2}$ = 245 Hz), -0.53 (18H, $\nu_{1/2}$ = 190 Hz), -1.80 (18H, $\nu_{1/2}$ = 195 Hz), -13.19 (18H, $\nu_{1/2}$ = 45 Hz). The resonance at 50.63 ppm was incorrectly reported as a fold-over resonance at -32.62 ppm in a previous publication.2 The 2H NMR spectrum contained resonances consistent with the aromatic benzyl group resonances observed in the 1H NMR spectrum of Cp’$_2$CeCH$_2$C$_6$H$_5$. 2H NMR (C$_6$D$_6$): δ 4.18 (2H, $\nu_{1/2}$ = 50 Hz), 2.32 (1H, $\nu_{1/2}$ = 80 Hz); the other resonances were not observed.

Cp’$_2$Ce(4-methylbenzyl): Method A: Cp’$_2$CeOTf • 0.5 hexane2 (1g, 1.2 mmol) was dissolved in 50 mL of pentane and 4-methylbenzylmagnesium chloride solution21 (1.8 mL, 0.69M in diethyl ether, 1.2 mmol) was added via syringe. The solution immediately changed from yellow to red. After 2 minutes the solvent was removed under reduced pressure, yielding a red-orange powder. The red solid was extracted with 10 mL of pentane, and the yellow solid residue was extracted further with 25 mL toluene to recover Cp’$_2$CeCl. The volume of the pentane solution was reduced to 7 mL and cooled to -10°C, giving red needles. Yield, 0.48 g (0.68 mmol, 56%). MP 119-122$^\circ$C (sample turned purple on melting). 1H NMR (C$_6$D$_{12}$): δ 40.65 (2H, $\nu_{1/2}$ = 300 Hz), 13.60 (2H, $\nu_{1/2}$ = 250 Hz), 0.27 (3H, 5 Hz), -0.57 (36H, $\nu_{1/2}$ = 40 Hz), -10.91
(18H, $\nu_{1/2} = 150$ Hz). Anal. Calcd. for C$_{42}$H$_{67}$Ce: C, 70.8; H, 9.48. Found C, 70.9; H, 9.41.

Method B: Cp’$_2$CeCH$_2$C$_6$H$_5$ was dissolved in p-xylene in an NMR tube and heated at 60°C for 2 days. The red solution was taken to dryness and the red solid residue was dissolved in C$_6$D$_{12}$. The 1H NMR spectrum was identical to that of the red crystals obtained via Method A.

NMR tube equilibration of Cp’$_2$Ce[4-methylbenzyl] in C$_6$D$_{12}$.

Cp’$_2$Ce[4-methylbenzyl] was dissolved in C$_6$D$_{12}$ in an NMR tube and allowed to stand. After one day at 19°C, the red solution had turned purple and resonances due to the metallacycle Cp’[(Me$_3$C)$_2$C$_5$H$_2$C(Me$_2$)CH$_2$]Ce2 and p-xylene had appeared in the 1H NMR spectrum. The ratio of Cp’$_2$Ce[4-methylbenzyl] and Cp’[(Me$_3$C)$_2$C$_5$H$_2$C(Me$_2$)CH$_2$]Ce was approximately 1:1. After two days, the ratio was 1:2.5. After 5 days, the ratio was 1:4. The ratio did not change upon further standing.

Solid state H-for-D exchange in Cp’$_2$CeCD$_2$C$_6$D$_5$.

