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ABSTRACT 
There are an extensive body of knowledge and some commercial products 

available for calculating prognostics, remaining useful life, and damage index 
parameters. The application of these technologies within the nuclear power 
community is still in its infancy. Online monitoring and condition-based 
maintenance is seeing increasing acceptance and deployment, and these activities 
provide the technological bases for expanding to add predictive/prognostics 
capabilities. In looking to deploy prognostics there are three key aspects of 
systems that are presented and discussed: component/system/structure selection, 
prognostic algorithms, and prognostics architectures. Criteria are presented for 
component selection: feasibility, failure probability, consequences of failure, and 
benefits of the prognostics and health management (PHM) system. The basis and 
methods commonly used for prognostics algorithms are reviewed and 
summarized. Criteria for evaluating PHM architectures are presented: open, 
modular architecture; platform independence; graphical user interface for system 
development and/or results viewing; web-enabled tools; scalability; and 
standards compatibility.

Thirteen software products were identified and discussed in the context of 
being potentially useful for deployment in a PHM program applied to systems in 
a nuclear power plant (NPP). These products were evaluated by using 
information available from company websites, product brochures, fact sheets, 
scholarly publications, and direct communication with vendors. The thirteen 
products were classified into four groups of software: research tools, PHM 
system development tools, deployable architectures, and peripheral tools. Eight 
software tools fell into the deployable architectures category. Of those eight, only 
two employ all six modules of a full PHM system. Five systems did not offer 
prognostic estimates, and one system employed the full health monitoring suite 
but lacked operations and maintenance support. Each product is briefly described 
in Appendix A, “Assessment Criteria.” Selection of the most appropriate 
software package for a particular application will depend on the chosen 
component, system, or structure. Ongoing research will determine the most 
appropriate choices for a successful demonstration of PHM systems in aging 
NPPs.
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SUMMARY
At the start of 2011, there were 439 nuclear power plants (NPPs) in the 

commercial global fleet; these plants started operation with 30- or 40-year 
licenses. The 104 NPPs in the United States represent about 10% of the installed 
capacity and currently provide about 20% of U.S. electricity. They have become 
highly efficient with an average capacity factor in excess of 91%, and they are a 
key element in the delivery of base-load electricity. They were originally licensed 
for 40 years, and a process has been established to enable license extension, to 
permit operation from 40 to 60 years. As of July 2011, license extensions have 
been granted for 71 plants at 40 sites. An additional 13 plants at nine sites are 
currently undergoing review for license extension to 60 years, and 19 more 
submissions are expected in the next 6 years. Nine plants in the U.S. have now 
moved into extended operation (past 40 years).

To meet the ever-increasing energy demand, the United States nuclear 
industry is now investigating the possibility of longer-term operation, from 60 to 
80 years, for the existing NPP fleet, and is developing new plants with longer 
design life. The safe, secure, reliable, and economic extended operation of aging 
NPPs presents many challenges. The 2009 Light Water Reactor Sustainability 
(LWRS) Workshop identified online monitoring (OLM)of active and structural 
components as essential to the better understanding and management of the 
challenges posed by aging NPPs. Operators of aging NPPs need condition 
information to better manage plant life holistically, adjusting operating 
conditions to reduce the impact of stressors. All of the trends seen for operating 
the legacy and the new nuclear power fleet are increasing the needs for the 
application of advanced online surveillance, diagnostic, and prognostic 
techniques to continuously monitor and assess the health of NPP systems and 
components. The use of OLM for fault diagnosis enables the use of Condition-
Based Maintenance (CBM), a regime where components are replaced or repaired 
based on condition rather than age. Active components, including pumps, valves 
and motors, are now being well managed and replaced as necessary using CBM.
However, there are opportunities to move beyond anomaly detection in assessing 
condition. Other industries are employing tools that can predict condition, rates 
of degradation, and remaining useful life. These insights enable more cost-
effective plant management, allowing components to be managed and replaced 
based on the estimated time of failure.

Implementation of advanced condition monitoring and prognostics in 
existing NPPs poses many challenges, and it can be expected that it will initially 
be demonstrated with little to no additional sensing capabilities. The Electric 
Power Research Institute (EPRI) has already demonstrated the feasibility of 
OLM, in various forms, at several participating U.S. NPPs, including Harris, 
Limerick, Salem, Sequoyah, Three Mile Island, and V. C. Summer. Additionally, 
OLM has been implemented in Europe, both at British Sizewell B and at several 
Electricité de France nuclear facilities. Base technologies, including wireless data 
infrastructures, are being installed in an increasing number of plants. The next 
step in the development of advanced OLM is to move beyond condition-based 
maintenance with pattern recognition and anomaly detection applied to the 
measured data. This next development is to provide an estimate for the remaining 
useful life using prognostic tools.
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This report provides an assessment of the state of the art technologies needed 
for the application of prognostic tools to high-value active components in NPP. 
Three areas are discussed:

� Component selection methodology

� Prognostic algorithms

� Prognostics architectures.

In selection of components for the application of prognostic, as attention 
turns to longer term operation, interest is increasing in understanding the 
fundamental degradation signatures, and their impact on a system or component. 
A set of criteria is presented that will guide selection of systems, structures, and 
components, which are viable targets for prognostics and health management
(PHM). Time and resources would be wasted developing PHM systems for 
components that represent low risk to the plant (the product of probability of 
failure and consequence of failure) because these components will not illustrate 
the true benefits of PHM. The choice of components and systems to be monitored 
is critical to economic viability.

A number of prognostic algorithms have been developed and successfully 
demonstrated in other industries, and the scientific basis for applying advanced 
diagnostic and prognostic systems for active component monitoring has been 
established. A challenge will be adapting and validating these methods to NPPs.
Knowledge of the broad array of available prognostic algorithms is necessary to 
select the most effective models for each selected component. An existing 
software framework can be leveraged to demonstrate the use of PHM in an 
existing NPP with reduced development time and cost.

Finally, a review of commercially available PHM software products is given.
Thirteen products identified through literature and Internet searches are evaluated 
based on a consistent set of criteria: open, modular architecture; platform 
independence; graphical user interface for system development and/or results 
viewing; web-enabled tools; scalability; and standards compatibility. The thirteen 
products were classified into four groups: research tools, PHM system 
development tools, deployable architectures, and peripheral tools. Eight software 
tools fell into the deployable architectures category. Of those eight, only two 
employ all six modules of a full PHM system. Five systems did not offer 
prognostic estimates, and one system employed the full health monitoring suite,
but lacked operations and maintenance support. In looking towards potential for 
deployment, if an existing software framework can be leveraged to demonstrate 
the use of PHM in an existing NPP this will reduce development time and cost.
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Lifecycle Prognostics Architecture for Selected 
High-Cost Active Components

1. INTRODUCTION
At the start of 2011, there were 439 nuclear power plants (NPPs) in the commercial global fleet; these 

plants started operation with 30- or 40-year licenses. In the United States there are 104 plants, and to meet 
the demand for electricity with an aging fleet there is a growing interest in longer term operation (LTO) of 
these valuable resources. As of July 2011, nine plants in the U.S. had moved into extended operation (past 
40 years); license extensions to operate from 40 to 60 years have been granted for 71 plants at 40 sites.
An additional 13 plants at nine sites are currently undergoing review for license extension operate to 60 
years, and 16 more are expected to apply for extensions in the next 6 years (US NRC 2011). Many other 
countries are also considering an additional 10 or 20 years of operation for their plants, and, in the U.S., a 
second 20 years of license extension (from 60 to 80 years) for the current NPP fleet is being considered.
In the light of the accident at Fukushima Nuclear Plant, there are also some countries that have announced 
that they will phase out nuclear power.

