Absence of Debye Sheaths Due to Secondary Electron Emission

PDF Version Also Available for Download.

Description

A bounded plasma where the hot electrons impacting the walls produce more than one secondary on average is studied via particle-in-cell simulation. It is found that no classical Debye sheath or space-charge limited sheath exists. Ions are not drawn to the walls and electrons are not repelled. Hence the unconfined plasma electrons travel unobstructed to the walls, causing extreme particle and energy fluxes. Each wall has a positive charge, forming a small potential barrier or "inverse sheath" that pulls some secondaries back to the wall to maintain the zero current condition.

Creation Information

Campanell, M. D.; Khabrov, A. & Kaganovich, I. D. May 11, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A bounded plasma where the hot electrons impacting the walls produce more than one secondary on average is studied via particle-in-cell simulation. It is found that no classical Debye sheath or space-charge limited sheath exists. Ions are not drawn to the walls and electrons are not repelled. Hence the unconfined plasma electrons travel unobstructed to the walls, causing extreme particle and energy fluxes. Each wall has a positive charge, forming a small potential barrier or "inverse sheath" that pulls some secondaries back to the wall to maintain the zero current condition.

Source

  • Physical Review Letters (May 2012)

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-4763
  • Grant Number: DE-ACO2-09CH11466
  • DOI: 10.2172/1062662 | External Link
  • Office of Scientific & Technical Information Report Number: 1062662
  • Archival Resource Key: ark:/67531/metadc845279

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 11, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • July 18, 2016, 5:18 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Campanell, M. D.; Khabrov, A. & Kaganovich, I. D. Absence of Debye Sheaths Due to Secondary Electron Emission, report, May 11, 2012; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc845279/: accessed November 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.