A crystalline sample of Cp’$_2$CeCD$_2$C$_6$D$_5$ was allowed to stand at 20-25°C for 1430 days. A small amount of the sample was dissolved in C$_6$D$_6$, and the 1H NMR spectrum was as described above for the fresh sample. The 2H NMR spectrum contained the aromatic benzyl group resonances at δ 4.18 and 2.32, and also a resonance at δ -13.15 ($\nu_{1/2} = 100$ Hz) with an integrated intensity equal to roughly two deuterons relative to the benzyl ligand resonances. The sample was hydrolyzed and filtered. The 1H NMR spectrum of the hydrolysate contained a sharp singlet at 2.120 ppm and a weak 1:1:1 pattern ($J_{HD} = 1.8$ Hz) at 2.105 ppm due to C$_6$D$_5$CH$_3$ and C$_6$D$_5$CDH$_2$, respectively. No resonances due to the aromatic toluene CH- groups were observed. Six Cp’H-CMe$_3$ resonances were also present in the spectrum, δ 1.38, 1.32,
1.27, 1.19, 1.15, and 1.09 ppm in a 1:1:2:1.5:1:2 area ratio, arising from two Cp’H isomers. The 2H NMR spectrum contained a triplet at 2.05 ppm ($J_{HD} = 2.1$ Hz) due to C$_6$D$_5$CDH$_2$ and a single broadened CMe$_3$-d$_x$ resonance at 1.13 ppm ($\nu_{1/2} = 4$ Hz). Aromatic toluene 2H resonances were masked by the solvent peak. Another sample of aged Cp’$_2$CeCD$_2$C$_6$D$_5$ was dissolved in C$_6$H$_{12}$ and hydrolyzed. The 2H NMR spectrum contained three aromatic resonances at 7.27, 7.16, and 7.09 ppm, the CDH$_2$ triplet at 2.29 ppm, and the single broad CMe$_3$ resonance at 1.12 ppm in a 3:9:16:1:16 area ratio.

The sample in C$_6$D$_6$ was heated at 60°C for 2 days. Three Cp’H-CMe$_3$-resonances were present in the 1H NMR spectrum, δ 1.26, 1.18, 1.08 ppm in a 9:6.5:9 area ratio. A broadened peak at 1.16 ppm was also observed, presumably due to CMe$_3$-d$_x$ groups. The 13C NMR contained three resonances due to the CMe$_3$ groups, δ 32.58, 30.83, and 30.12 ppm. A 1:1:1 pattern at 30.10 ppm ($J_{CD} = 3.6$ Hz) was consistent with the presence of CMe$_2$CDH$_2$ groups. GC MS analysis showed the presence of partially deuterated toluene and partially deuterated Cp’H. Molecular ion isotope pattern for toluene: (M-1 or 2)$^+$ m/z (relative abundance): 92 (3), 93 (6), 94 (12), 95 (74), 96 (100), 97 (96), 98 (24), 99 (2). For Cp’H, (M)$^+$ m/z (calculated relative abundance for C$_{17}$H$_{30}$/found): 234 (100/100), 235 (19/76), 236 (2/61), 237 (0.1/13), 238 (0.004/2), giving the observed ratio of Cp’H, Cp’H-d$_1$, and Cp’H-d$_2$ as 35:20:17.

NMR tube equilibration of Cp’$_2$Ce(CH$_2$C$_6$H$_5$) isomers in toluene-h$_8$.

Cp’$_2$Ce(CH$_2$Ph) was dissolved in toluene-h$_8$ and heated at 60°C for 1 day, then allowed to stand at 19°C for one day, yielding a deep red solution. The 1H NMR spectrum contained resonances due to Cp’$_2$Ce(CH$_2$Ph) and Cp’[(Me$_3$C)$_2$C$_3$H$_2$C(Me$_2$)CH$_2$]Ce in a 12:1 area ratio, as well as four new paramagnetic resonances, 1H NMR (C$_7$H$_8$, 400MHz): δ -1.585 ($\nu_{1/2} = 40$ Hz), -1.771
(ν₁/₂ = 40 Hz), -9.716 (ν₁/₂ = 40 Hz), -10.216 (ν₁/₂ = 40 Hz), in approximately a 1:3:1.5:1 area ratio. Assuming that the resonances at -9.716 and -10.216 correspond to the unique CMe₃ resonances of two different Cp’₂Ce-R complexes, the ratio of Cp’₂Ce(CH₂Ph), Cp’[(Me₃C)₂C₅H₂C(Me₂)CH₂]C and the two new species was 12:1:3:2. The sample was hydrolyzed with D₂O and filtered. The ²H NMR spectrum contained two Cp’D ring C-D resonances at 3.115 (d, J_HD = 3 Hz) and 2.966 (s) in a 3:4 area ratio, and resonances due to toluene-d₁ at 7.174, 7.095, 7.067, and 2.16 (t, J_HD = 2.1 Hz) in a 2.5:1:1:6 area ratio.

NMR tube equilibration of (Cp’-d₂₇)₂Ce(CD₂C₆D₅) isomers in toluene-d₈.

