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Abstract

Encapsulated printed circuit boards typically use conventional thermosetting polymers which are
difficult to remove without damaging the electronics if upgrades are needed. To improve the effi-
ciency of maintaining printed circuit boards, network polymers with thermally reversible linkages
were developed to provide an alternative class of encapsulation thermosets that could be easily and
non-destructively removed and later reapplied. These polymers include functionalities that dynam-
ically break and form covalent bonds. Over time, the connectivity of the network evolves, which
causes the macroscopic stress in the material to relax and the permanent shape to change even
if these processes are in equilibrium. With respect to removal, the equilibrium behavior of these
processes changes if the thermodynamic state of the material is changed, which alters the number
density of chains. If the number density of chains is reduced below the percolation threshold, the
material exhibits a gel-point transition beyond which, it behaves as a viscous liquid. These two
properties contrast sharply with conventional thermosetting polymers, which do not exhibit this
relaxation mechanism nor a gel-point transition.
To take advantage of such novel material capabilities at length scales relevant to electronics pack-
aging, a continuum-scale constitutive model is needed that correctly accounts for the thermal-
chemical-viscoelastic behavior of such materials, especially since the state of the art for using
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them is limited to experimental investigations. To meet this need, a continuum-scale, thermody-
namically consistent free energy description of such materials is developed in this work. Paired
with this free energy are non-equilibrium contributions associated with the topological rearrange-
ment of the network as chains are added and removed as well as viscoelasticity. The model is
calibrated and validated against experimental data published in the literature. Finally, simple en-
capsulation thermal-mechanical scenarios are examined that demonstrate a substantial difference
in behavior between conventional polymer networks vs. those with thermally reversible linkages.
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Chapter 1

Introduction

Network polymers with thermally reversible functionalities are atypical thermosets. A snapshot
of the macromolecule would appear typical; chains are joined at covalent chemical cross-links as
well as physically entangled through Van-der-Waals interactions. However, specific functionalities
have been included along their polymer chains and cross-linking sites, and these functionalities un-
dergo thermally stimulated, reversible chemical reactions that connect or disconnect chains from
the network [15, 37, 34]. An actively explored chemistry in the literature integrates furan and
maleimide functionalities that undergo the highly reversible, Diels-Alder (DA) cycloaddition re-
action along polymer chains and at cross-linking sites [24, 33, 6, 26, 32]. In such networks, these
functional groups behave as dynamic bonds that break and reform over time. A cartoon of this
process with tri-furan and bis-maleimide functionalities is shown in Fig. 1.1. This DA chemistry
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yield structurally dynamic materials that are sensitive to a range of 
stimuli. However, in polymeric systems the dynamic process can 
be dramatically slowed to achieve a virtual !xed state, for example, 
by kinetically trapping through a crystallization, glass transition or 
gelation process15.

"e dynamic covalent bond is a class of bond that can break 
and reform under the appropriate conditions without irreversible 
side reactions. "is allows for the production of robust covalent 
molecules while maintaining a dynamic character that can only be 
accessed when speci!c external factors are present. For example, 
by increasing the concentration of a catalyst the dynamic bond can 
be formed more rapidly, and removal or quenching of the catalyst 
allows the possibility of kinetically !xing the product. "erefore, 
when these systems are not under reversible conditions they behave 
like traditional covalent molecules (that is, bonds are not suscepti-
ble to concentration or solvent polarity and can be thermally sta-
ble). However, like non-covalent dynamic bonds, the equilibrium 
for these covalent molecules can be manipulated, though this is 
usually a slower process as a consequence of breaking/reforming 
covalent bonds. Structurally dynamic polymers have made use of 
a number of dynamic covalent bonds such as thermally activated 
alkoxyamine bonds (3) and Diels–Alder adducts (4) (Fig. 1b), 
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chemo sensitive hydrazones, and multi-responsive functionalities, 
such as the disulphide bond, that respond to pH, light and redox 
conditions. We have limited the scope of this Review to interac-
tions/bonds that are dynamic under reasonably mild conditions 
(<200 °C, mild acids/bases, UV irradiation, mechanical stress 
and so on).

"e behaviour of a structurally dynamic polymer will depend 
on the nature of the dynamic bond, which determines, to a large 
extent, what stimulus the material will respond to as well as a#ect-
ing the thermodynamic/kinetic parameters of the response itself. 
"us this ability to control which dynamic bond is present in the 
polymer gives the chemist a molecular toolbox in designing a struc-
turally dynamic polymer. "ere are of course other considerations 
to be taken into account when choosing which dynamic bond to 
use for a speci!c system. For example, there are two general classes 
of dynamic bonds: those formed by the reaction/binding of simi-
lar functional components to form a ‘symmetrical’ dynamic bond 
(A + A yields A–A, for example, a disulphide bond) or those where 
complementary functional components are required to react/bind 
to form ‘unsymmetrical’ dynamic bonds (A + B yields A–B, for 
example, an imine bond) (Fig. 1c). For a symmetrical bond only 
one component needs be present to form the dynamic material, 

Figure 1 | Characteristic features of the dynamic bond. The dynamic bond includes a, supramolecular interactions such as the hydrogen-bonding motif 
2-ureido-4[1H]-pyrimidinones (UPy) (1) and the 2,6-bis-benzimidazole pyridine ligand (2), which can form dynamic coordination bonds with certain 
metal ions, for example, Zn(ii); and b, dynamic covalent bonds such as the thermally responsive alkoxyamines (3) and Diels–Alder cycloadducts (4). 
The dynamic bond can undergo reversible bond breakage and reformation under equilibrium control. c, The dynamic bond can be organized according 
to the interaction between components: self-complementary describes the reaction/binding between identical components and hetero-complementary 
describes a dynamic bond from two di"erent functionalities. d, Important characteristics of the dynamic bond include the equilibrium/association 
constant (K) and the rate constants of formation/decomplexation (k1 and k-1 respectively), which describe the relative stability of the resulting bond. 
e, Some dynamic bonds (such as imine bonds) can undergo di"erent reversible reactions — for example, the ability to reversibly break and reform a bond, 
or the ability to undergo component exchange.

REVIEW ARTICLENATURE MATERIALS DOI: 10.1038/NMAT2891

nmat_2891_JAN11.indd   15 1/12/10   16:22:09

© 2011 Macmillan Publishers Limited. All rights reserved

k forward
kreverse

Figure 1.1. Dynamic covalent linkages break and reform in a
reversible manner, which provides the polymer network an in-
trinsic mechanism to change its topology and permanent shape.
The complementary red and blue shapes respectively represent bis-
maleimide and tri-furan functionalities that undergo the reversible,
Diels-Alder reaction. The dashed lines indicate chains continuing
into the rest of the network.

occurs through the cycloaddition reaction of furan and maleimide species. If a sufficient number
of chains are broken such that no single chain spans the material, then the polymer network has
crossed the percolation threshold (gel-point). In this state, the polymer is no longer a network,
and it behaves as a liquid and can be removed. A schematic of such connectivities is presented
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above and below the gel point. ‘ Under thermodynamic equilibrium conditions (chemical equilib-

(a) Polymer chains beyond the percola-
tion threshold (not removable)

(b) Polymer chains below the percolation
threshold (removable)

Figure 1.2. Schematic of representative volume elements (black
boxes) of a polymer network above and below the percolation
threshold network connectivity which controls whether the mate-
rial can be removed.

rium, thermal equilibrium, etc.), the aggregate connectivity of the network is static, even while the
chains themselves dynamically break and reform. The effect is that the network topology evolves
over time, and when such materials are subjected to mechanical stresses, relaxation is observed,
and the permanent shape of the material evolves [24, 10, 6, 32]. Another important effect is that
the network has a thermally tunable set of cross-links and therefore, a thermally tunable number
density of chains, which arises due to the temperature dependence of the Diels-Alder chemical
equilibrium. And this phenomenon occurs even if another, permanent set of cross-links is present
in the network.

The chemical literature has seen considerable activity in this area associated with ”clique chem-
istry” [15]. Chemists have identified the paradigm that reversible linkages can be incorporated into
the network that can be stimulated by temperature [7, 10] and light [30, 17]. A critical feature
distinguishes these two stimuli. In the case of photo-chemically induced network topology evo-
lution, the stimulus can be shut-off (turn off of the light source). However, for reversible thermal
chemistries, the process can only be slowed by adjusting the temperature. A variety of applications
have been proposed from thermoset recycling [25], self healing materials [37, 23, 20, 7, 10], and
novel sensors and actuators [16, 29, 21].

Network polymers with thermally reversible functionalities were developed at Sandia National
Laboratories to respond to a specific business need for non-destructive, removable thermosetting
encapsulation of electronics [24]. This novel material capability allows for the thermoset encapsu-
lation to be removed above a critical temperature or at a reduced temperature in the presence of a
solvent, and hence we label such materials as removable network polymers (RNP). Both rubbery
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and glassy behaviors may be required depending on the encapsulation need, and so thermoplastic
encapsulation cannot be used. RNPs were formulated to have desired thermal-mechanical proper-
ties (Tglass, moduli, thermal expansion behavior, etc.) and included DA functionalities for remov-
ability above a critical temperature. For example, MacElhanon and co-workers demonstrated the
non-destructive removal of a conforming RNP foam about an electrical component. These materi-

removed from the assembly (Figure 2).  Furfuryl alcohol at 
50 °C has been shown to be relatively harmless to mechanical 
and electrical components.
     The removal mechanism incorporated into the materials 
by the addition of DA adducts provides a novel capability to 
perform repair, replacement, and surveillance of engineered 
systems that had not been available with conventional 
polymeric encapsulants.  In particular, the ability to perform 
surveillance on encapsulated systems that require a long 
service lifetime is extremely valuable in assessing aging and 
reliability of high-value electromechanical systems.  Through 
this work, Sandia has spawned new areas of research and has 
developed several other products using thermally-reversible 
DA reactions.  These include thermally-reversible, covalent, 
self-assembling dendrimers, polymeric macromolecules, and 
cleavable surfactants (References).
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Figure 2: Foam and encapsulant removal:  (left) removable epoxy foam (REF), (right) removable syntactic foam (RSF). 
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09/2010

Figure 1.3. Non-destructive, non-mechanical removal of a con-
formal RNP foam [14] reprinted with permission from Sandia Na-
tional Laboratories.