The safe, secure, and reliable operation of aging NPPs presents many challenges. There have been 
various meetings discussing the issues, including a 2009 Light Water Reactor Sustainability (LWRS) 
Workshop, which identified OLM of active and structural components as essential to the better 
understanding of the challenges posed by aging NPPs (Hallbert et al. 2009). Operators of aging NPPs 
need information on the condition of structures, systems, and components to better manage power-plant 
life holistically, adjusting operating conditions to reduce the impact of stressors that cause degradation. In 
managing systems in plants there is increasing adoption of condition-based maintenance (CBM) for active 
components. Such techniques provide a foundation upon which a variety of advanced online surveillance, 
diagnostic, and prognostic techniques to continuously monitor and assess the health of NPP systems and 
components can be deployed.

Active components are managed under a maintenance rule. The use of OLM for fault detection and
diagnosis in a condition-based approach identifies components that need to be replaced or repaired based 
on condition rather than age. Current practice uses signatures and pattern recognition to identify 
anomalies and off-normal conditions. Moving beyond identification of “faults” is development of fault 
degradation models and prognostic methods that provided estimates of remaining useful life. The 
deployment of prognostic methods allows for use of more proactive Prognostic Health Management 
(PHM), where components are opportunistically repaired or replaced based on the estimated time of 
failure. The aerospace and defense communities have demonstrated that PHM can bring significant 
advantages in terms of availability, enhanced safety, and reduced fleet operation costs (Vachtesvanos et 
al. 2006; Larsen et al. 2004). CBM is being deployed in nuclear plants and implementation of these 
proactive prognostic technologies in NPPs is expected to benefit the quest to maintain high capacity 
factor, shorten planned outages (currently about 40 days), maintain safety, and facilitate life extension in
existing plants.

Implementation of PHM in existing NPPs poses many challenges, and to be accepted must initially be 
demonstrated with deployment of a minimum of additional sensing capabilities. The Electric Power 
Research Institute (EPRI) has already demonstrated the feasibility of OLM at several participating U.S. 
NPPs, including Harris, Limerick, Salem, Sequoyah, Three Mile Island, and V. C. Summer (EPRI 2003; 
Hines and Seibert 2006). Additionally, OLM has been implemented in Europe, both at British Sizewell B 
and Electricité de France nuclear facilities (Hines and Seibert 2006). There are already known to be 
significant opportunities to deploy new technologies when upgrades, including modernization of 
instrumentation and control systems, are implemented at existing facilities. The economic benefit from a 
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predictive maintenance program can be demonstrated from a cost/benefit analysis. An example is the 
program for the Palo Verde Nuclear Generating Station (Johnson and Maxwell 2002). An analysis of the 
104 U.S. legacy systems has indicated that monitoring and diagnostics has the potential for savings at 
over $1B per year when applied to all key equipment (Bond et al. 2008).

The availability of low-cost wireless sensor technologies makes the broad deployment of PHM across 
the U.S. nuclear industry more feasible, enabling rapid deployment of multiple sensors for condition 
monitoring. There has been research work that established feasibility of its use in pump monitoring, 
where wired and wireless data were collected on the same systems (Jarrell et al. 2004). To date, wireless 
sensor technologies have been implemented in a few U.S. NPPs, including Limerick, San Onofre, and 
Comanche Peak (Korsah et al. 2009; IAEA 2008). In addition there has been work to demonstrate the 
technology with rotating equipment in research reactors (Hashemian 2011a).

Current state of the art for OLM in NPPs includes leak monitoring and systems that measure reactor 
noise, acoustic signals, and vibration in various forms (IAEA 2011a). Measurements of several reactor 
environmental parameters (temperature, pressure, neutron flux), also occur online (IAEA 2011b). In 
addition there are some aspects of sensor calibration that are addressed OLM (Hashemian 2011b; IAEA 
2011a). When the state of the art is reviewed (Bond 2010; ASME 2010) it appears that many, if not all, 
active components (pumps, valves, motors, etc.) in an NPP can potentially be well managed, routinely 
diagnosed, analyzed, and upgraded as needed using a combination of periodic and online CBM. However, 
opportunities exist to both centralize monitoring and employ more advanced and predictive or prognostic
technologies, which can reduce operation and maintenance costs, and potentially maintain high capacity 
factor, as plants enter extended operation. The use of more automated and OLM and analysis also has the 
advantage of potentially being better using limited staff resources and reducing worker dose.

As attention turns to longer term operation, interest is increasing in understanding the fundamental 
degradation signatures for both active and passive components and how these relate to the underlying 
degradation phenomena. The ability to successfully manage the passive systems and structures in NPP is 
seen as critical to the goal of long-term operability (Bond et al. 2011; Bond and Meyer 2011). These 
passive components can also benefit from the deployment of prognostic methods that utilize many of the 
same algorithms as those used with active components.

This report reviews the state of the art and discusses alternate approaches and methodologies in three 
areas that are at the core of the application of prognostics to components in an NPP. The first is the choice 
of components and systems to be monitored (discussed in Section 2). The second is the various classes 
and types of prognostic algorithms (see Section 3). The third is an initial assessment of the various 
prognostics architectures that are being considered for, or have been applied to, problems relevant to 
deployment in NPP (see Section 4). A summary and some conclusions are given in Section 5. An 
Appendix A, “Assessment Criteria,” provides some additional details for some commercial off-the-shelf 
(COTS) architectures.
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2. COMPONENT SELECTION METHODOLOGY
The primary objectives of PHM systems are to detect abnormal conditions, determine root causes of 

faults, assess the degree of damage, and estimate remaining useful life (RUL), where the RUL is defined 
to be the time until the performance is no longer expected to meet either a specification or a minimal 
requirement, with an acceptable level of confidence or probability of failure (POF).

In looking at the process of OLM, there is a series of elements in the process that can be identified. 
This hierarchy of responses, culminating in mitigation actions, is illustrated in Figure 1. The overarching 
goal of implementing PHM systems in NPPs is to improve the safety, reliability, and 
economics/profitability of the aging nuclear fleet and extend their service life in the most cost-effective 
manner.