Cp’₂Ce(CH₂Ph) was dissolved in C₆D₆ and heated at 60°C for 4 days to perdeuterate the CMe₃ groups. The sample was taken to dryness and the solid residue was dissolved in fresh C₆D₆. The sample was heated for an additional 4 days, then taken to dryness, and the solid residue was dissolved in toluene-d₈. The sample was heated at 60°C for 1 day, and then allowed to stand at 19°C for one day. The sample was taken to dryness and the solid residue was dissolved in cyclohexane-d₁₂. The ²H NMR spectrum contained C(CD₃)₃ resonances due to (Cp’-d₂₇)₂Ce(CD₂C₆D₅) and the two new species observed in the previous experiment in a 2:1:1 area ratio. The sample was hydrolyzed with H₂O and filtered. The ¹H NMR spectrum contained multiple Cp’H ring resonances, as well as resonances due to isomers of toluene-d₁ at 7.108, 7.038, and 2.246. Subtracting the area of the residual toluene peaks in the cyclohexane-d₁₂ solution before hydrolysis relative to an internal standard indicated that the resonances had increased in intensity after hydrolysis in an approximate 1:1:3 area ratio.

NMR tube reaction of CH₃F and Cp’₂Ce(CH₂C₆H₅) in benzene-d₆.
Cp’₂Ce(CH₂C₆H₅) was dissolved in C₆D₆ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with CH₃F (1 atm). The tube was warmed to 19°C and allowed to stand. After 1 day, resonances in the ¹H NMR spectrum due to Cp’₂CeF had appeared; the ratio of Cp’₂Ce(CH₂C₆H₅) to Cp’₂CeF was 2:1. Resonances due to Cp”CeF had also appeared (Cp” is Cp’+CH₂),¹⁴ as well as CH₃C₆H₅ and CH₃CH₂C₆H₅ in a 4:1 area ratio. After 2 days, all Cp’₂Ce(CH₂C₆H₅) resonances had disappeared from the ¹H NMR spectrum. Integration of the CMe₃ signal intensities relative to the residual solvent proton signal indicated that slightly less than half an equivalent of Cp’₂CeF had formed relative to the starting material.

NMR tube reaction of CH₃F and Cp’₂Ce(CD₂C₆D₅) in benzene-d₆.

Cp’₂Ce(CD₂C₆D₅) was dissolved in C₆D₆ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with CH₃F (1 atm). The tube was warmed to 19°C and allowed to stand. After 1 day, resonances in the ¹H NMR spectrum due to Cp’₂CeF had appeared; the ratio of Cp’₂Ce(CD₂C₆D₅) to Cp’₂CeF was 1:2. Resonances due to Cp”CeF had also appeared, along with a singlet at 1.05 ppm and a broad hump at 2.4 ppm presumably corresponding to the CH₃ and residual protons in the CD₂ group of CH₃CD₂C₆D₅, respectively. After 2 days, all Cp’₂Ce(CD₂C₆D₅) resonances had disappeared from the ¹H NMR spectrum. Integration of the CMe₃ signal intensities relative to the residual solvent proton signal indicated that slightly less than half an equivalent of Cp’₂CeF had formed relative to the starting material. The ²H NMR spectrum contained resonances due to C₆D₆, CHD₂C₆D₅, and a multiplet at 2.35 ppm presumably corresponding to the CD₂ group of CH₃CD₂C₆D₅. No signal was observed at 1.05 ppm in the ²H NMR spectrum. GCMS analysis showed three principle components in
addition to Cp’H, with (M-2)^+ m/z 97 (CHD_2C_6D_5), 113 (CH_3CD_2C_6D_5), and (M)^+ 248 (Cp”H) in an approximate ratio of 1:1:6.

NMR tube reaction of CH_3F and Cp’_2Ce(C_6H_5) in benzene-h_6.