als and associated applications involve multiple physical processes subjected to large deformations.
The combination of which would be difficult to optimize experimentally. To realize such sophis-
ticated applications, theoretical and computational design tools are needed. The objective of this
paper is to meet this engineering need through the development of a thermal-chemical-mechanical
constitutive model. Two predictive features of the model are desirable:

• Simulating the process of removing the RNP encapsulation

• Simulating the complex thermal-chemical-mechanical behavior during the service lifetime
of the encapsulation

In the context of bullet one, experimental demonstration and characterization, such as in Fig. 1.3,
may sufficiently inform design engineers on how to non-destructively remove RNP encapsulation
from electronics. However, without the capability to perform bullet two, one cannot predictively
quantity the different thermal-mechanical behavior that RNP encapsulation will exhibit compared
with traditional (non-removable) thermosetting encapsulation, which is anticipated given the inher-
ent stress relaxation mechanism that the thermally-reversible functionalities provide in the RNP.
Such predictive capabilities become especially important when considering the effects of thermal
mismatch strains between the polymer and other components on printed circuit. Specifically, poly-
mer underfills can cause solder join fatigue and failure of components subjected to thermal cycling
[2]. For example, as shown in Fig. 2.1, solder joints of underfilled components may fatigue and
eventually fail due to the thermal-expansion mismatch between the solder and the polymer encap-
sulation.
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(a) Cross-sectioned cracked solder joint, ”large” capac-
itor, and a traditional epoxy underfill in its glassy state
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Figure 3-1:  Cross-  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-2:  Cross-  

 

(b) Cross-sectioned in-tact solder joint, ”small” capacitor,
and a traditional epoxy underfill in its glassy state

Figure 1.4. Traditional network polymer underfill encapsulation
may fail solder joints on printed circuit boards due to thermal mis-
match strain and geometric considerations. If a removable network
polymer underfill enapsulant is used, then its relaxation behavior
may change the thermal mismatch strain that stresses the solder
joints, and thus this additional behavior must be considered. Fig-
ures are taken from [2] and reprinted with permission from Sandia
National Laboratories.

To meet this predictive capability need, we develop a thermodynamically consistent, continuum
scale constitutive model, validate it against limited data in the literature, and use it to examine the
distinct behavior of RNPs in simple underfill encapsulation scenarios.

The article is laid out as follows. First, we select a model experimental system from the litera-
ture and discuss basic experimental observations in the context of the Diels-Alder chemistry, net-
work topology evolution, and associated stress relaxation. Next, we develop the thermal-chemical-
mechanical constitutive model and the associated kinetics of the chemistry, glassy behavior, and
evolution of the permanent shape due to changes in the network topology. The specific forms
of the balance laws that govern its behavior are also presented. We then examine special cases
of the model behavior that admit semi-analytic solutions, present validation results of the model
against limited experimental data, and finally compare the behavior of removable vs. traditional
encapsulation materials under simple thermal-mechanical cycling.
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Chapter 2

Experimental Observations

We briefly discussing experimental results developed by Bowman and co-workers [6] that guide
theoretical and validation efforts in this paper. They form a network which is cross-linked with
tri-furan and bismaleimide functionalities capable of undergoing the (retro-)Diels-Alder (DA) re-
action. Specifically, they copolymerize Pentaerythritol Propoxylate Tris(3-(furfurylthiol)- propi-
onate) (PPTF) and 1,1’- (methylenedi-4,1-phenylene) bismaleimide (DPBM) by mixing them in a
1:1 furan to maleimide ratio, heating the mixture for 5 minutes at 155 C to complete the step-growth
reaction, and then cooling the material to room temperature. They observed a solid material that
visibly reverted to a liquid above 110C and vitrified below 45C. The furan and maleimide func-
tionalities are analogous to the two different geometric symbols in Fig. 1.2 and may reversibly
bond together to form a Diels-Alder adduct.

Using Fourier Transform Infrared Spectroscopy (FTIR), Bowman and co-workers, measured
the equilibrium extent of reaction as a function of temperature, which is defined as the adduct con-
centration normalized to its maximum possible concentration (assuming all species are bonded).
The equilibrium extent of reaction vs. temperature is reproduced here. They additionally measured
both the forward and reverse reaction kinetics and fit their respective behaviors following a simple,
single reaction step, thermal-chemical reaction kinetics. Using their calibrated thermal-chemical
kinetic results, we calculate the half-life a DA adduct, which characterizes both the equilibrium
and non-equilibrium rate at which DA linkages in the network break (and, in equilibrium, reform).
Hence, this chemical half-life controls the rate at which the permanent shape of the material evolves
in the absence of vitrification. The advantage of using this system over more complicated DA ther-
moset chemistries formulated with multiple cross-linking species is that the polymer structure and
dynamics are simpler since these other explored systems involve both permanent and reversible
cross-links. The key experimental observations that we wish to capture through the development
of a thermal-chemical-mechanical constitutive equation are:

• The dependence of the material’s permanent shape change (network topology evolution) on
the DA chemical kinetics

• The relationship between the rubbery shear modulus and the extent of the DA reaction

• Thermodynamic properties

• Glassy behavior
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(a) Equilibrium extent of the Diels-Alder Reaction
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(b) Chemical half-life of a Diels-Alder adduct

Figure 2.1. The equilibrium extent of reaction (with the excep-
tion of points below the glass transition) and the chemical half-life
of a bonded Diels-Alder linkage. The data is partially reproduced
from reference [6]. Note that even at room temperature, half of the
linkages will break and reform within a week!
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Chapter 3

Constitutive Model Development

We seek to develop a constitutive model for network polymers with thermally reversible link-
ages in a continuum setting. The purpose of this model is to inform the use of such materials
in electronics packaging. Since the network topological rearrangement occurs at a length scale
smaller than that of encapsulation, which is our main application driver, we consider our contin-
uum approach reasonable and model the bulk behavior of the material. We develop the model in
the following order. We briefly discuss kinematics including non-traditional invariants later used
in the free energy developments, and then we summarize the mass, species, and momenta balance
laws applied to this material. We then examine the first and second thermodynamic laws and derive
quantities and constraints for the model. Next, we model the Diels-Alder chemistry and thermal-
chemical kinetics, which we subsequently use to model the rubbery shear modulus dependence on
the extent of reaction as well as the rate and form of the network topology evolution (permanent
shape change). Finally, we present the equilibrium and non-equilibrium Helmholtz free energy
densities and calculate associated thermodynamic sensitivities.

Kinematics

We begin a discussion of kinetics and disclose the notation used throughout the rest of the text.
Consider a homogenous body composed of a network polymer with reversible linkages which
initially occupies the volume Ω0 and has a boundary, ∂Ω0. This initial configuration is taken to
be the time-independent reference configuration. The position of a material point within Ω0 is
denoted by, Xj, where we use Einstein’s index notation. The motion of a material point from its
position, Xj, in the reference configuration to its position, xi, in the current configuration, wherein
the body occupies the volume Ω with an associated boundary ∂Ω, is assumed to be a smooth,
bijective mapping, so that the inverse mapping always exists. The motion, displacement field ui,
material velocity, deformation gradient, and the volume ratio between the two configurations are,

xi = χ (Xi) = Xi +ui, vi = ẋi, Fi j =
∂xi

∂Xj
, J = det(Fi j)> 0. (3.1)

Here, the overhead dot denotes the time derivative of a material point quantity. The notation
used in this work distinguishes between reference and current configuration quantities via upper
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case and lower case letters respectively. For some quantities, however, the reference configuration
is distinguished with an underscore 0. For example, the body in in the reference and current
configuration occupies the volume Ω0 and (Ω), respectively.

We take the polar decomposition of the deformation gradient to obtain the rotation, Rik, and ma-
terial stretch tensor, Uk j, and take the logarithm of the latter to generate the logarithmic (Hencky)
strain, which is defined on the reference configuration.

Fi j = RikUk j, ϒi j = log(Ui j). (3.2)

As is standard, we may additively split the Hencky strain into its spherical and deviatoric parts,

ϒsp
i j =

ϒkk

3
δi j, ϒdev

i j = ϒi j −ϒsp
i j . (3.3)

Here, we have employed the Kroenecker delta, δi j, to represent the identity tensor.

We use two invariants of the Hencky strain in the Helmholtz free energy function that are dis-
tinct from the standard Cayley-Hamilton invariants. Advantages of this choice have been discussed
in other work relevant to polymer constitutive modeling [9]. We define the following two invariants
of the Hencky strain tensor (using the properties of logarithms),

I1[ϒi j] = ϒii = log(J) (3.4)

I2[ϒi j] = ϒi jϒ ji = ϒdev
i j ϒdev

ji +
I1[ϒi j]2

3
. (3.5)

To separate invariant volumetric and deviatoric kinematics, we will use I1[ϒi j] and I2[ϒdev
i j ] =

I2[ϒi j]− 1
3 I1[ϒi j]2.

Mass, Species, and Momentum Balances

We briefly review the balance laws. The balance of mass at a material point relates the density
in the current (ρ) and reference (ρ0) configurations to the associated volume ratio (J),

ρ
ρ0

= J. (3.6)

The chemical species must also satisfy individual conservation statements. Consider a particular
species, labeled α , with number density defined in the reference configuration, Nα . The rate of
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change of the total number of species α within a subregion of the body, ω0 ⊂Ω0 with the boundary
∂ω0, is denoted by Ṁα

ω0
and is given by,

Ṁα
ω0

=
˙�

ω0
NαdV =−

�

∂ω0
Hα

i NidA+
�

ω0
HαdV (3.7)

Here, Hα
i , Hα , and Ni denote respectively the reference configuration species flux (number per area

time), species source (number per volume), and unit normal vector associated with the differential
reference area, dA. The overhead dot denotes a material time derivative, which commutes with the
integral over the time-independent reference volume. Thus, with the divergence theorem, the local
continuity equation for species α in the reference configuration is,

Ṅα =−
∂Hα

i
∂Xi

+Hα (3.8)

We turn our attention to linear momentum and consider a quasi-static setting in which inertial
effects are ignored. The local spatial balance of linear momentum at a material point is,

∂σi j

∂xi
+b j = 0 j, (3.9)

where σi j and b j represent the Cauchy stress and body force vector defined per unit spatial volume.
We assume an absence of micro polar moments, so that the angular momentum balance restricts
the Cauchy stress to be symmetric (σi j = σ ji). Later, we will find it useful to define material point
quantities in the reference configuration, and so we introduce the symmetric Second Piola-Kirchoff
stress, which is work conjugate to the material time derivative of the Green-Lagrange strain, as
well as the First Piola-Kirchoff stress, which is work conjugate to the material time derivative of
the deformation gradient,

SΓ
i j = JF−1

i j σ jkF−1
lk , Γik =

1
2
(FjiFjk −δik), Pik = Jσi jF−1

k j . (3.10)

Here, Γ has been used so as not to confuse the Green-Lagrange strain and the total energy.