Figure 1. System, Structure, and Component (SSC) component performance monitoring system (Baldwin 
et al. 2010).

Selection of the components and structures to be monitored is a crucial step for successful PHM 
implementation in NPPs. The system selection process includes selection of both the component (active 
and passive) and the appropriate monitoring approach to be deployed. As in any decision-making process, 
this selection should be based on rigorous consideration of the numerous parameters that are identified as 
significant influencing factors. These factors include the feasibility of a specific monitoring procedure, 
component failure probability, risk (or consequences) associated with component failure, and the overall 
benefits of the implemented monitoring system. The initial decision process should be designed to handle 
both known and potential new phenomena associated specifically with aging components in extended 
operation beyond initial design period in NPPs.

There are also economic factors, both as they relate to a specific plant, and research and development 
costs associated with addressing needed science and technology. Such funding issues and investment 
discussions, although important, are outside the scope of this report.

The following have been identified as the primary factors that affect the selection of SSC for 
monitoring: feasibility of deployment, failure probability, consequences of failure, and benefits of 
monitoring. Each of these factors is discussed briefly in the following subsections.
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2.1 Feasibility
In assessing feasibility there are a series of individual topics that require consideration:

� Timeline. The PHM system implementation should meet the timeline requirements of the aging fleet 
of existing NPPs by providing monitoring capabilities before major structures and components fail.

� Operational compatibility with other components. The additional system should not pose an 
unacceptable increase in risk, in terms of its impact on other components (instrumentation 
constraints). Typically, the number of installed sensors available is small in NPPs. The sensors are 
still considered the potential “weak link” because they are on occasion less reliable than the systems 
they monitor. Advanced sensor validation and qualification is required to overcome this sensor 
reliability issues. More challenges come from the harsh environments that can be encountered in 
some parts of the NPP system.

� Availability of operational data, including failure data. Empirical (data-driven) techniques are 
constructed from operational data (including historical time to failure data) and use signal processing 
and transformation techniques to extract information-rich features for input into a variety of models 
such as neural networks, nonlinear regression algorithms, and Markov Chains to diagnose faults and 
predict the RUL. These methods require access to large quantities of data from failures observed in 
the field. Statistical data for the performance of many common systems in other industries, such as 
motors and pumps, are available in various data bases (Cornell et al. 1982; Mighdoll et al. 1982;
MRWG 1985a; MRWG 1986b; Hale and Arno 2001a; 2002b). More limited data are available that 
provide signatures of systems as performance degrades, particularly those in nuclear plants.

� Availability of physics-based failure models or reliable component failure data. Model-based 
(physics-of-failure) approaches use mathematical models of the degradation mechanisms. These 
methods also consider environmental stresses (e.g., temperature, load, vibration, etc.) on the 
component. They estimate the life for an average component under the given usage conditions. These 
techniques require reliable physical models of phenomena occurring not only in the monitored 
component, but across the entire plant. Alternatively, accurate failure data can be used to derive 
empirical models that describe failure progression. High value systems are rarely allowed to run to 
failure once degradation has been detected; however, well-designed accelerated test data may be used 
with appropriate transformations.

� Verification and validation (V&V). Adequate V&V of prediction models or procedures including 
uncertainty quantification is necessary to mitigate false alarms, missed alarms, and inaccurate RUL 
predictions. The hardware and software complexity poses hurdles for any V&V process, particularly 
when quantifying the risk of incorrect prediction. Novel ways to provide automated V&V are needed
and have been deployed in the defense and aerospace industries. Where components (e.g., pumps and 
motors) are also deployed in other industries, common approaches can be utilized; however, there are 
some unique needs faced by the aging NPPs that may require nuclear-specific approaches.

� Actionable decisions. Predictions should provide actionable information, and the methodologies 
must give the user a high degree of confidence. This is particularly so when decisions can impact 
safety, the confidence of the component condition assessment, the availability of resources to mitigate 
the problem, the cost to the operator, and the ability to reschedule the planned maintenance.

2.2 Component Failure Probability
Calculation of failure probability requires understanding the physics of failure, state awareness, fault 

and failure progression rates, performance properties as components age, and the effects of degradation 
across the systems. Failure probabilities for some components are included in probabilistic risk 
assessment (PRA), which is also being expanded to include the effects of aging. EPRI has a preventive 
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maintenance application center that gathers data on components, as well as provides recommended 
maintenance programs for more than 130 component types. However, the failure probabilities of at least 
some less common and high value components in NPPs are potentially poorly quantified.

2.3 Consequences Associated with Component Failure
Many consequence scenarios and their occurrence probability associated with the component failure 

are quantified in PRA analysis. Such analysis is commonly extended to formally include plant downtime, 
equipment repair and replacement cost, possible exposure to personnel and the environment; and is used 
to support the business case for preventative maintenance and CBM (e.g., Johnson and Maxwell;
2002a,b).

2.4 Benefits of the PHM System
The deployment of PHM systems in the defense and aerospace community has demonstrated that 

such systems provide significant benefits, which include:

� Safety benefits – Reduce risk, minimize safety impact, and increase reliability.

� Operational benefits – Avoid unplanned plant shutdown, decrease focus on reliable systems or 
components, and increase flexibility in scheduling of maintenance. This leads to improved planning 
of inspection and repair activity, higher quality maintenance, shorter and less complex outages, fewer
“surprises” during outages, elimination of unnecessary tests, and reduced radiation exposure.

� Financial benefits – Increase plant availability and capacity factor by avoiding unplanned plant 
shutdown and using optimal maintenance schedules.

Ultimately, the overall clear benefits of the PHM system will be the decisive factor in the selection 
process. After target components have been selected, development of a viable PHM system depends on 
selection of appropriate model algorithms. The following chapter briefly overviews prognostic algorithms 
and their areas of applicability.
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3. PROGNOSTIC ALGORITHMS
Prognostics is the prediction of a future condition, the effect of degradation on a system’s capability 

to perform its desired function, and remaining safe or service life, based on an analysis of system or 
material condition, stressors, and degradation phenomena. This prediction can be made using various 
classes of algorithms. Moving from diagnostics, which gives an assessment at a point in time based on 
observed data (e.g., an non-destructive examination NDE or structural health monitoring 
(SHM)assessment), to prediction of life and technologies for structural health monitoring/management 
based on predicted future behavior can be achieved using the range of classes of approaches that are 
identified in schematic form in Figure A-1. These range from the general statistical databased 
assessments, based on populations, such as the performance of all pumps of a particular type or class to 
those based on physical degradation models with specific data taken on a particular part or component.
Those methods shown at the top of the pyramid increase accuracy, but they also come at a higher cost, 
require greater understanding of the system under study, and also commonly more data for analysis.