Cp’_2Ce(CH_2C_6H_5) was dissolved in cyclohexane-d_{12} and heated at 60°C for 12 hours, yielding a solution of Cp’[(Me_3C)_2C_5H_2C(Me_2)CH_2]Ce. The sample was taken to dryness, dissolved in cyclohexane-d_{12}, and heated at 60°C for 12 hours to remove residual toluene. The sample was taken to dryness, dissolved in benzene-h_6, and heated at 60°C for 12 hours, yielding a very deep red solution of Cp’_2Ce(C_6H_5).^2 The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with CH_3F (1 atm). The tube was warmed to 19°C and allowed to stand. After 1 hour, resonances in the ^1H NMR spectrum due to Cp’_2CeF and Cp”Cp’CeF had appeared; the ratio of Cp’_2Ce(C_6H_5) to the two fluoride species was 30:1. After 2 days, the ratio was 6:5, and a diamagnetic singlet had appeared at 2.10 ppm, suggesting the formation of toluene. After 5 days, the ratio was 1:4. GC MS analysis indicated the presence of toluene. Cp’H and Cp”H were the only other major components besides C_6H_6.

NMR tube reaction of CH_3F and (Cp’-d_{27})_2Ce(C_6D_5) in benzene-d_6.

Cp’_2Ce(CH_2C_6H_5) was dissolved in benzene-d_6 and heated at 60°C for 2 days. The sample was taken to dryness, dissolved in fresh benzene-d_6, and heated at 60°C for 2 days. This procedure was repeated two more times, with the sample heated for 8 days after the last addition of benzene-d_6, yielding a solution of (Cp’-d_{27})_2Ce(C_6D_5). The sample was taken to dryness, and dissolved in fresh benzene-d_6. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with CH_3F (1 atm). The tube was warmed to 19°C and allowed to stand. After 3 days, resonances in the ^2H NMR spectrum matching those observed in the ^1H NMR
spectrum of the previous experiment, presumably due to (Cp’-d_{27})_2CeF and (Cp”-d_{27})(Cp’-d_{27})CeF had appeared; the ratio of (Cp’-d_{27})_2Ce(C_6D_5) to the two fluoride species was 4:1. A diamagnetic singlet had appeared at 2.10 ppm in the 1H NMR, suggesting the formation of toluene. After 2 additional days, the ratio was 6:5. After 11 days, the ratio of (Cp’-d_{27})_2Ce(C_6D_5) to the two fluoride species was 1:1. After 42 days, only two fluoride species remained in the 2H NMR. GC MS analysis indicated the presence of toluene-d$_5$, (M-1)$^+$ m/z 96. (Cp’-d_{27})H and (Cp”-d_{27})H were the only other major components besides C$_6$D$_6$.

NMR tube reaction of CH$_3$Cl, CH$_3$Br, and CH$_3$I with Cp’$_2$Ce(CH$_2$C$_6$H$_5$) in cyclohexane-d$_{12}$.

Cp’$_2$Ce(CH$_2$C$_6$H$_5$) was dissolved in cyclohexane-d$_{12}$ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, and the head space was evacuated. In the case of CH$_3$Cl and CH$_3$Br, the headspace was filled with the halomethane gas (1 atm). In the case of CH$_3$I, an excess was added by vacuum transfer and the headspace was backfilled with N$_2$. The sample was warmed to 19°C and allowed to stand. In the case of CH$_3$Cl, after 10 minutes, resonances of the same intermediate complex observed in the reaction of CH$_3$Cl with Cp’[(Me$_3$C)$_2$C$_3$H$_2$C(Me$_2$)CH$_2$]Ce, Cp’$_2$CeCH$_2$Cl4 had appeared in the 1H NMR spectrum; the ratio of Cp’$_2$Ce(CH$_2$C$_6$H$_5$) and Cp’$_2$CeCH$_2$Cl was approximately 32:1. After three days, only resonances due to Cp’$_2$CeCl remained in the 1H NMR spectrum, and yellow crystals of Cp’$_2$CeCl had formed. Diamagnetic resonances due to CH$_3$C$_8$H$_5$ and CH$_3$CH$_2$C$_6$H$_5$ had also appeared. In the case of CH$_3$Br, after 19 hours, resonances due Cp’$_2$CeBr and Cp’$_2$CeCH$_2$Br4 had appeared in the 1H NMR spectrum; the ratio of Cp’$_2$Ce(CH$_2$C$_6$H$_5$), Cp’$_2$CeBr, and Cp’$_2$CeCH$_2$Br was approximately 1.5:7:1. Diamagnetic resonances due to CH$_3$C$_8$H$_5$ and CH$_3$CH$_2$C$_6$H$_5$ had also appeared. After five days, only resonances due to Cp’$_2$CeBr
remained in the 1H NMR spectrum, and orange crystals of Cp’$_2$CeBr had formed. In the case of CH$_3$I, after three hours, resonances due Cp’$_2$CeI and Cp’$_2$CeCH$_2$I4 had appeared in the 1H NMR spectrum; the ratio of Cp’$_2$Ce(CH$_2$C$_6$H$_5$), Cp’$_2$CeI, and Cp’$_2$CeCH$_2$I was approximately 75:10:1. After 24 hours, resonances due to Cp’$_2$Ce(CH$_2$C$_6$H$_5$) had disappeared from the 1H NMR spectrum. Paramagnetic resonances due to Cp’$_2$CeI and Cp’$_2$CeCH$_2$I were present in a 3:1 ratio, and diamagnetic resonances due to CH$_3$C$_6$H$_5$ and CH$_3$CH$_2$C$_6$H$_5$ had also appeared. After five days, the ratio was 24:1. After 11 days, orange crystals had formed, and only resonances due to Cp’$_2$CeI remained in the spectrum. The GCMS analysis of all three samples showed three principle components in addition to Cp’H, with (M-1)$^+$ m/z 91 (CH$_3$C$_6$H$_5$), 106 (CH$_2$C$_6$H$_5$+CH$_3$), and (M)$^+$ 248 (Cp’’H).