Energy Balance

We treat the body as a homogenous, single phase material that contains a total number of
molecules of each chemical species M1, M2, ... . Neglecting kinetic energy, the time rate of change
of the total energy in the body is composed of three quantities: the rate of mechanical work the
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body does against its surroundings (Ẇout), the rate of chemical work that occurs as species change
(Ėspecies), and the rate of thermal energy flowing into or generated within the body (Q̇in). The rate
of total internal energy change in the body can then be written as,

Ėtotal = Q̇total in −Ẇby system + Ėspecies (3.11)

Here, we are considering a closed system and neglect species transport across the boundary of
the body although thermal and mechanical energies can be exchanged between the body and its
surroundings. From Eq. 3.11 and following Gurtin et al. 2010 or Chester and Anand 2011,
we state the local form of the energy balance, with an internal energy density defined per unit
reference volume, ε0. Again, consider a subregion of the body in the reference configuration,
denoted ω0 ⊂ Ω0, with its boundary ∂ω0. The rate of change of the total internal energy in this
region is,

˙�

ω0
ε0dV =−

�

∂ω0
QiNidA+

�

ω0
QdV (3.12)

. . .+
�

∂ω0
Pi jNjvidA+

�

ω0
JbividV

. . .+∑
α

�
−
�

∂ω0
µαHα

i NidA+
�

ω0
µαHαdV

�
.

Here, Qi and Q represent the referential thermal flux vector (energy per area time) and thermal
source (energy per volume time). The energy associated with changing the referential number
density of species α is characterized by the chemical potential, µα (energy per number of species).
Employing the divergence theorem, the time-invariance of the reference configuration, the refer-
ential species conservation statements (Eq. 3.8), and the fact the size of the subregion can be made
arbitrarily small, the local form of the energy balance is,

ε̇0 =−∂Qk

∂Xk
+Q+SΓ

i jΓ̇i j +∑
α

�
µα Ṅα −Hα

i
∂ µα

∂Xi

�
, (3.13)

wherein we have taken advantage of the fact that the internal stress power with respect to the
First Piola-Kirchoff stress can also be written in terms of the Second Piola-Kirchoff stress and the
Green-Lagrange strain, (Pi jḞi j = SΓ

i jΓ̇i j).

Entropy Production Inequality

We examine the Second Law of thermodynamics in the form of the Clausius-Duhem inequality
within a referential subregion of the body,

�

ω0
η̇0dV +

�

∂ω0

QiNi

Θ
dA−

�

ω0

Q
Θ

dV ≥ 0, (3.14)
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wherein we define the referential entropy density, η0, with units of energy per volume. Here we
define the absolute temperature, Θ, which we require be greater than zero. The local form of Eq.
3.14 may be derived following similar arguments as above,

η̇0 −
Q
Θ
+

1
Θ

∂Qi

∂Xi
− Qk

Θ2
∂Θ
∂Xk

≥ 0 (3.15)

By combining the local forms of the energy balance (Eq. 3.13) and the entropy production inequal-
ity (Eq. 3.15) through the elimination of heat source, Q, and multiplication of all terms by Θ, we
arrive at,

Θη̇0 − ε̇0 +SΓ
i jΓ̇i j −

Qk

Θ
∂Θ
∂Xk

+∑
α

�
µα Ṅα −Hα

i
∂ µα

∂Xi

�
≥ 0 (3.16)

The natural thermodynamic state variables for the internal energy density are the entropy, defor-
mation gradient, and species number densities. It will be more convenient for us to represent the
behavior of this system with a thermodynamic potential that uses temperature, rather than entropy,
as a natural variable. Thus, the Helmholtz free energy density, defined per unit reference volume,
is preferred and follows from the standard Legendre transform,

Ψ = ε0 −Θη0, (3.17)

and upon taking the material time derivative of Eq. 3.17 and substituting the result into Eq. 3.16
and multiplying by (-1), we arrive at the principal inequality of rational mechanics (PIRM) [11],

Ψ̇+η0Θ̇0 −SΓ
i jΓ̇i j +

Qk

Θ
∂Θ
∂Xk

−∑
α

�
µα Ṅα −Hα

i
∂ µα

∂Xi

�
≤ 0. (3.18)

Eq. 3.18 is also known as the free energy imbalance (Gurtin et al. 2010), and it shows that the time
evolution of thermodynamic state variables occurs in the direction that minimizes the free energy.

If we assume in general for reacting solid materials that the Helmholtz free energy is a function
of Γi j, Θ, Nα , and {Z1,Z2, . . .Zn}, where Zβ are internal state variables that need not be thermody-
namic state variables, then the material time derivative of the Helmholtz free energy density (per
unit reference volume) is,

Ψ̇ =
∂Ψ
∂Γi j

Γ̇i j +
∂Ψ
∂Θ

Θ̇+∑
α

�
∂Ψ

∂Nα Ṅα
�
+∑

β

�
∂Ψ
∂Zβ Żβ

�
. (3.19)

Following the Coleman and Noll procedure in which we collect all terms directly related to rates
of change of state variables and independently enforce that each one satisfies the PIRM (Eq. 3.18)
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, we are restricted to define the stress, entropy, and chemical potential of each species as,

SΓ
i j =

∂Ψ
∂Γi j

, η0 =−∂Ψ
∂Θ

, µα =
∂Ψ

∂Nα . (3.20)

It should be noted that the free energy descriptions in subsequent sections will depend on the first
two invariants of the logarithmic strain tensor as defined by Eqs. 3.4 and 3.5, and thus, to recover
the Second Piola-Kirchoff stress, the following transformation is needed [9],

SΓ
i j =

∂Ψ
∂ϒab

∂ϒab

∂Γi j
= Sϒ

ab
∂ϒab

∂Γi j
. (3.21)

The transformation tensor between the logarithmic and the Green-Lagrange strains can be derived
by considering differential changes to both principal stretches and directions but is not presented
here for brevity. In Eq. 3.21, Sϒ

ab is the stress work conjugate to differential changes to the loga-
rithmic strain, and so we call this quantity the Hencky stress. The remaining terms in the PIRM
collectively represent a constraint on the rate of free energy dissipation (ddiss) as the Helmholtz
free energy density evolves in time,

ddiss = ∑
β

�
∂Ψ
∂Zβ

Żβ

�
+∑

α

�
Hα

i
∂ µα

∂Xi

�
+

Qk

Θ
∂Θ
∂Xk

≤ 0, (3.22)

In general, these thermodynamic and internal state variables may evolve independently. So, to
guarantee that the entropy production inequality is satisfied for all possible changes to the system’s
thermodynamic state, we further restrict the time evolution of the Helmholtz free energy density,
species fluxes, and thermal energy flux by requiring that each term in Eq. 3.22 satisfy the inequality
separately,

∑
β

�
∂Ψ
∂Zβ

Żβ

�
≤ 0, ∑

α

�
Hα

i
∂ µα

∂Xi

�
≤ 0,

Qk

Θ
∂Θ
∂Xk

≤ 0. (3.23)

Equation of Motion for the Temperature Field

We define the specific heat capacity of the material at a constant state of deformation and relate
it to the second order thermal sensitivity through the Legendre transform, Eq. 3.17, and Eq. 3.20,

CF =

�
∂ε0

∂Θ

�

Γi j,Nα ,Zβ
=−Θ

�
∂ 2Ψ

∂Θ∂Θ

�

Γi j,Nα ,Zβ
. (3.24)
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As the entropy is given by the sensitivity of the Helmholtz free energy density with respect to
temperature, Eq. 3.20, we may use the material time derivative of the Helmholtz free energy, Eq.
3.19, combined with the energy balance, Eq. 3.13, and the specific heat capacity, Eq. 3.24, to
arrive at the equation of motion for the temperature field,

CFΘ̇ = Q− Qi

Xi
+∑

α

�
Θ ∂ 2Ψ

∂Θ∂Nα Ṅα −Hα
i

∂ µα

∂Xi

�
(3.25)

. . .+Θ ∂ 2Ψ
∂Θ∂Γi j

Γ̇i j +∑
β

�
Θ ∂ 2Ψ

∂Θ∂Zβ − ∂Ψ
∂Zβ

�
Żβ

Species and Thermal Energy Transport

Typically species and heat fluxes are constitutively specified to scale with the spatial gradients
of the chemical potential and temperature respectively. We assume here that isotropic conditions
occur so that in the current and reference configurations, the species and heat fluxes are constitu-
tively specified as,

hα
i =−Dα ∂ µα

∂xi
, qi =−κ ∂Θ

∂xi
, (3.26)

Hα
i =−JDαF−1

i j F−1
k j

∂ µα

∂Xk
, Qi =−JκF−1

i j F−1
k j

∂Θ
∂Xk

. (3.27)

Here, Dα and κ are the isotropic α-species and heat diffusion coefficients, defined in the current
configuration and are material constants. With these constitutive rules, it is simple to show that
the term-by-term requirements on the material’s free energy dissipation rate are satisfied for the
thermal and species diffusion terms, Eq. 3.23(2-3).