An assessment of the state of the art in diagnostics and prognostics in terms of technology maturity 
for different classes of system was provided by Howard (2005). The status for these various elements is 
shown in Table 1. Since that time, the technology has continued to develop, and it has been reported at 
various technical meetings. Technologies are being developed for non-nuclear applications, including 
instrumentation and system health monitoring for electronics, in what is being called “electronics 
prognostics” (Urmanov 2007). There are also integrated technologies being developed for advanced 
fighter aircraft and unmanned aerial vehicle (UAV) system health monitoring, which include both 
electrical/electronic and mechanical systems. A review of machinery diagnostics and prognostics for 
CBM is provided by Jardine et al. (2006), but again it does not consider nuclear power systems. There is 
also a review by Kothamasu et al. (2006) that considered both the current health monitoring paradigms 
and the tools and standards. The results of their survey of industries focused on maintenance are given as 
Appendix B.

Table 1. State of Maturity for Diagnostics (D) and Prognostic (P) Technologies (Howard (2005).
Diagnostic/Prognostic Technology for: AP(a) A(b) I(c) NO(d)

Basic Machinery (motors, pumps, generators, etc.) D P
Complex Machinery (helicopter gearboxes, etc.) D P
Metal Structures (passive and active) D P
Composite Structures (passive and active) D&P
Electronic Power Supplies (low power) D P
Avionics and Controls Electronics D P
Medium Power Electronics (radar, etc.) D P
High Power Electronics (electric propulsion, etc.) D&P
(a) AP = Technology currently available and proven effective.
(b) A = Technology currently available, but V&V not completed.
(c) I = Technology in process, but not completely ready for verification and validation.
(d) NO = No significant technology development in place.

Monitoring technologies developed in other industries can potentially benefit NPPs, particularly when 
using advanced OLM and diagnostics for CBM, and prognostics in the future. Digital instrumentation and 
control (I&C) and advanced diagnostics and prognostics are being developed in the wider high-
technology industry communities and are now also being considered for NPP deployment.
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The prognostics research that is reported in the literature largely focuses on solutions to specific 
problems, such as electronic prognostics (Vichare and Pecht 2006; Ridgetop Group 2004; Mishra and 
Pecht 2002; Kalgren et al. 2007), vibration analysis (Carden and Fanning 2004; Doebling et al. 1996; 
Catbas and Atkan 2002), helicopter gearbox monitoring (Engel et al. 2000; Heng et al. 2009; 
Vachtsevanos et al. 1997; Wang and Vachtsevanos 2001; Orchard and Vachtsevanos 2007; Kacprzynski 
et al. 2004), Joint Strike Fighter (JSF) applications (Keller et al. 2006; Orsagh et al. 2005; Roemer et al. 
2005; Ferrell et al. 1999; Ferrell et al. 2000; Smith et al. 1997; Hess and Fila 2002; Line and Clements 
2005), etc. There are now papers in several major meeting series including the Machinery Failure 
Prevention Society annual meeting, the IEEE Reliability Society meetings, the PHM Society annual 
conference, and sessions within application-specific meetings, such as those for aerospace systems. The 
landscape has developed further through activities such as those of the NASA Prognostics Center and a 
number of reliability groups. While research has resulted in good point solutions for these specific 
problems, generic prognostic algorithms, which may be more broadly applicable across a variety of 
systems, are still less mature. The goal of current work by several groups is to provide generic prognostic 
algorithms, which may be rapidly configured for a new system to allow for effective and efficient 
deployment of CBM and PHM technology on large, complex systems (Baruah et al. 2006).

In reviewing the range of models, as already indicated, prognostic algorithms can be classified as 
ranging from physics-based to statistical and this full range of prognostic models is shown in Figure 2.

Physics-based models, also called physics-of-failure models or first-principles models, are potentially 
the most accurate, and most focused on a particular application, but can be expensive to develop. Often, at 
the start of a project the underlying physical processes leading to failure are not completely understood, 
and simplifying assumptions must be made to facilitate more rapid model development. Such models can 
be computationally expensive, particularly if Monte Carlo simulations are used to estimate confidence 
intervals about model predictions, although the increasing availability of computer power makes this less 
of an issue.

Alternatively, empirical models use data to fit a model to the relationships seen in real world 
operation and degradation. These models typically provide no additional information about the physical 
mechanisms leading to failure. Empirical models can, in some cases, be preferable to physics-of-failure
models because they are simpler to develop, they capture real world relationships, and they require little 
or no expertise in the underlying physical phenomena that cause failure. However, empirical models have 
several drawbacks. These models rely on operational data for model development. As such, the models 
are generally only applicable to systems operating within the range of the training data used in model 
development. This poses additional problems for prognostics models, which rely on run-to-failure data for 
model training. Very few expensive or safety critical systems are allowed to run to failure, particularly in 
the nuclear power industry; in this case, high fidelity physics-of-failure simulations may be used to 
generate failure data for model development. Additionally, data collected in accelerated life tests may 
provide useful information for prognostic model development. This data requires additional processing to 
correlate accelerated results to those expected in real world application (Elsayed and Chen 1998; Carey 
and Koenig 1991; Lemoine and Wenocor 1985; Tang and Chang 1995; Park and Padgett 2006).



8

Figure 2. Range of prognostic approaches.

As suggested by the “No Free Lunch” Theorem, no one prognostic algorithm is ideal for every 
situation (Ho and Pepyne 2002; Koppen 2004). A variety of models have been developed for application 
to specific situations or specific classes of systems. The efficacy of these algorithms for a new process or 
system depends on the type and quality of data available, the assumptions inherent in the algorithm, and 
the assumptions that can validly be made about the system. As such, these prognostic algorithms can be 
categorized according to many criteria. One proposed categorization focuses on the type of information 
used to make prognostic estimates; this results in three classes of prognostic algorithms (Figure 3) (Hines 
and Usynin 2008).

Figure 3. Prognostic algorithm categorization (Hines and Usynin 2008).
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Type-I, or reliability-based, prognostics is traditional time-to-failure analysis; this type of prognostic 
algorithm characterizes the expected lifetime of an average system operating in a historically average 
environment. These methods may be applied if no data specific to the current system is available. 
Examples of Type-I prognostics include Weibull analysis, exponential or normal distribution analysis, 
and nonparametric distribution analysis. A readily apparent shortcoming of this group of methods is the 
absence of consideration for operating conditions and environment in making RUL estimates. Typically, 
systems operating in harsher conditions will fail more quickly while those in milder environments more 
slowly.

Type-II, or stressor-based, prognostics use operational and environmental condition data to estimate 
RUL. This type of prognostics characterizes the lifetime of an average system or component operating in 
a specific environment. Type-II methods can be used if operating conditions, such as load, input current 
and voltage, ambient temperature, vibration, etc., are measurable and correlated to system degradation. 
Algorithms in this class include simple regression analysis, specific formulations of the Markov Chain 
model and shock model, the proportional hazards model, and the life consumption model. Although more 
specific than Type-I models, Type-II models are deficient because they neglect unit-to-unit variance that 
may be due to variability in manufacturing, installation, and maintenance actions.