NMR tube reaction of CD$_3$Br or CD$_3$I and Cp’$_2$Ce(CH$_2$C$_6$H$_5$) in benzene-d$_6$.

Cp’$_2$Ce(CH$_2$C$_6$H$_5$) was dissolved in benzene-d$_6$ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, and the head space was evacuated. In the case of CD$_3$Br, the headspace was filled with the gas (1 atm); in the case of CD$_3$I, an excess was added by vacuum transfer, and the headspace was backfilled with N$_2$. The tube was warmed to 19°C and allowed to stand. In the case of CD$_3$Br, after 24 hours, resonances due Cp’$_2$Ce(CH$_2$C$_6$H$_5$) had disappeared from the 1H NMR spectrum and resonances due to Cp’$_2$CeBr had appeared. In the case of CD$_3$I, after 24 hours, resonances due to Cp’$_2$CeI had appeared in the 1H NMR spectrum, and the ratio of Cp’$_2$Ce(CH$_2$C$_6$H$_5$) to Cp’$_2$CeI was 1:18. After 2 days, resonances due to Cp’$_2$Ce(CH$_2$C$_6$H$_5$) had disappeared from the 1H NMR spectrum. In both cases, a broad multiplet at 1.05 ppm presumably corresponding to residual protons in the CD$_3$ group and a singlet at 2.4 ppm presumably corresponding to the CH$_2$ group of CD$_3$CH$_2$C$_6$H$_5$ had also appeared in a 1:2 ratio. Integration of the CMe$_3$ signal...
intensities relative to the residual solvent proton signal indicated approximately 70% conversion of Cp’₂Ce(CH₂C₆H₅) to Cp’₂CeBr and 85% conversion of Cp’₂Ce(CH₂C₆H₅) to Cp’₂CeI. The ²H NMR spectra in both cases contained resonances due to C₆D₆, CD₃Br or CD₃I, and a multiplet at 0.98 ppm presumably corresponding to the CD₃ group of CD₃CH₂C₆H₅. No signal was observed at 2.4 ppm due to deuteria in the benzylic sites in either ²H NMR spectrum. GCMS analysis showed three principle components in addition to Cp’H, with (M-1)⁺ m/z 91 (CH₃C₆H₅), 108 (CH₂C₆H₅+CD₃), and (M)⁺ 251 (Cp’H+CD₂).

NMR tube reaction of CD₃Br and Cp’₂Ce(CH₂C₆H₅) in benzene-h₆.