For the system considered in this work, we simplify our treatment by neglecting diffusion of
the Diels-Alder species, A, F , and M so that Dα = 0 for all α . This simplification is reasonable
because chains that have been broken at F and M functionalities are still covalently tethered to
the network. Thus, unless whole segments of chains are broken from the network, the individual
species cannot diffuse long distances. Hence, we neglect diffusion of all of the chemical species.
Under this simplification, the species number density conservation statements, Eq. 3.8, reduce to,

Ṅα = Hα . (3.28)

Therefore, the time evolution of species densities are related only to source terms, and so these
conservation statements reduce a system of ordinary differential equations at each material point
rather than partial differential equations across the body (when diffusion occurs).
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Diels-Alder Chemistry

We now describe the chemical reaction involved in this system as the species densities, and their
associated chemical potentials, will directly enter into the free energy density that we develop. As
discussed in section 1, we are considering a thermally reversible chemical reaction of the form,

F +M ↔ A (3.29)

This reaction is responsible for connecting chains (forward reaction) or breaking them apart (re-
verse reaction), and so, the number density of chains and shear modulus will scale with the extent
to which the reaction is in the bonded (forward) state. The total species referential number density,
which should not be confused with the reference configuration surface normal vector, is,

N = NA +NF +NM (3.30)

The total number density, N, in Eq. 3.30 is not a conserved quantity, but assuming that Eq. 3.29
is the only chemical reaction occurring in the system and that there is no species diffusion (see
section 3), there is a conserved species density, which represents the maximum referential density
that any species can obtain, which is defined as,

φ = NA +
1
2
�
NF +NM�

. (3.31)

With φ , we can define the extent of the chemical reaction,

NA = φx, x ∈ [0,1]. (3.32)

In the experimental system from the literature that will be modeled in this work, the polymer
network is formulated with an equal mol fraction of furan and maleimide species, and since they
bond in a 1:1 ratio (from Eq. 3.29), the number densities of furan and maleimide species are the
same in this work. Therefore, we may write the number densities in terms of the extent of reaction
and the total conserved species density, φ :

NF = NM = φ(1− x), N = φ(2− x). (3.33)

For the experimental system considered in this work, Bowman and co-workers measured the
equilibrium extent of reaction as a function of temperature in a state of constant stress. Specifi-
cally, the specimens in their studies were not subjected to any applied mechanical stresses other
than ambient pressure. Under such conditions, the Gibbs free energy of the system is the natural
thermodynamic potential with which to consider the equilibrium conditions for the reaction. We

24



define the reaction equilibrium constant following the stoichiometric relationship of the chemical
reaction (Eq. 3.29),

K∞[Θ] =
NA

∞/φ
(NF

∞/φ)(NM
∞ /φ)

=
x

(1− x)2 , (3.34)

wherein ”∞” indicates that the quantities have equilibrated at the temperature, Θ, and do not change
in time. Note that this definition is dimensionless compared to the one used by Bowman and co-
workers, which defines the equilibrium constant as the ratio of species densities and thus has units.
By empirically examining the temperature dependence of K∞[Θ] in Eq. 3.34, Bowman and co-
workers calculated the standard enthalpy and entropy of the reaction via the Van’t Hoff equation,

logK∞ =−∆g◦rxn
RT

=−−∆H◦
rxn

RΘ
+

∆η◦
rxn

R
, (3.35)

wherein R denotes the universal gas constant, and ∆g◦rxn, ∆H◦
rxn, and ∆η◦

rxn denote the standard
changes in Gibbs free energy, enthalpy, and entropy due to the reaction. These quantities determine
the associated quantity change that is accompanied when one mol of the products (species A) is
formed from the reactants (species F and M) under standard conditions (typically 1 atm pressure
and at 25 Celsius).

Under a constant state of stress and at a constant temperature, the equilibrium condition for the
material is that the Gibbs free energy is at a minimum so that its total differential is zero,

0 = dg|Θ,Sϒ
i j
= ϒi jdSϒ

i j −η0dΘ+ ∑
α=A,F,M

(µαdNα +dµαNα) (3.36)

. . .= ∑
α=A,F,M

(µαdNα) ,

where we have used the fact that under the equilibrium conditions considered here, dSϒ
i j = 0i j,

dΘ = 0, and the Gibbs-Duhem equality,

∑
α=A,F,M

(dµαNα) =−ϒi jdSϒ
i j +η0dΘ = 0. (3.37)

Equation 3.37 gives the expected statement of chemical equilibrium at a fixed temperature and
stress. To produce the temperature-dependent equilibrium constant, Eqs. 3.34 and 3.35, we model
the chemical potentials for each species as,

µA = µA◦+RΘ log(aA), aA =
NA

N
, (3.38)

µF = µF◦+RΘ log(aF), aF =
NF

N
, (3.39)

µM = µM◦+RΘ log(aM), aM =
NM

N
. (3.40)
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Here, aα represents the ideal activity of species α . Non-ideal behavior is captured by the temper-
ature dependent standard chemical potentials of each species, µα◦. From the condition of equi-
librium at a constant pressure and temperature, Eq. 3.37, the equilibrium constant relationships
(Eqs. 3.34 and 3.35), and the chemical potentials, it can be shown that the Gibbs-Duhem equality
is satisfied (Eq. 3.37) and that,

µA◦ −µF◦ −µM◦ = ∆g◦rxn. (3.41)

Using the extent of reaction variable, x, a single chemical potential may be used to characterize the
thermodynamic force associated with changes to the chemical state of the system,

µ(x) =
∂g
∂x

. (3.42)

The condition of chemical equilibrium with respect to the extent of reaction is µ(x) = 0, which
reproduces the previous statement of chemical equalibrium, Eq. 3.41. However, via Eq. 3.42, we
have a convenient way to include the effects on chemical equilibrium of coupling terms in the free
energy. That is, we may include couplings between the extent of reaction, x, the absolute tempera-
ture, Θ, and the first and second invariants of the logarithmic strain, I1[ϒ] and I2[ϒ] respectively. If
such terms are included, then the condition of chemical equilibrium will differ from Eqs. 3.41 and
3.42.

Diels-Alder Reaction Kinetics

Our objective here is to determine the rates of the forward and reverse Diels-Alder reactions
(Eq. 3.29), which is related to the rates at which the number density of network chains is increas-
ing and decreasing. The forward and reverse reactions determine the source terms in the species
balance laws, Eq. 3.8, and so without diffusion, the reaction kinetics determine the rates of change
of the species densities directly; see Eq. 3.28. Recall that an equal stoichiometry of furan and
malemide was used in the system under examination (see Eq. 3.33). Following Bowman and co-
workers, we model that the Diels-Alder reaction kinetics via a second-order thermally activated
model so that the referential species densities along with the conservation requirement, Eq. 3.31,
obey in the following kinetics,

ṄF = ṄM =−k f NFNM + krNA, ṄA = k f NFNM − krNA. (3.43)

These kinetics are a manifestation of the law of mass action, which is reasonable here since we
expect that the Diels-Alder reaction occurs as a single step reaction. Here, k f and kr are the
temperature dependent forward and reverse reaction rate constants. The first term in Eq. 3.43(1)
represents the rate at which the number density of chains is increasing due to the forward reaction
while the second term gives the rate of decrease of the number density of chains associated with
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the reverse reaction. We may relate the reverse and forward reaction rates to the rate of change of
the extent of reaction from Eqs. 3.32, 3.33, and 3.43,

ẋ− = krφx, ẋ+ = k f φ(1− x)2, ẋ = ẋ+− ẋ−. (3.44)

At equilibrium, the species evolutions are zero, so that the forward and reverse rate constants
are related to the equilibrium constant via,

k f

kr =
K∞[Θ]

φ
. (3.45)

Bowman and co-workers assumed that these rate constants are thermally activated, so that, along
with Eq. 3.45, they are specified as,

kr = k0 exp
�
−Eact

RΘ

�
, (3.46)

where the prefactor, k0, and activation energy, Eact , are determined experimentally. However, these
reaction kinetics do not account for the arresting effects of vitrification. Thus, we assume that
the thermally activated rate acts in parallel with the material (viscous) time scale of the network
following previous work [3, 22, 1],

kr = kviscok0 exp
�
−Eact

RΘ

�
=

k0

amat
exp

�
−Eact

RΘ

�
. (3.47)

Consequently, if the material time scale becomes very long, as it does in when the network is in
the glassy state, then the reaction rate is arrested.

Shear Modulus Dependence on the Chemical Species

In the flexible chain limit of rubber elasticity, the shear modulus of the network depends linearly
on the number density of chains beyond the gel-point extent of reaction as well as linearly on the
absolute temperature. Following this insight, we model the equilibrium shear modulus via,

G∞[Θ,x] =
G∞

re f Θ
�
x− xgel

�

Θre f
�
xre f − xgel

� = ḠΘ
�
x− xgel

�
, (3.48)

which allows us to calibrate the shear modulus the experimentally measured value at a reference
temperature, G∞

re f . Note that Ḡ lumps the reference property material constants into one variable
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for convenience. The gel point extent of reaction, xgel , is a fundamental geometric/topological
property of the network and does not depend on temperature, state of stress, etc.

Under conditions of chemical equilibrium, the rubbery shear modulus in Eq. 3.48 depends non-
linearly on temperature since the extent of reaction depends exponentially on temperature. Hence,
this shear modulus representation may vary substantially more over a given temperature range
than a traditional thermoset. Mechanistically, this model feature is sensible since in thermosets
with thermally reversible functionalities, the number density of chains changes is not constant.

However, in the short chain limit, the shear modulus of the network scales non-linearly with
the number density of chains. For example, for epoxy networks cured via a step-growth reaction
with di-functional epoxy monomers, Adolf and Chambers [3] report that the shear modulus scales
with the curing extent of reaction via,

G[y] = G[1]

�
(y2 − y2

gel)
2.7

1− y2
gel

�
. (3.49)

Here, ygel is the curing extent of reaction when the network has reached the percolation limit
(gel point). The temperature dependence is not included in Eq. 3.49, and it need not be linear in
temperature. For simplicity, we adopt the ideal shear modulus and temperature dependence scaling
of Eq. 3.48 and recognize that this choice may be a substantial oversimplification.

Using the reaction kinetics written in terms of the reaction extent, Eq. 3.44 and the shear
modulus dependence on the adduct species density, Eq. 3.48, the material time derivate of the
shear modulus takes the following form,

Ġ∞ = ḠΘ̇
�
x− xgel

�
+ ḠΘẋ = ḠΘ̇

�
x− xgel

�
+ Ġ∞

+− Ġ∞
−, (3.50)

Ġ∞
− = ḠΘφkrx, Ġ∞

+ = ḠΘφk f (1− x)2. (3.51)

Here, Ġ∞
+ and Ġ∞

− denote the rates of increase and decrease of the shear modulus due to the addition
and destruction of the referential number density of chains.