Type-III, or degradation-based, prognostics characterize the lifetime of a specific unit or system 
operating in its specific environment. Extrapolation of a general path model (GPM) or a particle filter 
model is the most common empirical Type-III method. This extrapolation involves trending a prognostic 
parameter and extrapolating it to some predefined failure threshold. A prognostic parameter is a measure
that is either directly sensed from the system or inferred from a set of sensor readings that characterizes 
system degradation or health. System failure is commonly indicated by a soft failure threshold at which 
the system no longer performs to its specifications or cannot be expected to perform for an appreciable 
amount of time; this is generally some point before a catastrophic failure occurs. Additional Type-III
methods include degradation-based formulations of the Markov Chain model and the shock model. This 
kind of individual-based analysis is generally considered the ultimate goal of prognostics for 
safety-critical or high-value components and systems.

Each of these classes of prognostic algorithms, as well as appropriate modeling methods, is discussed 
in greater detail in the following sections.

3.1 Type-I Prognostic Models: Traditional Time-to-Failure Analysis
Type-I methods are a simple extension of traditional reliability analysis, based entirely on  a 

prioritized distribution of failure times for similar systems in the past. Prognostic algorithms in this class 
characterize the average lifetime of an average system operating in historically average conditions; they 
do not utilize any information specific to the system at hand. The main assumptions made when applying 
Type-I methods are that future systems will operate under similar conditions to those seen in the past and 
will fail in similar ways.

Type-I prognostic models are built on a population of historical failure data, including both failed and 
censored units. A probability distribution is fit to these runtimes to give an estimate of the time of failure 
(ToF) distribution of the population. The most common parametric model used in reliability analysis is 
the Weibull distribution. This model is used because it is flexible enough to model a variety of failure 
rates. The formula for the failure rate is a two parameter model with a shape parameter (�) and a 
characteristic life (�):
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These two parameters provide the modeling flexibility for components exhibiting an increasing 
failure rate (�>1), a constant failure rate (�=1), and a decreasing failure rate (�<1). With the correct 
choice of shape parameter, the Weibull distribution adequately models the exponential, normal, or 
Rayleigh distributions. Additional information on Weibull modeling is available in Abernethy’s 
handbook (1996).

Traditional reliability methods consider only the total runtime of a system and the historic total 
lifetimes of similar systems. However, several methods are available to include additional information in 
reliability analysis, which may make it more useful for prognostics. Yang and Xue (1996) suggest a 
method for analyzing both catastrophic and soft failures simultaneously using random process simulation 
and state tree analysis.

Several studies suggest the use of degradation data in estimating reliability distributions. Lu and 
Meeker (1993) first proposed the GPM, which shifts reliability analysis from failure time to failure mode 
analysis. Improvements to their seminal work are proposed by Girish et al. (2003) who used neural 
networks to estimate the failure times for censored systems; Kharoufeh and Cox (2005) apply Markovian 
degradation models to estimate the failure time for censored systems; Chen and Zhang (2005) attempt to 
infer the lifetime distribution itself instead of the distribution parameters from the available data; and Xu 
and Zhao (2005) extend the approach to use multivariate degradation measures.

As a new unit is operated, the ToF distribution can be used, along with the total runtime of the new 
unit, to estimate the RUL. Most commonly, the Mean Residual Life (MRL) is used to estimate the 
remaining lifetime, given that a system has run for its current lifetime. For a unit of age t, the MRL 
method assumes that the remaining life is a random variable, and the MRL is given by the expected value 
of this random variable (Guess and Proschan 1985):

where S(·) is the survival function and t is the current time. The MRL at time t can be calculated from 
either parametric or nonparametric distributions, which makes it particularly flexible for application to 
real world data.

Studies applying Type-I prognostics to estimation of RUL have shown the method to be 
unsatisfactory (Pecht et al. 2002; Lall et al. 1997). This is to be expected since the MRL method assumes 
that the remaining life is a random variable; clearly it is not. In fact, because mean residual life is an 
“average” measure, it is expected to underestimate RUL about half the time and overestimate RUL about 
half the time. Vichare et al. (2004) show that Type-I methods are insufficient for electronic prognostics; 
the authors go on to suggest that in situ monitoring of operating conditions, such as temperature, 
humidity, vibration, and shock, may improve prognostic model performance. This leads to Type-II
prognostic methods.

3.2 Type-II Prognostic Models: Stressor-based Prediction
As suggested by the journal articles by Vichare et al. (2004), Azzam (1997), and Baybutt et al. 

(2009), it is intuitive to consider usage conditions, both past and future, when estimating the RUL of a 
system. Type-II methods attempt to do this by characterizing the lifetime of an average component 
operating in the specific environment. Here, it is assumed that systems operating in the same conditions 
will fail in similar ways; there is little unit-to-unit variance. Methods that commonly fall into this category 
include regression analysis, a specific formulation of the Markov Chain model, Proportional Hazards
Models, physics-of-failure models, and Life Consumption models. Studies utilizing each of these 
architectures are described below.
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3.2.1 Regression Analysis

Electronic system prognostics on the board or circuit level commonly utilize a built-in self test (BIST)
prognostic monitor or canary (Goodman 2000; Hofmeister et al. 2006a; Hofmeister et al. 2006b; Mishra 
et al. 2006). A prognostic monitor is a “pre-calibrated semiconductor cell that is collocated with the actual 
circuit on a semi-conductor device” (Mishra et al. 2006). The prognostic cell is designed to experience a 
higher current level than the actual circuit by decreasing the cross sectional area of the current-carrying 
path in the canary. Because the canary cell undergoes a higher current density, it is expected to fail in a 
predictably faster way than the actual circuit. By colocating several prognostic monitors on a circuit with 
different known accelerating factors, the failure times of each of the cells can be trended to predict failure 
in the actual circuit (Figure 4). While this method is convenient and uncomplicated, Pecht et al. (2001)
argue that BIST monitors are not always sufficient for detecting and identifying failures. The authors 
found BIST results to suffer from a high false alarm rate and a low correlation between the fault indicated 
by the BIST and the actual fault. These shortcomings should be considered before applying this type of 
prognostic monitoring module.

Figure 4. Use of prognostic monitor failure times to estimate RUL of actual circuit (Mishra et al. 2006).

3.2.1.1 Markov Chain Models

Markov Chains and Hidden Markov Chains are common in many simulation exercises (Bogdanoff 
and Kozin 1985). The Markov Chain model is based on the assumption that the next state that a system 
will occupy depends only on the current state; past states do not affect the probability of transitioning to 
the next state. There are two types of Markov Chain prognostic models, which vary only in the 
information they use to simulate possible future states. Type-II Markov Chain models, described here, 
really include two models.

The first model, called the environmental model, is a Markov Chain simulation that produces possible 
future operating state progressions based on transition probabilities seen in the past and the current 
operating state. The environment model predicts how the environment and operating conditions evolve in 
the future. The environmental model is defined by the transition probability matrix:
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where pij is the probability of transitioning from state i to state j. Often this probability matrix is 
assumed to be static, but it is straightforward to extend the method to time-dependent or degradation
level-dependent transition probabilities, leading to Type-III formulations. The environmental model is 
used to simulate many possible future state progressions beginning at the current state.