Cp’₂Ce(CH₂C₆H₅) was dissolved in C₆H₆ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with CD₃Br (1 atm). The tube was warmed to 19°C and allowed to stand. After 24 hours, the sample was cooled in a liquid nitrogen isopropanol bath maintained at -20°C, the head space was evacuated, the tube cap was closed, and the sample was warmed to 19°C. This freeze-pump-thaw procedure was performed two more times to remove residual CD₃Br. A yellow precipitate formed, and the yellow solution was filtered into a clean tube. The ²H NMR spectrum of the solution contained resonances due to CD₃Br and a singlet at 1.06 ppm presumably corresponding to the CD₃ group of CD₃CH₂C₆H₅. No signal was observed at 2.4 ppm in the ²H NMR spectrum.

NMR tube reaction of CH₃F and Cp’₂Ce(4-methylbenzyl) in C₆D₁₂.

Cp’₂Ce(4-methylbenzyl) was dissolved in C₆D₁₂ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with CH₃F (1 atm). The tube was warmed to 19°C and allowed to stand. After 1 day, resonances in the ¹H NMR spectrum due to Cp’₂CeF had appeared; the ratio of Cp’₂Ce(4-methylbenzyl) to Cp’₂CeF was 1:1. Resonances due to Cp’’Cp’CeF
and p-xylene had also appeared, along with new diamagnetic resonances at 6.96 (4H, s), 2.52 (2H, q), 2.24 (3H, s), and 1.17 (3H, t), apparently due to 4-ethyltoluene. After 2 days, all Cp’₂Ce(4-methylbenzyl) resonances had disappeared from the ¹H NMR spectrum. Integration of the CMe₃ signal intensities relative to the residual solvent proton signal indicated that approximately 70% of the starting material had been converted to Cp’₂CeF. The GCMS analysis showed three principle components in addition to Cp’H, with (M-1)+ m/z 106 (CH₃C₆H₄CH₃), 120 (CH₃CH₂C₆H₄CH₃), and (M)+ 248 (Cp’’H).

NMR tube reaction of CH₃Cl, CH₃Br, or CH₃I and Cp’₂Ce(4-methylbenzyl) in C₆D₁₂.

Cp’₂Ce(4-methylbenzyl) was dissolved in C₆D₁₂ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, and the head space was evacuated. In the case of CH₃Cl and CH₃Br, the headspace was refilled with the halomethane gas (1 atm). In the case of CH₃I, an excess was added by vacuum transfer, and the headspace was backfilled with N₂. In the case of CH₃Cl, after 3 days, all Cp’₂Ce(4-methylbenzyl) resonances had disappeared from the ¹H NMR spectrum, and orange crystals of Cp’₂CeCl had formed. In the case of CH₃Br, after 30 minutes, resonances due to Cp’₂CeCH₂Br and Cp’₂CeBr had appeared in the ¹H NMR spectrum; the ratio of Cp’₂Ce(4-methylbenzyl) to Cp’₂CeCH₂Br and Cp’₂CeBr was 20:1:1. After 17 hours, the ratio was 2.5:1:75. After 2 days, all Cp’₂Ce(4-methylbenzyl) and Cp’₂CeCH₂Br resonances had disappeared from the ¹H NMR spectrum, and orange crystals of Cp’₂CeBr had formed. In the case of CH₃I, after 30 minutes, resonances due to Cp’₂CeCH₂I had appeared in the ¹H NMR spectrum; the ratio of Cp’₂Ce(4-methylbenzyl) to Cp’₂CeCH₂I was 21:1. After 2 days, all Cp’₂Ce(4-methylbenzyl) resonances had disappeared from the ¹H NMR spectrum and resonances due to
Cp’₂CeI had appeared. The ratio of Cp’₂CeCH₂I to Cp’₂CeI was 1:6. In all cases, diamagnetic resonances due p-xylene and 4-ethyltoluene also appeared in the ¹H NMR spectrum, and GC MS analysis showed four principle components in addition to Cp’H, with \((M-1)^{+}\) \(m/z\) 106 (CH₃C₆H₄CH₃), 120 (CH₃CH₂C₆H₄CH₃), and \((M)^{+}\) 248 (Cp’H).

NMR tube reaction of CD₃Br and Cp’₂Ce(4-methylbenzyl) in C₆H₁₂.