Evolution of the Stress-Free Configuration

Next, we discuss the effects of network topology evolution on the stress-free shape of the body,
which provides the network a mechanism to take on a new permanent shape. Phenomenologically,
we capture this behavior through the time evolution of the stress-free strain tensor internal state
variable following the polymer curing work of Adolf and Chambers [3]. We note that consider-
able theoretical and computational efforts have explored the concept of stress-free configurations
as a means of explaining compression set in elastomers. Tobolsky proposed the Two-Network Hy-
pothesis [8], examined theoretically by Flory [12], and computationally by Rottach and co-worker
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[28]. This approach has been applied with success to a variety of problems associated with the
continuum thermomechanical behavior of temperature sensitive elastomers [31, 35] and photo-
mechanically coupled polymers [18]. The Two-Network approach is based on a multiplicative
decomposition of the deformation gradient,

Ftotal
i j = F2

ikF1
k j, (3.52)

such that the elastic free energy of the first and second network volume fractions depend on Ftotal
i j

and F2
ik respectively. For example, often in the literature, the total elastic free energy of a two-

network material is,

ΨelasticF2F1 = v1Ψ(F2
ikF1

k j)+ v2Ψ(F2
i j) (3.53)

There are two issues with this multiplicative split. First, the stress-free configuration of the material
depends on the specific constitutive functions involved (Ψ(•)), and second, if the intermediate
configuration F1

k j is evolved, for example through the evolution of the network topology, then the
minimum free energy shape evolves in a complicated manner that is strongly dependent on the
constitutive function as well. Some work has looked into evolving the intermediate configuration
for polymers experiencing microstructural evolution [13, 19, 27], but we choose a more intuitive
approach.

As mentioned above, we model the effect of an evolving network topology by directly evolving
a stress-free strain tensor, ξi j, subject to the following assumptions,

• Volumetric deformation, which is dominated by Van-der-Waals interactions in polymer net-
works, does not induce a change in the stress free configuration.

• Deviatoric deformation moves chains past each other, so that as chains break and reform,
they may do so in different configurations. An aggregate number of such events reduces the
elastic free energy.

• The stress-free configuration may only evolve if it is different from the current state of de-
formation, ϒdev

i j −ξ dev
i j �= 0i j

• The rate of change of the stress-free configuration scales with the rate of increase of the
equilibrium shear modulus due to the formation of chains, Ġ+ in Eq. 3.51.

• The rate of decrease of the equilibrium shear modulus due to chain scission does not affect
the stress-free configuration.

Following Adolf and Chambers (2007) and these hypothesis, we model the material time derivative
of the stress free strain tensor is,

ξ̇i j =
G+

G∞

�
ϒdev

i j −ξ dev
i j

�
. (3.54)
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One important inadequacy of this rule is that it does not account for the change of the stress-free
configuration due to chain scission (assumption 4), which, as pointed out in many theoretical in-
vestigations, involves a load transfer from chains as they are scissioned to the surrounding network
[28, 12]. However, these theoretical treatments consider the special case of just 2 states of strain.
Here, we are concerned with an arbitrary number of strained configurations, and so in this work,
we neglect the influence of scissioned chains on the evolution of the stress free configuration.

Additive Split of the Helmholtz Free Energy Density

From the experimental observations in section 2, we develop a Helmholtz free energy density,
consistent with the PIRM (Eq. 3.18), to describe the thermal-chemical-mechanical behavior of
network polymers with reversible linkages. We assume that the Helmholtz free energy, per unit
reference volume, is a function of the following state variables:

ϒi j The logarithmic strain tensor.

Θ The absolute temperature.

Nα The referential number density of each chemical species, α = A,F,M. These number den-
sities are related to the extent of reaction definition, Eq. 3.32, and they obey their own
conservation statements, Eq. 3.8.

ξi j The stress-free strain tensor, which represents the evolving permanent shape of thematerial
point due to the topological rearrangement of the network.

We model the material’s referential Helmholtz free energy in two parts,

Ψ
�
ϒi j,Θ,Nα ,ξi j

�
= Ψ∞ +Ψvisco. (3.55)

The first component, Ψ∞, represents the equilibrium network response with respect to changes
to the thermodynamic state. For example, from it, the rate independent heat capacity, stress, or
chemical state can be derived. However, if the network topology is changing, the equilibrium free
energy will decay in time as stress is relaxed in the network. The second term, Ψvisco, represents
a non-equilibrium free energy penalty that the material suffers when the thermodynamic state is
changed too quickly relatively to its own internal time scale. Classically, this free energy penalty
gives rise to altered stresses, heat capacities, and thermal expansion behaviors that distinguish the
polymer’s non-equilibrium glassy state compared with its equilibrium rubbery state.

The additive split of the free energy density into equilibrium and non-equilibrium parts (Eq.
3.55), results in an additive split of each of the generalized thermodynamic forces into equilibrium
and non-equilibrium parts. Thus, from Eqs. 3.55 and 3.23 the Second Piola-Kirchoff stress, the
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entropy, and the chemical potential of each species also split into equilibrium and non-equilibrium
contributions,

SΓ
i j = SΓ∞

i j +SΓvisco
i j , η0 = η∞

0 +ηvisco
0 , µα = µα∞ +µαvisco. (3.56)

Analogously, the thermodynamic work conjugate fluxes associated with the internal state variables
(Zβ ) also may be split into equilibrium and non-equilibrium parts.

Equilibrium Free Energy Contributions

We first examine the equilibrium referential Helmholtz free energy density, which we further
divide into four parts arising from elastic, thermal, chemical, and mixed free energy contributions:

Ψ∞ �
ϒi j,Θ,Nα ,ξi j

�
= Ψ∞

elastic +Ψ∞
thermal +Ψ∞

chemical +Ψ∞
mixed +Ψre f , (3.57)

Ψ∞
elastic = Pre f I1[ϒ]+

K∞

2
(I1[ϒ])2 +G [x,Θ] I2

�
ϒdev

i j −ξ dev
i j

�
, (3.58)

Ψ∞
thermal =

CF0

ρre f

�
Θ−Θre f −Θ log

�
Θ

Θre f

��
− CF1

2ρre f Θre f
(Θ−Θre f )

2, (3.59)

Ψ∞
chemical = ∑

α
(µαNα) , (3.60)

Ψ∞
mixed =−K∞β ∞(x− xre f )I1[ϒ]−Kα∞(Θ−Θre f )I1[ϒ]. (3.61)

Throughout these equations, a reference state is referred to which characterizes the initial free
energy density. The extent of the chemical reaction, x, is also used for convenience and is related
to the referential species densities through Eq. 3.32. The chemical potential, associated with each
species, is modeled via Eq. 3.38, 3.39, and 3.40. We summarize the material properties in table 3.

It is important to note that a simple form of the elastic free energy density is used. For other
systems, another constitutive equation for the elastic free energy may be more appropriate. Also,
note that the shear modulus, G[x,Θ], is assumed to be a function of the extent of reaction as well as
the absolute temperature as discussed in section 3. There are several additional assumptions built
into the equilibrium free energy density that will be discussed in subsequent sections.

Following, Eqs. 3.20 and 3.21, we derive the equilibrium contribution to Sϒ
i j,

Sϒ∞
i j =

∂Ψ∞

∂ϒi j
= 2G[x,Θ](ϒdev

i j −ξ dev
i j ) (3.62)

. . .+
�
Pre f +K∞I1[ϒ]−K∞β ∞(x− xre f )−K∞α∞(Θ−Θre f )

�
δi j.

We also calculate the referential entropy density and chemical potential with respect to a change
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in the extent of reaction variable, x, from Eqs. 3.20 and 3.42,

η0 =
CF0

ρre f
log

�
Θ

Θre f

�
+

CF1

ρre f Θre f
(Θ−Θre f ) (3.63)

. . .− ∂G[x,Θ]

∂Θ
I2

�
ϒdev

i j −ξ dev
i j

�
+K∞α∞I1 [ϒkk] ,

µ(x) = φ
�

µ(A)−µ(F)−µ(M)
�
−K∞β ∞I1[ϒkk]+

∂G[x,Θ]

∂x
I2

�
ϒdev

i j −ξ dev
i j

�
. (3.64)

Two interesting results emerge from the choice of the equilibrium Helmholtz free energy. First,
the referential entropy density depends on the volumetric state of deformation and shear modulus
sensitivity with respect to temperature. However, these dependences do not influence the specific
heat capacity at constant deformation from Eq. 3.24(2) given the linear sensitivity of the shear
modulus with respect to temperature from Eq. 3.48. Second, the condition of chemical equilibrium
with respect to the extent of reaction, that µ(x) = 0, now includes dependencies on the volumetric
deformation (I1), shear deformation (I2), and the shear modulus sensitivity with respect to x. Even
under isothermal conditions, chemical equilibrium can be changed if the material is subjected to
substantial deformation.

Non-Equilibrium Helmholtz Free Energy Contributions

Next, we develop the non-equilibrium free energy penalties that the system experiences when
its thermodynamic state is changed faster than its characteristic time scale. Here we adopt the
simplified potential energy clock model (SPEC) developed by Adolf and co-workers [5]. We only
summarize the pertinent results needed to represent the viscous behavior of polymers with re-
movable linkages. We assume that the non-equilibrium contributions are sufficiently small that we
may approximate them with functional Taylor expansions about the equilibrium state. We consider
viscoelastic dependencies related to the time histories of the logarithmic strain different from the
stress-free strain tensor (ξi j), the absolute temperature, and the extent of reaction each to second-
order along with certain combinations of cross-terms. Distinctively missing are cross-terms that
couple the shear deformation history with the extent of reaction as well as with the temperature
history. As discussed in section, 3, we have neglected the coupling between the network topology
and volumetric responses. The non-equilibrium free energy penalty taken from the SPEC model
is,
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Ψvisco =
1
2
(KG −K∞)

� t

0
ds

� t

0
du f 1 �t � − s�, t � −u�

�dI1ϒ
ds

dI1ϒ
du

(3.65)

+
1
2
(GG −G∞)

� t

0
ds

� t

0
du f 2 �t � − s�, t � −u�

�d(ϒdev
i j −ξ dev

i j )

ds
d(ϒdev

i j −ξ dev
i j )

du

+
1
2
(CFG −CF∞)