These state progressions are then mapped to a degradation measure, which is the second model 
necessary in the Type-II Markov Chain algorithm. The degradation measure is a function of observable 
environmental conditions. To be useful for making a reliability prediction, the function should reflect the 
manner in which the environmental conditions affect the component reliability. Usually, environmental 
stressors tend to deteriorate the component reliability in a cumulative manner. Hence, the function to 
relate the environment conditions to the prognostic parameter is commonly a cumulative form:
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where Y(tk) is the degradation measure value at time tk, E(ti, ti���i) is the environmental condition 
observed at the time interval [ti , ti���i], and g(.) is an appropriate function of environmental conditions.

When the estimated degradation measure crosses some predefined threshold, the unit is considered 
failed. At each time of interest, many possible state progressions are simulated and mapped to degradation 
measures. These measures are then used to define a ToF distribution for the system. Figure 5 shows a 
typical progression of the environmental conditions in time. An example of trajectories is given in 
Figure 6 in which the function g(.) is assumed to be an identity function.

Figure 5. A typical progression of the environmental conditions.



13

Figure 6. A collection of possible degradation measures.

3.2.1.2 Shock Models

The Markov Chain model is continuous in the time domain, but discrete in the degradation measure; 
that is, a specified amount of degradation is associated with each state. A more general formulation is the 
Shock model (Esary and Marshall 1973; Gut 1990; Mallor and Santos 2003). Instead of experiencing 
some known amount of degradation, or shock, in each state, the shock model allows for a shock of 
random size. Shock models have three parameters that are estimated from historical data: time between 
successive shocks, t ~ Exp(l), magnitude of the shocks, x ~ F(x), and the critical failure threshold. An 
example of the shock model is shown in Figure 7., where the time between shocks and the shock size are 
both random variables.

Figure 7. Shock model example.

In this model, the time between random shocks is a continuous random variable, with the probability 
of shock often determined by the system runtime, operating conditions, current degradation state, or some 
combination thereof. The size of the shock may be based on a single shock size distribution, or other 
features such as the current degradation measure, operating condition, or other measures available from 
the system and environment. Again, when the cumulative degradation measure crosses some 
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predetermined threshold, the system is considered failed; a probability of failure distribution is estimated 
from multiple simulated degradation measures.

3.2.1.3 Proportional Hazards Models

The Proportional Hazards (PH) Model developed by Cox and Oakes (1984) merges failure time data 
and stress data to make RUL estimates. The model uses operating conditions, called covariates, to modify 
the baseline hazard rate to give a new hazard rate for the system’s specific usage conditions:

Failure data collected at covariate operating conditions are used to solve for the parameters (�j) using 
an ordinary least squares algorithm. The baseline hazard is the hazard rate when covariates have little or 
no influence on the failure rate. A basic assumption of the proportional hazards model is that the effects 
of these covariates are multiplicative; this means that when the ratio of two covariates is evaluated, their 
hazard rates are proportional. A full discussion of developing a proportional hazards model can be found 
in Kumar and Klefjo’s article (1994). Dale (1985) applied the proportional hazard model to estimation of 
product reliability, applying it to heterogeneous data from non-repairable systems. Liao et al. (2006)
suggest the use of proportional hazards models for estimating RUL, though the authors give no specific 
results of such an application.

3.2.1.4 Physics-of-Failure Models

Physics-of-failure models, or first-principles models, are often desirable in engineering applications 
because they provide a greater understanding of the mechanisms by which systems and components may 
fail. Physics-of-failure models are also desirable for high-cost, high-risk systems that cannot be run to 
failure many times to collect the data needed for development of empirical models (Pecht and Dasgupta 
1995; Jarrell et al. 2004). The use of physics-of-failure models for estimating RUL has focused mainly on 
electronic system prognostics (Oja et al. 2007; Valentin et al. 2003). These models may be readily 
available for single components or single fault modes; however, developing accurate physics-of-failure
models for large, complex systems is a daunting task. Physics-of-failure models often suffer from 
inaccuracies due to the assumptions made in developing the model, the exclusion of physical interactions 
which are not completely understood, and long runtimes. Kacprzynski et al. (2002) attempt to alleviate 
the inaccuracies of physics-of-failure models by fusing the results with other data sources such as 
diagnostic results, prognostics architectures, inspection information, and real-time system level features.
The authors applied their system to a gear with a seeded fault and found very promising results for the 
data fusion technique. In Kacprzynski et al.’s article (2004), the same methodology was applied to 
helicopter gearboxes with similar success. Physics-of-failure models offer a better understanding of the 
mechanisms of failure for a component or system, but they are costly and tedious to develop for large, 
complex systems which experience many fault modes. In addition, the run time needed for many damage 
propagation models may make them impractical for real-time analysis. For systems with accurate 
physics-of-failure models available, it may be prudent to use these models to simulate system failure data.
That simulated data may then be used to develop empirical models which may be run very quickly. This 
alleviates the burden of collecting failure data for expensive or safety critical systems. Physics-of-failure
models are a key component of Life Consumption Models (LCMs).

3.2.1.5 Life Consumption Models

Life Consumption Models were first proposed by Ramakrishnan and Pecht (2003) for monitoring 
RUL in electronic systems. The LCM methodology monitors the environment of a component or system 
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during its entire lifecycle to determine the amount of damage incurred through the various loads and 
conditions experienced. This damage is translated to lost “life,” which is subtracted from the expected life 
of an average system or component. The incurred damage is estimated through physics-of-failure models; 
this damage amount is related to a fraction of life lost by considering the total amount of operation under 
the same conditions, which would result in failure of an undamaged part. LCM is illustrated in 
Ramakrishnan and Pecht (2003) and Mishra et al.’s (2004) papers by application to a mounted printed 
circuit board operated under the hood of a moving vehicle. Both temperature and vibration levels were 
monitored on the board during use. The methodology was shown to effectively estimate RUL of the 
circuit board, even in the event of unexpected damage accumulation caused by a large, random shock.
The major drawback of the LCM methodology is the need for accurate physics-of-failure models to 
estimate the accumulated damage. As mentioned above, physics-of-failure models are often not available, 
not accurate, or not time-effective for large, complex systems. Development of a more general LCM 
methodology which utilizes empirical models, such as neural networks, kernel regression models, or 
simple regression, for damage estimation would increase the applicability of this algorithm.

3.3 Type-III Prognostic Models: Degradation-based Prediction
Finally, the last category of prognostic algorithms attempts to characterize the lifetime of the 

specific system operating in its specific environment. These Type-III prognostic methods are termed 
degradation-based or condition-based. The most common method in this class is extrapolation of a 
parametric model. This can be accomplished through a GPM or a particle filtering model. Basically, these 
methods attempt to track some measure related to degradation, also called a prognostic parameter, and 
extrapolate it to failure. The prognostic parameter may be something measured directly from the system 
that gives information about system condition and fault severity, or it may be inferred from measurements 
made on the system. Additional algorithms included in Type-III prognostics are a different formulation of 
Markov Chain models and shock models.