Cp’₂Ce(4-methylbenzyl) was dissolved in C₆H₁₂ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, the sample was warmed to 19°C, and the headspace was refilled with CD₃Br (1 atm). After 20 minutes, resonances due to Cp’₂CeCD₂Br and Cp’₂CeBr had appeared in the ¹H NMR spectrum; the ratio of Cp’₂Ce(4-methylbenzyl) to Cp’₂CeCD₂Br and Cp’₂CeBr was 100:1:4. After 2 days, all Cp’₂Ce(4-methylbenzyl) and Cp’₂CeCD₂Br resonances had disappeared from the ¹H NMR spectrum, and orange crystals of Cp’₂CeBr had formed. Diamagnetic resonances at 6.92 and 6.95 ppm corresponding to the aromatic protons of p-xylene and 4-ethyltoluene had also appeared. A diamagnetic resonance had appeared in the ²H NMR spectrum at \(\delta\) 1.17 corresponding to the -CH₂CD₃ group of 4-ethyltoluene; the intense resonance due to excess CD₃Br masked the region where a resonance due to deuterium bound to the secondary carbon of the ethyl group would have been observed. The GCMS analysis showed four principle components in addition to Cp’H, with \((M-1)^{+}\) \(m/z\) 106 (CH₃C₆H₄CH₃), 122 (CH₃C₆H₄CH₃+CD₂), and \((M)^{+}\) \(m/z\) 251 (Cp’H+CD₂).

NMR tube reaction of CD₃I and Cp’₂Ce(4-methylbenzyl) in C₆D₆.

Cp’₂Ce(4-methylbenzyl) was dissolved in C₆D₆ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, the sample was warmed to 19°C, an excess of CD₃I was added by vacuum transfer, and
the headspace was backfilled with N₂. After 1 day, all Cp’₂Ce(4-methylbenzyl) resonances had disappeared and resonances due to Cp’₂CeCD₂I and Cp’₂CeI had appeared in the ¹H NMR spectrum from the ¹H NMR spectrum. Diamagnetic resonances at 6.92 and 6.95 ppm corresponding to the aromatic protons of p-xylene and 4-ethyltoluene had also appeared. A diamagnetic resonance had appeared in the ²H NMR spectrum at δ 1.02 corresponding to the -CH₂CD₃ group of 4-ethyltoluene. No resonance was observed at 2.55 ppm which would have indicated deuteration at the secondary position in the ethyl group. The GCMS analysis showed four principle components in addition to Cp’H, with (M-1)+ m/z 106 (CH₃C₆H₄CH₃), 122 (CH₃C₆H₄CH₃+CD₂), and (M)+ m/z 251 (Cp’H+CD₂).

Crystallographic studies of Cp’₂Ce(CH₂C₆H₅) and Cp’₂Ce(4-methylbenzyl):
Single crystals of appropriate dimension were mounted on glass fibers or Kapton loops using Paratone N hydrocarbon oil. All measurements were made on a SMART 1000²² diffractometer with CCD area detector and graphite monochromated Mo-Kα radiation. Data were collected at low temperature using 10 second ω or ω and φ scans. Frame data were integrated using SAINT²³ and empirical absorption corrections were applied using SADABS.²⁴ The data were also corrected for Lorentz-polarisation effects. The structures were solved using direct methods²⁵ and expanded using Fourier techniques²⁶ Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in calculated positions but not refined. All calculations for Cp’₂Ce(CH₂C₆H₅) were performed using the teXsan²⁷ crystallographic software package of Molecular Structure Corporation. All calculations for Cp’₂Ce(4-methylbenzyl) were performed using the SHELXTL²⁸ crystallographic software package of Bruker Analytical X-ray Systems Inc. Crystallographic data are given in
Table A and additional full crystallographic details are included in supporting information.