Θre f

� t

0
ds

� t

0
du f 5 �t � − s�, t � −u�

�dΘ
ds

dΘ
du

−(KGαG −K∞α∞)
� t

0
ds

� t

0
du f 3 �t � − s�, t � −u�

�dI1ϒ
ds

dΘ
du

−(KGβ G −K∞β ∞)
� t

0
ds

� t

0
du f 4 �t � − s�, t � −u�

�dI1ϒ
ds

dx
du

+(ηrxnG −ηrxn∞)
� t

0
ds

� t

0
du f 6 �t � − s�, t � −u�

�dΘ
ds

dx
du

The functions, { f k}, are different relaxation functions, expanded here as Proney series,

f k �t � − s�, t � −u�
�
=

m

∑
j=1

A jexp
�
−(t � − s�)

τ j

�
exp

�
−(t � −u�)

τ j

�
(3.66)

The Proney Series satisfy a normalization condition that f k(0,0)=∑m
j=1 A j = 1, and the arguments,

t � − s� and t � − u� represent the difference in material time between t � and s�. The material time is
related to the laboratory time scale, t, through the viscoleastic shift factor, a, such that t � = t

a . The
viscoelastic shift factor is an internal state variable which is itself a function of the deformation,
temperature, and reaction histories. The component pairs, (τ j, A j), represent individual relaxation
times and weights associated with the relaxation spectrum f k. Typically, these experimentally
determined relaxation spectra are first represented through stretched exponentials which are later
fit with a least-squared projection onto the Proney basis in Eq. 3.66. For example, the volumetric
and shear relaxation spectra at the viscoelastic reference temperature, which may be chosen to
be the glass transition temperature, are characterized by two parameters each (τv,γv) and (τs,γs)
through,

f v (t) = exp
��

−t
τv

�γv�
, f s (t) = exp

��
−t
τs

�γs�
. (3.67)

Here, (τk,γk) and (τm,γm) are material constants and no sum is applied on these subscripsts.

To simplify matters, we assume that all relaxation spectra obey a common time-temperature
superposition, which is the statement rheological simplicity. This assumption may be invalid if the
material is transitioned across its gel-point and becomes a liquid. As an example, for a rheologi-
cally simple material, the complex shear modulus as measured from dynamic mechanical analysis
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obeys the following relationship,

G∗(ω,Θ) = G∗(aΘω,Θre f ) (3.68)

Following the SPEC model, we use the phenomenological representation of the viscoelastic shift
factor’s dependence on the temperature, shear, and volumetric deformation histories,

loga =
−C1N
C2 +N

, (3.69)

N =

�
Θ−Θglass −

� t

0
ds f3

�
t � − s�,0

�dT
ds

�
. . . (3.70)

+C3

�
I1[ϒ]−

� t

0
ds f1

�
t � − s�,0

�dI1H
ds

�
. . .

+C4

� t

0
ds

� t

0
du f 2 �t � − s�, t � −u�

�d(ϒdev
i j −ξ dev

i j )

ds
d(ϒdev

i j −ξ dev
i j )

du
.

Here, C1−4 are material constants the determine the sensitivity of the viscoelastic time scale with
respect to temperature change (C1,C2), volumetric deformation (C3), and shear deformation (C4).
The material time scale can then be calculated as a function of the thermal, volumetric and shear
deformation histories through,

t � − s� =
� t

s

dz
a(z)

dz. (3.71)

From the equilibrium and non-equilibrium Helmholtz Free energy densities in Eqs. 3.57 and
3.65, the Hencky Stress is derived, with the equilibrium term denoted by Sϒ∞

i j , given by Eq. 3.62.

Sϒ
i j =

∂Ψ
∂ϒi j

= Sϒ∞
i j +(KG −K∞)

� t

0
ds f1

�
t � − s�,0

�dI1[ϒ]
ds

δi j (3.72)

+(GG −G∞)
� t

0
ds f2

�
t � − s�,0

�d(ϒdev
i j −ξdev)

ds

−(KGαG −K∞α∞)
� t

0
ds f3

�
t � − s�,0

�dT
ds

δi j

−(KGβ G −K∞β ∞)
� t

0
ds f4

�
t � − s�,0

�dx
ds

δi j

The non-equilibrium constants, ψi, can be related to standard thermodynamic quantities, so
that the total Helmholtz free energy, entropy, and Hencky stress are given by,

η =−
�

∂Ψ
∂T

�

ϒ,x,ξ
, (3.73)
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= ηre f +
CV ∞
Tre f

�
T −Tre f

�
+ηrxn

�
x− xre f

�
−K∞α∞Iϒ

−(KGαG −K∞α∞)
� t

0
ds f3

�
t � − s�,0

�dI1[ϒ]
ds

(CV G −CV ∞)

Tre f

� t

0
ds f5

�
t � − s�,0

�dT
ds

+(ηrxnG −ηrxn∞)
� t

0
du f6

�
t � − s�,0

�dx
du

.

Model Parameters and Experiments Necessary to Populate Them

The removable polymer model involves three categories of parameters. The first set contains
the thermal-chemical equilibrium and kinetics constants associated with the Diels-Alder chemistry,
which is summarized in table 3.1. The second and third sets are respectively associated with the
rubbery and glassy thermal-mechanical properties and are summarized in tables 3 and 3.3.

Bowman and co-workers discuss using FTIR to measure the temperature dependence of the
equilibrium constant as well as to determine the thermally activated parameters associated with
the forward and reverse reactions [6], and supplementary material for this reference describes the
process of fitting the Arrhenius kinetics parameters. However, they did not measure the volume
change as a function of the extent of reaction, and likely assumed that it is negligible particularly in
the gelled state of the material. Still, other systems could involve a volume change with extent of
reaction, which would be difficult to deconvolve from thermal expansion. Likely the best method is
simply to use a Thermal Mechanical Analyzer, and lump both volume changes due to temperature
and change in equilibrium extent of reaction into a non-linear, temperature dependent thermal
expansion coefficient. One other property related to the structure of the polymer network and the
reversible chemistry is the gel point extent of reaction, which can be determined as the extent
of reaction corresponding to the temperature at which the storage and loss-moduli have similar
frequency scalings, which is known as the Winter-Cambrion criterion [36]. This property can
therefore be determined from isothermal frequency sweep DMA data.

Mechanical properties associated with the equilibrium Helmholtz free energy density (Eq.
3.57) are summarized in 3. For the RPM model, two isotropic (and isothermal) linear elastic con-
stants are needed, which could be derived from storage shear and compression (or tensile) moduli
in DMA. Thermal properties involve measurements of the thermal conductivity and the enthalpy
(from which the specific heat capacity at constant pressure can be derived).

The final set of properties are associated with the glassy behavior. A detailed discussion of
this topic can be found in reference [4], and the interested reader is directed there. However, there
is one additional subtlety compared with traditional thermosets. For RPM materials, relaxation
behavior of different thermodynamic properties at different temperatures near the glass transition
may be difficult to acquire without pollution from the relaxation behavior of the polymer network
due to the reversible chemistry. This scenario would occur if the glass transition is relatively high
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(close to the gel point temperature) as the chemical kinetics would be fast. If the glass transition
is far below the gel point temperature, than this issue is likely minimal. A summary of system
parameters is supplied below.

Parameter Units Description
Θre f K Initial temperature
xre f none Initial extent of reaction
xgel Gel-point extent of reaction
Dα m2 s −1 Isotropic spatial diffusivity of species α
κ J m−1 K−1 s−1 Isotropic, spatial thermal conductivity

β ∞ none Equilibrium volumetric deformation associated with
the chemical reaction extent

φ mol m−3 The maximum concentration (per unit reference vol-
ume) that any species can obtain.

∆H◦
rxn J Standard enthalpy change associated with the Diels-

Alder reaction
∆η◦

rxn J K−1 Standard entropy change associated with the Diels-
Alder reaction

k0 s−1 Prefactor to the Arrhenius chemical kinetics.
Eact J Activation energy associated with the Arrhenius re-

action kinetics.

Table 3.1. Properties of the Diels-Alder chemistry and transport
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Parameter Units Description
Pre f Pa First Piola-Kirchoff pressure datum (ambient pres-

sure)
K∞ Pa Equilibrium bulk modulus

G∞
re f Pa Equilibrium shear modulus at the reference tempera-

ture, Θre f
CF0 J kg−1 K−1 Specific heat capacity at a fixed state of deformation.

This constant weights a term that produces a constant
response with respect to temperature.

CF1 J kg−1 K−1 Specific heat capacity at a fixed state of deformation.
This constant weights a term that produces a linear
response with respect to temperature.

α∞ K−1 Equilibrium volumetric thermal expansion coeffi-
cient

Table 3.2. Equilibrium helmholtz free energy density parameters.
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Parameter Units Description
Θglass K Nominal glass transition temperature
Ψre f Pa Helmholtz free energy density datum in the initial

state of the material point
KG Pa Glassy bulk modulus
GG Pa Non-Equilibrium shear modulus
CFG J kg−1 K−1 Specific heat capacity at a fixed state of deformation

in the glassy state. This constant weights a term that
produces a linear response with respect to tempera-
ture

αG K−1 Non-equilibrium volumetric thermal expansion coef-
ficient

β G none Non-equilibrium volumetric deformation associated
with the chemical reaction extent

ηrxnG J m−3 Non-equilibrium entropy density (per unit reference
volume) associated with the thermal chemistry

f i none Relaxation process associated with the ith reaction
τi s Stretched exponential time constant associated with

the ith spectrum
γi none Stretched exponent associated with the ith spectrum
C1 none Viscoelastic clock parameter associated with temper-

ature
C2 K Viscoelastic clock parameter associated with temper-

ature
C3 K Viscoelastic clock parameter associated with volume

deformation
C4 K Viscoelastic clock parameter associated with shear

deformation

Table 3.3. Non-equilibrium helmholtz free energy density pa-
rameters.
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Chapter 4

Results

Recall that the objective of this paper is to examine the difference in thermal-mechanical behav-
ior between removable and traditional thermosetting encapsulations, and so we focus on scenarios
in which the temperature field is controlled. Furthermore, since we neglect species diffusion,
we may focus only on balancing momentum as the material is subjected to different thermal-
mechanical boundary value problems. Thus, we implement the constitutive model into Sandia’s
Library for Advanced Materials in Engineering (LAME) and run simulations using Sierra/SM, an
implicit, quasi-static finite deformation momentum balance code. Simulations use 3D linear hexa-
hedral finite elements with a selective deviatoric integration scheme. Through its implementation
in LAME, the model may be linked with in-house Sandia energy balance and species diffusion
codes to fully represent transient thermal-chemical-mechanical analysis if necessary. We present
three sets of results with associated objectives:

• We develop a (semi-)analytic solution to an applied uniaxial deformation and thermal history
of the removable polymer model under equilibrium chain conditions. These results show-
case the network relaxation behavior due to the Diels-Alder chemistry without the added
complexity the non-equilibrium viscoelasticity.