Each of the Type-III prognostic algorithms involves the use a prognostic parameter to monitor and 
trend degradation in an individual component. The following section introduces the idea of the prognostic 
parameter. This is followed by discussion of several key Type-III algorithms.

3.3.1.1 Prognostic Parameter

A prognostic parameter, also called a degradation measure, is a scalar or vector quantity that 
numerically reflects the current ability of the system to perform its designated functions properly. It is a 
quantity that is correlated with the probability of failure at a given moment. A degradation path is a 
trajectory along which the degradation measure is evolving in time towards the critical level 
corresponding to a failure event. Type-III prognostics attempt to extrapolate along this degradation path 
to determine the RUL of a component or system.

The degradation measure does not have to be a directly measured parameter. It could be a function of 
several measured variables that provide a quantitative measure of degradation. It could also be an 
empirical model prediction of the degradation that cannot be measured. For example, pipe wall thickness 
may be an appropriate degradation parameter, but there may not be an unobtrusive method to directly 
measure it. However, there may be related measurable variables that can be used to predict the wall 
thickness. In this case the degradation parameter is not a directly measurable parameter but a function of 
several measurable parameters. Monitoring system residuals are intuitive candidates for prognostic 
parameters because they naturally characterize how “far” a system is from normal operation.

When the degradation level of a system reaches some predefined critical failure threshold, the system 
is said to have experienced a soft failure; for example, car tire tread is below some specified depth. These 
failures generally do not concur with complete loss of functionality, as in a hard failure; however, they 
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correspond with the time when an operator is no longer confident that equipment will continue to work to 
its specifications. Both general path models and particle filters attempt to extrapolate the prognostic 
parameter to a critical failure threshold to estimate the RUL; these algorithms are described in the 
following sections.

3.3.1.2 General Path Model

The GPM was first proposed by Lu and Meeker (1993) to move reliability analysis from failure time 
to failure mode analysis. The first work to extend their methodology to prognostics was by Upadhyaya et 
al. (1994). The authors in that work apply traditional regression models and neural networks to trend 
system degradation. In later years, the extrapolation methodology of traditional regression models was 
applied to helicopter gearboxes (Engel et al. 2000), flight control actuators (Byington et al. 2004), aircraft 
power systems (Keller et al. 2006), computer power supplies (Hines et al. 2006), global positioning 
systems (Brown et al. 2007), and lithium-ion batteries (Liu et al. 2010). In addition, work by Chinnam 
(1999) applied the GPM methodology to feed forward neural networks for estimating degradation levels.
Each of these studies attempts to model a degradation measure and extrapolate it to some predefined 
threshold to estimate the system RUL. Only a few of the studies consider the problem of uncertainty 
measurements. These studies tend to take two approaches to uncertainty estimation. Uncertainty 
measurements in (Engel et al. 2000) and (Hines et al. 2006) are estimated based on the model architecture 
used to make the prediction, while Byington et al. (2004) utilized Bayesian belief models to estimate the 
uncertainty. Liu et al. (2010) utilized a bootstrap approach wherein the prognostic model is developed and 
executed many (in this work, 50) times and features of the RUL prediction are estimated from the 
aggregate results.

Key to development of a GPM prognostic model is development of the degradation model. Studies to 
date have primarily focused on linear regression models (Coble 2010; Hines et al. 2006) and neural 
networks (Liu et al. 2010). If accurate physics-of-failure models are available, these may be used to trend 
the system degradation. In these models, the physics-of-failure model utilizes measurements directly from 
the system of interest to estimate the hidden damage (Luo et al. 2003). Here, the authors utilized a
residual monitoring system to estimate the hidden damage in a system; this basic methodology can be 
applied to physics-of-failure models or empirical models. As in the previous discussion, Type-III physics-
of-failure models suffer from difficulty in development, inaccuracies due to the assumptions made in 
model development, and long runtimes. However, if accurate physics-of-failure models are available, they 
can be applied to prognostic algorithms and used with the GPM methodology.

Greitzer et al. (1999; 2001a; 2001b) propose a slightly different formulation of the GPM, called the 
Life Extension Analysis and Prognostics (LEAP) method. LEAP differs from GPM primarily in that it is 
a short-term regression model. Instead of regressing a model onto the entire operating history of a system 
or component, LEAP utilizes some recent window of data for the regression. Although using more data 
tends to lead to more stable predictions, using the entire operating history may mask recent changes in 
behavior that are of critical importance. While these predictions have greater variability, they tend to be 
more sensitive to recent and abrupt changes in condition, as seen in Figure 8. The LEAP methodology is 
proposed as a Type-II method using operating conditions to estimate some figure of merit and then 
trending that figure of merit to failure. However, the extension to Type-III prognostics is clear, where the 
figure of merit is directly measured or inferred from direct measurements of the system. This 
methodology is an improvement on the traditional GPM in that it is more sensitive to abrupt changes;
however, it is also less robust to noisy measurements. Identification of an optimal window size for 
regression is a critical task in applying this technique.
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Figure 8. LEAP short term regression (Greitzer 2001b).

3.3.1.3 Particle Filters

Particle filtering was originally developed to provide an estimation of the marginal probability in 
Bayes’ Theorem that would allow for modeling of nonlinear systems and potentially non-Gaussian noise 
(Cadini 2009). The particle filter method utilizes Monte Carlo simulation to provide an approximate 
solution to the marginal distribution by generating artificial random samples and comparing their 
distribution to that of the measurements. The particle filter method first starts with Bayes’ Theorem:
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Here, x represents the state-space vector of the system, which is not directly measured. In condition 
monitoring, this is typically the prognostic parameter or other measure of system health. The term z
represents the vector of measurements. Measurements are first taken at time = 0; the “current” time, or the 
time of interest is represented by the subscript k, and the previous time step is k-1. The term �(��|��:�) is 
defined as the posterior distribution and represents the distribution of the likelihood of a system state xk
existing given the measurements z0:k (i.e., all measurements, including the current measurement). The 
term �(��|��) is the conditional probability and represents the likelihood that a given state would yield 
the current measurements. The term �(��|��:��) is the prior distribution and is the likelihood that a 
given state would exist based on all measurements prior to the current measurement. Finally, 
�(��|��:��) is the marginal probability and represents the likelihood that the current measurements 
would occur given all previous measurements.