Table 1 Crystallographic Data

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cp’₂CeCH₂C₆H₅</th>
<th>Cp’₂Ce[4-methylbenzyl] • 0.5(pentane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>C₄₁H₆₅Ce</td>
<td>C₄₄₂₅H₇₂₅Ce</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>698.05</td>
<td>744.64</td>
</tr>
<tr>
<td>T/K</td>
<td>179(2)</td>
<td>120(2)</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Triclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space Group</td>
<td>P(\overline{1})</td>
<td>P(\overline{1})</td>
</tr>
<tr>
<td>(a/\text{Å})</td>
<td>13.228(1)</td>
<td>10.528(2)</td>
</tr>
<tr>
<td>(b/\text{Å})</td>
<td>16.080(1)</td>
<td>12.032(3)</td>
</tr>
<tr>
<td>(c/\text{Å})</td>
<td>18.499(1)</td>
<td>17.562(4)</td>
</tr>
<tr>
<td>(\alpha/°)</td>
<td>96.377(1)</td>
<td>84.069(4)</td>
</tr>
<tr>
<td>(\beta/°)</td>
<td>105.388(1)</td>
<td>79.816(4)</td>
</tr>
<tr>
<td>(\gamma/°)</td>
<td>96.173(1)</td>
<td>66.418(3)</td>
</tr>
<tr>
<td>(V/\text{Å}^3)</td>
<td>(V = 3731.57(14))</td>
<td>2005.4(8)</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Unique reflections (R(_{int}))</td>
<td>12450 (0.0229)</td>
<td>7273 (0.0821)</td>
</tr>
</tbody>
</table>
\[R_1, \text{w} R_2^a \quad 0.0361, 0.0707 \quad 0.0493, 0.0933 \]

\(^aR_1\) based on selected data with \(I > 2\sigma(I) \); \(wR_2 \) based on all data.

Computational details

The Stuttgart-Dresden-Bonn Relativistic large Effective Core Potential (RECP)\(^{29a}\) has been used to represent the inner shells of Ce. The associated basis set of the type (7s6p5d)/[5s4p3d] augmented by an f polarization function (\(\alpha = 1.000 \))\(^{29b}\) has been used to represent the valence orbitals. F has also been represented by an RECP with the associated basis set of the type (4s5p/2s3p) augmented by two contracted d polarization gaussian functions (\(\alpha_1 = 3.3505(0.357851), \alpha_2 = 0.9924(0.795561) \)).\(^{30}\) C and H have been represented by an all-electron 6-31G(d, p) basis set.\(^{31}\) Calculations have been carried out at the DFT(B3PW91)\(^{32}\) level with Gaussian 98.\(^{33}\) The nature of the extrema (minimum or transition state) has been established with analytical frequencies calculations and the intrinsic reaction coordinate (IRC) has been followed to confirm that transition states connect to reactants and products. The zero point energy (ZPE) and entropic contribution have been estimated within the harmonic potential approximation. The Gibbs free energy, \(G \), was calculated for \(T = 298.15\text{K} \) and 1 atm. The NBO analysis\(^{34}\) was carried out replacing Ce by La because of the technical requirement to have even number of f electrons for the calculations. This method has been used successfully in previous studies.\(^{1,2,34b}\)

Acknowledgment
This work was supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. We thank F. J. Hollander and A. G. DiPasquale at CHEXRAY, the U.C. Berkeley X-ray diffraction facility, for help with the crystallography. L.M thanks the CINES and CALMIP for a generous grant of computing time. L.M. is also a junior member of the Institut Universitaire de France, L.M. and O.E thank the CNRS and Ministère de l’Enseignement Supérieur et de la Recherche for funding.

Electronic supplementary information (ESI) available: X-ray crystallographic data (CIF), δ vs. 1/T plots, optimized structures, E and G (in a. u.) for all stationary points. Crystallographic data for the structures in this paper have also been deposited with the Cambridge Crystallographic Data Center. Copies of the data CCDC 745664 for [1,2,4-(Me₃C)₃C₅H₂]₂CeCH₂Ph, and CCDC 745665 for [1,2,4-(Me₃C)₃C₅H₂]₂Ce(4-methylbenzene) can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by e-mailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK; fax +44 1223 336033.

References

5 M. Booij, A. Meetsam and J. H. Teuben, Organometallics, 1991, 10, 3246

9 P. G. Edwards, R. A. Andersen and A. Zalkin, Organometallics, 1984, 3, 293

23 SAINT: SAX Area-Dectector Integration Program, V7.06; Siemens Industrial Automation, Inc.: Madison, WI, 2005.

24 SADABS: (v2.10) Siemens Area Detector ABSorption correction program, George Sheldrick, 2005.

Graphical abstract
The transition state for the metathetical exchange reaction of $\text{Cp}^\prime_2\text{CeCH}_2\text{Ph}$ and CH_3F does not have the expected kite-shape geometry.