• We calibrate and validate the constitutive model against data in the literature to show its
predictive capabilities.

• We contrast the behaviors of a removable vs. non-removable thermosetting polymers in
encapsulation scenarios. These results have important ramifications on the use of removable
polymers in electronics packaging.

Analytic Solutions of Rubbery Removable Encapsulation

Our objective is to determine the thermal-chemical-mechanical behavior of the removable poly-
mer model when we subject a material point to an applied uniaxial stress and temperature history.
Immediately, we neglect the non-equilibrium viscoelastic behavior discussed in section 3 as well
as any volume change associated with evolving the extent of reaction (β = 0 in Eq. 3.62). Con-
sider the scenario in which we apply a strain history in the 11 direction (ϒ11 = ϒ11 [t] , t ≥ 0) while
the other two principal directions remain traction free (Sϒ

22 = Sϒ
33 = 0, t ≥ 0). We focus on the
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stress work conjugate to the logarithmic strain, Eq. 3.62, which can be transformed to the Second
Piola-Kirchoff stress via Eq. 3.21 as desired. We seek to compute the axial stress, (Sϒ

11[t]), the
transverse strain (ϒ22[t] = ϒ33[t]), and the permanent axial and transverse strains that arises from
the Diels-Alder chemistry and network rearrangement (ξ11[t],ξ22[t] = ξ33[t]). Requiring that the
transverse stresses are zero, one may solve for the transverse strain as a function of time from Eq.
3.62,

ϒ22 =

�
Kα∞(Θ−Θre f )

2
+

�
G∞

3
− K

2

�
ϒ11 +G∞ξ22

��
G∞

3
+K

�−1
. (4.1)

The permanent deformation evolves from Eq. 3.54, such that the transverse component obeys,

ξ̇22 =
Ġ∞
+

3G∞

�
K(α∞(Θ−Θre f )−3ϒ11)

2(G∞
3 +K)

+ξ22

�
G∞

G∞
3 +K

−3

��
. (4.2)

Since the permanent strain tensor, ξi j is deviatoric by construction (see Eq. 3.54), the permanent
axial deformation is 2ξ11 = −ξ22. If Eq. 4.2 can be integrated, then the permanent deformation
tensor and total logarithmic strain tensors are known (the latter via Eq. 4.1), and consequently,
the axial stress can be obtained from Eq. 3.62. However, Eq. 4.2 is difficult to integrate under
arbitrary applied axial strain and temperature histories because, as they change, chemical equilib-
rium changes in accordance with Eqs. 3.34 and 3.35, and so the equilibrium shear modulus (G∞)
changes via 3.48 along with the rate of increase of the shear modulus (Ġ∞

+) due to the forward
Diels-Alder reaction (Eqs. 3.50 and 3.51).

If we further restrict ourselves to isothermal conditions, then the system is in chemical equilib-
rium, and G∞, G∞

+, and α∞(Θ−Θre f ) are all constants. Then, Eq. 4.2 can be integrated for certain
applied axial strain histories. Consider an isothermal, uniaxial stress relaxation scenario in which
the applied axial strain history is ϒ11 = ϒ̄, t ≥ 0. The corresponding transverse permanent strain
from Eq. 4.2 is,

ξ22 =−a
b
(1− exp[−bt]) , (4.3)

a =
Ġ∞
+

3G∞

�
3ϒ̄−α∞(Θ−Θre f )

2(G∞
3 +K)

�
K, b =

Ġ∞
+

3G∞

�
3− G∞

G∞
3 +K

�
.

The total transverse strain can be computed from Eqs. 4.1 and 4.3, and finally, the axial stress may
be computed straightforwardly from Eq. 3.62.

The main result from the isothermal stress relaxation boundary value problem is the exponential
evolution of the the transverse strain, permanent strain, and axial stress. Since there is only one time
scale, which is set by G∞

Ġ∞
+

, a single set of results characterizes isothermal, rubbery stress relaxation
due to network topology evolution if Fig. 4.1. As thermal expansion only serves to offset the initial
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(a) Stress free (ξi j) and transverse log strains (ϒtrans)
normalized to the applied log strain (ϒax).
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Figure 4.1. Analytic solution of an RNP subjected to an isother-
mal, stress relaxation protocol in its rubbery state. Thermal ex-
pansion is neglected without loss of solution generality. A sudden
logarithmic strain of 1 is applied at t = 0, and the ratio of the bulk
to shear moduli is 106 corresponding to the nearly incompressible
limit of elastomers.

applied deformation, it is neglected in these analytic results. From Fig. 4.1(b), the axial stress in
the material approaches zero after a sufficient amount of dimensionless time. For the stress tensor
to be zero, both the deviatoric and volumetric contributions must vanish, which is exactly what the
evolution of the stress free strain tensor accomplishes in Fig. 4.1(a). The stress decays because
the permanent shape of the material evolves to become the deformed shape. An interesting feature
of this process is that the stress free strain tensor is by construction deviatoric, and so we see the
relaxation of elastic volumetric deformation due to the removable of deviatoric stresses. Another
interesting feature of this result is that regardless of the ratio of bulk to shear moduli, the zero
stress state is the same, and so all solutions will arrive at the permanent deformations in Fig. 4.1(a)
although their initial trajectories may differ.

Isothermal uniaxial extension at a constant logarithmic strain rate is also modeled analytically.
Here, the applied axial strain is given by ϒ11 = ϒ̇t, t ≥ 0, where ϒ̇ is a constant. The associated
permanent transverse logarthmic strain can be integrated from Eq. 4.1,

ξ22 =
(a−bc)(1− exp[−bt])−abt

b2 , (4.4)
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a =
Ġ∞
+

3G∞

�
3ϒ̇K

2(G∞
3 +K)

�
, b =

Ġ∞
+

3G∞

�
3− G∞

G∞
3 +K

�
,

c =−
Ġ∞
+

3G∞

�
α∞(Θ−Θre f )

2(G∞
3 +K)

�

Again, the total transverse logarithmic strain and axial stress can be computed from Eqs. 4.1 and
3.62 respectively using Eq. 4.4. In contrast to the sudden isothermal stress relaxation problem,
there are two time scales in the isothermal, uniaxial extension scenario, one associated with the
strain rate, ϒ̇, while the other is associated with the rate of permanent shape change due to network
topology evolution, Ġ∞

+
G∞ . The ratio of these time scales determines the model’s response, ϒ̇G∞

Ġ∞
+

,
which is shown for different ratios in Fig. 4.2.
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Figure 4.2. Analytic solution of an RNP subjected to an isother-
mal, constant logarithmic strain rate uniaxial extension protocol
in its rubbery state. The axial and transverse strains are provided
and represent the limit when the strain rate is much faster than
the relaxation rate due to network topology evolution. Thermal
expansion is neglected without loss of solution generality. the ra-
tio of the bulk to shear moduli is 106 corresponding to the nearly
incompressible limit of elastomers.

There are two clear limiting regimes. If ϒ̇G∞

Ġ∞
+

>> 1, then there is no significant evolution to the
network topology, and so the model exhibits a linear elastic response as expected. On the other
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hand, if ϒ̇G∞

Ġ∞
+

<< 1, then the evolution of the network topology and associated stress relaxation
rate is much faster than the strain rate. Hence, the material ”flows” with applied deformation and
no stress is produced. When these two rates are comparable, as is the case in Fig. 4.2, then a
steady state behavior is set by the ratio itself. Specifically, the maximum axial stress (normalized
by Young’s modulus) approaches this ratio, which can be clearly seen in Fig. 4.2(b) for the values
of ϒ̇G∞

Ġ∞
+

= 0.1,1.

Model Calibration and Validation

We turn our attention towards validating the model’s predictive capability to simulate the poly-
mer dynamics associated with the Diels-Alder chemistry/stress relaxation behavior of RNPs. Our
objective is to predict the dynamic mechanical analysis (DMA) behavior of a specific RNP from
[6], which is a challenging task because it involves three time scales: non-linear viscoelastic glassy
behavior, DA chemistry and associated network relaxation, and the time scale of mechanical per-
turbation. Furthermore, it sweeps a range of temperatures and perturbation frequencies. The DMA
protocol involves isothermal frequencies sweeps in oscillatory shear.

Since the DMA experimental data is isothermal and least 25C more above the glass transition,
we consider only a rubbery RPM model calibration, which includes the DA chemistry/network
relaxation but has turned off all viscoelastic behavior and thermal properties. This version of the
model can be fully calibrated from chemical and mechanical data from reference [6] without any
adjustable parameters. Mechanically, we select one rubbery shear modulus value at 75C, and
choose the bulk modulus to be 4 orders of magnitude larger to replicate nearly incompressible
elastomeric behavior. The chemical and rubbery model parameters are summarized in table 4.1.
Unfortunately, insufficient experimental data existed in the work of Bowman and co-workers to
populate the glassy behavior of the RPM model; so we could not include such behavior in this
validation study.

Θre f 75C xgel
1√
2

K∞ 3.8e8 Pa G∞
re f 3.8e4 Pa

Dα 0 m2 s−1 β ∞ 0
∆H◦

rxn -400 J mol−1 ∆η◦
rxn -106 J K−1

k0 5.6e9 s−1 Eact 88e4 J

Table 4.1. Calibrated material properties associated with the dy-
namic mechanical analysis validation predictions. Quantities are
taken directly from reference [6] with the exception of K∞ and β ∞,
which were chosen as discussed in the text.

Clearly, the experimental data can be divided into two regimes dominated by chemical relax-
ation and one in which viscoelasticity begins to play a role. In the former regime, the RPM model
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Figure 4.3. Comparison between model predictions and exper-
iments in dynamic mechanical analysis under oscillatory shear.
Storage shear moduli are presented for three isothermal frequency
sweeps. Data is reproduced from reference [6]. The line that dis-
tinguishes between chemical relaxation and the onset of viscoelas-
ticity is meant to qualitatively divide these two behavior regimes.

with no adjustable parameters reasonably captures the qualitative behavior of the experimental
system. At slower frequencies and higher temperatures, the rate of network topology evolution
(permanent shape change) is so fast that the material essentially “flows” with the applied defor-
mation and cannot store elastic energy. Clearly, the model is not quantitatively accurate especially
at the highest temperature. Note that 87C is very close to the gel point transition, and this close
to the percolation threshold, the principal of rheological simplicity may not hold and/or the linear
dependence of the shear modulus with respect to extent of reaction may not be accurate.

In the middle, especially for the 78 and 80C curves, both the experiment and model demonstrate
similar rubbery plateau’s in which the storage modulus is less sensitive to frequency on a given
isotherm. This result make sense in the context of the rubbery RPM model. Without viscoelasticity,
only two time scales are active, and if the applied mechanical time scale is much faster than the
chemistry/network topology evolution, then the network behaves in an elastic manner; hence the
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model produces a distinct rubbery plateau at sufficiently fast frequencies for each temperature.

Finally, at the fastest frequencies, while the RPM model continues on its rubbery plateau, the
experimental data are showing the onset of the viscoelastic time scale (the onset of glassy behav-
ior). Of course, this part of the model was not calibrated due to a lack of necessary data, but clearly
the experimental trend–and the model capability to represent it–is consisent with expectations from
the time-temperature superposition principal.

Removable Thermosets in Underfill Scenarios

The objective of this section is to distinguish the behavior of RNP and traditional thermoset en-
capsulations in relevant thermal-mechanical scenarios. We are particularly interested in underfill
applications wherein an encapsulation’s thermal-mechanical behavior may strongly influence the
conditions for solder-joint fatigue (See Fig. 2.1) due to the large thermal expansion mismatch of
the polymer underfill and neighboring ceramic and metallic components. Clearly, the RNP is bene-
ficial/detrimental compared with traditional thermoset encapsulation if it experiences lower/higher
stresses during thermal cycling, which ultimately are applied to surrounding components. To make
this comparison, we examine a simple, homogenous motion, single element boundary value prob-
lem in which the displacement field is constrained along one axis while the other two axes uncon-
strained (and their outward surfaces are traction free), which may primitively represent underfill
scenarios (neglecting adhesion constraints at the interfaces). This element is subjected to a thermal
cycle representative of taking a material from a post-cured state at an elevated temperature, holding
it at an intermediate temperature, and then cycling the temperature. The applied temperature field
used is provided.

The behavior of the removable network polymer model is determined by three competing time
scales:

• The experimental time scale associated with the rates of applied deformation and tempera-
ture change

• Chemical kinetics, such as the half-life of a Diels-Alder linkage

• The non-linear viscoelastic time scale (1
a )

The analytic solutions in section 4 dealt only with the first two time scales under special conditions
in which they are fixed. However, in encapsulation scenarios, materials are subjected to thermal
cycles in which all three time scales vary. If the material is in the glassy state throughout the entire
thermal cycle, then the model will predict no significant network topology evolution based on our
assumption that chemical and viscoelastic kinetics act in parallel in influencing the rate of shape
change (see Eq. 3.47), and so we do not observe differences between removable and traditional
encapsulation under that condition. However, if the glass transition occurs within or below the
thermal cycle temperature range, then differences will arise.
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Figure 4.4. Temperature history applied in the simple, homoge-
nous motion, uniaxial stress encapsulation scenario.

We consider two scenarios, one in which Θglass is equal to the minimum temperature in the
thermal cycle (-25C) and the other in which Θglass is in the middle of the thermal cycle. For these
analyses, we choose a different encapsulation material, namely an epoxy thermoset (828 DEA) that
has been extensively studied and characterized for encapsulation applications . To compare it to
the model in this paper, we simply ”turn-on” the additional thermal-chemistry and consider that the
RPM’s rubbery properties are calibrated to 25C instead of 75C. To examine the role of vitrification,
we change the reference temperatures of the glass transition between the two scenarios. A table of
the system parameters for each scenario is reported in table 4. In the first scenario, Θglass = Θmin
from Fig 4.4, so that the materials are in the rubbery state the whole time. Note that, although
we change the temperature now, we are focused on the mechanical response, and so we neglect
thermal properties.

The removable and traditional thermosets differ in their axial stress responses in Fig. 4.6 due
both to the changing stress free configuration of the removable thermoset as seen in Figs. 4.6(a)
and 4.6(d) as well as the non-linear temperature dependence of its rubbery shear modulus; by
contrast, the rubbery shear modulus of the traditional thermoset does not change substantially
over the temperature range. Recall that the RPM models the rubbery shear modulus with a linear
dependence on temperature and the extent of reaction (Eq. 3.48), which itself (at equilibrium)
depends exponentially on the temperature through the equilibrium constant (Eq. 3.34). Indeed, in
this scenario, the extent of reaction changes from approximately 0.86 to 0.89, which corresponds to
a 20% change in rubbery shear modulus relative to the 1√

2
gel point extent of reaction! Moreover,

the extent of reaction is often not in equilibrium, which, at the lowest temperature of -25C would
be approximately 0.98 with the thermal-chemical constants in table 4 and the equilibrium constant
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Θre f 25C xgel
1√
2

K∞ 3.2e9 Pa Gre f 4.5e6 Pa
Kglass 4.9e9 Pa Gglass 0.9e9 Pa
Dα 0 m2s−1 β ∞ 0

∆H◦
rxn -40 kJmol−1 ∆η◦

rxn -106 Jmol−1K−1

k0 5.6e9s−1 Eact 88e4 J
α∞ 600 ppm K−1 αglass 170 ppm K−1

C1 16.5 C2 54.5 K
C3 1000 K C4 11800 K
τ1 6 s γ1 0.24
τ2 0.12 s γ2 0.22

Number of Proney Terms 17 Θglass -25C, 25C

Table 4.2. Properties used in the two thermal mechanical simu-
lations that compare removable vs. conventional thermosets. The
proney terms are logarithmically spaced evenly between 10−8 and
108 seconds. Two Proney series are fit in a least squares sense
to the stretched exponential relaxation curves defined by (τ1,γ1),
(τ2,γ2) in Eq. 3.67. Viscoelastic parameters were taken from [5].
Thermal-chemical constants were taken from [6].

equation 3.34. However, the chemical kinetics are sluggish at such low temperatures (see Fig.
2.1(b) for the half-life of a reversible linkage vs. temperature), which prevents the equilibrium
state from being reached even in the absence of vitrification. Another important observation is that
at the high temperature state, while the traditional thermoset returns to a zero stress state, the RPM
predicts that the material responds in compression. This results is sensible since during the cooling
process, the permanent shape of the removable thermoset changed to eliminate the tensile thermal
eigenstrain.

In the second scenario, the glass transition is assumed to occur in both materials at 25C, which
is in the middle of the thermal cycle. Vitrification plays a dominant role, and the material responses
are only slightly distinguishable with respect to the axial stress response. In this scenario, the
viscoelastic shift factor transitions from rubbery to glassy regimes and is almost identical between
the two materials. While the initial cooling response produces a different stress response as with
the previous scenario, this difference is negligible compared with the glassy response on further
cooling until both materials cross above the glass transition temperature again. The effects of
vitrification can also clearly be seen on the evolution of the permanent shape of the RPM material,
which ceases below the glass transition in Fig. 4.6(d). However, in accordance with the model, the
thermal-chemistry is limited only by its own kinetics as in the previous scenario.
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(d) Permanent logarithmic strains: Θglass =−25C

Figure 4.5. Single element encapsulation scenario in which
Θglass = Θmin from Fig 4.4. Along one axis, the displacement field
is fixed while traction free conditions are applied to the outer sur-
faces in the orthogonal directions. In this scenario, both materi-
als remain rubbery throughout the thermal cycle, and a substantial
difference in the axial stress response is observed between the two
materials.
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(c) Extent of reaction: Θglass = 25C

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Time (hours)

L
o
g
 S

tr
ai

n

 

 

ξax
−ξtrans

(d) Permanent logarithmic strains: Θglass = 25C

Figure 4.6. Single element encapsulation scenario in which
Θglass = Θroom (25 C) from Fig 4.4. Along one axis, the displace-
ment field is fixed while traction free conditions are applied to the
outer surfaces in the orthogonal directions. In this scenario, each
material transitions from a rubber to a glass as evidenced by the
viscoelastic shift factor, and only a very small difference is ob-
served between their stress responses.
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Chapter 5

Conclusions

Thermosetting polymers with thermally reversible functionalities exhibit permanent shape change
(stress relaxation) in the gelled state and a clear gel-point transition, above which the thermoset
behaves in as a viscous liquid. Both of these intrinsic properties are distinct from conventional
thermosets. The consequence of this gel point transition is that these thermosets can be removed.
The focus of this paper has been to modeling the solid-like behavior of such removable network
polymers (in their gelled states). Three time scales determine the thermal-chemical and mechanical
responses of such materials:

• The rate of applied temperature change and/or deformation

• The kinetics of the reversible Diels-Alder reaction

• The viscoelastic time scale associated with the material’s glassy polymer dynamics

Without any tuning parameters, the model for such materials validated reasonably well compared
with limited experimental data, which suggests that at least qualitatively, the polymer dynamics
for such materials are adequately represented by the work in this paper.

An objective of this work is to distinguish the thermal-mechanical behaviors of removable
network polymers and traditional (non-removable) network polymers. Simulations in this article
demonstrate that if viscoelasticity dominates the thermal-mechanical cycles, the two classes of ma-
terials respond identically. Also, if the thermal-mechanical conditions are such that vitrification is
avoided and the rates of applied deformation and temperature change are considerably faster than
the Diels-Alder chemical kinetics, then removable and traditional network polymers will behav-
ior similarly as elastomers. However, given that the number density of chains, and therefore the
rubbery shear modulus, evolves with temperature for removable network polymers, their thermal-
mechanical behavior will be distinct even if network topology evolution is largely avoided.

However, if vitrification is either fully or partially avoided in the applied thermal-mechanical
cycles, and the rates of mechanical and thermal stimuli are slow or comparable to the Diels-Alder
chemical kinetics (and associated network topology evolution), then removable network poly-
mers may behave in a significantly different manner compared with traditional thermosets. Given
enough time, they can change their shape to become stress free in any configuration that does not
involve volumetric deformation, and this has important ramifications on the use of such materials
to mitigate cure shrinkage stresses and for use as encapsulation in electronics packaging.
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