The long-standing difficulty with Bayes’ Theorem is determining the marginal probability, and this is 
the purpose of particle filtering. The first step in particle filtering is Sequential Importance Sampling 
(SIS), where a known distribution is used to generate random samples for x0:k. In contrast to GPM, SIS 
updates all particles (i.e., samples) simultaneously at a given time step rather than updating a single 
particle all the way to failure. The distribution only needs to ensure that the range of possibilities is 
covered, though a distribution that closely resembles the true distribution of probabilities should provide 
faster convergence and more reliable results. This distribution is defined as an importance function:

�(��|��:�).
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Next, weights for the sample particles are defined by relating the importance function to the posterior 
distribution:
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In the above equation, both terms in the ratio are unknown. However, the weights from the previous 
time step are known and can be used to approximate the weights according to Equation 1. The 
approximation may require normalization to form a true pdf; this can be readily performed after all 
weights are estimated.
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A visual example of the weighting process may be seen in Figure 9 and Figure 10. Prior to weighting, 
all samples have equal weight. At Time Step 20, those particles whose states have a higher likelihood of 
representing the true state of the system (as estimated through measurements) receive greater weight; the 
particles with less likelihood of representing the system receive less weight. Having reweighted the 
particles, they now represent an updated posterior distribution of the marginal probability and the new 
posterior distribution may be estimated.

Figure 9. Sample estimates of the system state prior to weighting.
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Figure 10. Sample estimates of the system state after weighting.

As this process is repeated, the particle weights are continually updated every time Bayes’ Rule 
is applied. Since SIS will add weight to particles with the highest likelihood at the expense of 
lower-likelihood particles, the process will eventually drive the weights of all particles to zero except for 
the highest-likelihood particle, a problem known as degeneracy. To avoid degeneracy, the particles are 
occasionally redistributed by Sequential Importance Resampling (SIR).

SIR may be conducted by a variety of methods, but the general approach is to replace the existing 
weighted particles with new unweighted particles chosen by the posterior distribution provided by SIS. In 
review, SIS may be seen as a filter of particle weights where the weights are updated to fit the estimated 
posterior distribution. Therefore, SIR may be seen as a filter of the particles themselves, where new 
particles are chosen based on the weighted particles after SIS. This two-stage process is the heart of 
particle filtering.

Because particle filtering employs a Monte Carlo process, uncertainty estimates may be readily 
provided by the existing particle distributions. The state estimate at the present time is given by 
Equation 2. The failure probability estimate at a future time k+i is given by Equation 3. Finally, the 
failure time distribution at a future time k+i is given by Equation 4.
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Additional statistical inferences may be made via the particle distributions, such as 95% confidence 
intervals, hypothesis tests, etc.

3.3.1.4 Markov Chain and Shock Models

As mentioned previously, Markov Chain models can fall into the Type-II or Type-III category. While 
Type-II Markov Chain models use the Markov assumption to generate possible future operating condition 
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progressions, Type-III Markov Chain models use the Markov assumption to generate random shock 
arrival times based on the current degradation level (Hines and Usynin 2008; Hines et al. 2007; He et al. 
2006). These random shocks contribute some deterministic amount of degradation, usually one unit, to 
the degradation measure. The time of failure is calculated as the time when this simulated degradation 
measure crosses the failure threshold. At each time of interest, many degradation paths are simulated, and 
a Mean Time to Failure (MTTF) distribution is estimated from the collection, as shown in Figure 11. The 
Markov Chain model is continuous in the time domain, but discrete in the degradation measure.

Figure 11. Markov Chain Model PoF estimation.

Similarly, the Type-III formulation of the shock model uses the current level of system degradation, 
either directly measured or inferred, to generate the time of arrival and/or the magnitude of random 
shocks to the system. This model is continuous in both time and shock size. When the projected 
cumulative degradation resulting from random shocks crosses some predefined threshold, the system is 
considered failed. Monte Carlo techniques make estimation of RUL uncertainty or a full RUL distribution 
straightforward.
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4. PROGNOSTICS ARCHITECTURES
Implementation of PHM on a system or subsystem of any scale within an NPP will require the use of 

a prognostics architecture (i.e., a software product [or suite of products] used to bring together and 
implement the necessary pieces for a complete implementation of PHM). This broad definition includes 
condition monitoring and diagnostics in addition to prognostics; hence, a more appropriate terminology 
would be an integrated health management framework.

Careful evaluation of available products is necessary to avoid use of limited or stovepipe applications 
and ensure long-term success of the prognostics implementation. There have been many reviews of 
prognostic methodologies and algorithms available in the literature, including a recent review by Peng, 
Dong, and Zuo (2010). In 2006, Hines and Seibert (2006) identified software systems being used for 
sensor calibration in NPPs; however, there appears to have been no publically available comprehensive 
assessments of commercially available integrated health management frameworks for the nuclear 
industry. This section seeks to provide an initial assessment.

4.1 Applicable Standards, Specifications and Formats
Technical standards and specifications are used to create a common framework within a chosen field 

or application, including establishing common terminology, communications protocols, and 
functionalities. The use of standards promotes interoperability and minimizes redesign of similar systems 
(Sheppard et al. 2008).

The following standards, specifications, and formats have been identified as being related to 
prognostics: International Standards Organization (ISO) 13374, ISO 13381, ISO 18435, SAE AIR5871, 
Machinery Information Management Open Standards Alliance (MIMOSA) Open Systems Architecture 
for Condition-based Maintenance (OSA-CBM), MIMOSA Open Systems Architecture for Enterprise 
Application Integration (OSA-EAI), and the Diagnostic Markup Language (DiagML).

ISO 13374 is a collection of standards that define a general condition monitoring architecture 
(framework) for machines. Part 1 (ISO 2003) focuses on general procedures; Part 2 (ISO 2007) focuses 
on data processing; Part 3 (ISO, unpublished) is in development, and covers communication (ISO 2009).
ISO 13374 defines six layers or blocks of functionality within a condition monitoring system, as seen in 
Figure 12. The functions of the blocks summarized below are discussed in more detail in (Walter 2006).

The first three blocks are typically technology specific (e.g., vibration monitoring, temperature 
monitoring, electrochemical monitoring) and provide these functions:

� Data Acquisition (DA). Converts an output from the transducer to a digital parameter representing a 
physical quantity and related information (such as the time, calibration, data quality, and data 
collector utilized, sensor configuration).

� Data Manipulation (DM). Performs signal analysis, computes meaningful descriptors, and derives 
virtual sensor readings from the raw measurements.

� State Detection (SD). Facilitates the creation and maintenance of normal baseline “profiles,”
searches for abnormalities whenever new data are acquired, and determines in which abnormality 
zone, if any, the data belong (e.g., alert or alarm).
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The second three blocks combine human concepts with monitoring technologies to assess the current 
health of the machine, predict future failures, and provide recommended action steps to operations and 
maintenance personnel:

� Health Assessment (HA). Diagnoses any faults and rates the current health of the equipment or 
process, considering all state information.

� Prognostics Assessment (PA). Determines future health states and failure modes based on the 
current health assessment and projected usage loads on the equipment and/or process, as well as 
remaining useful life.

� Advisory Generation (AG). Provides actionable information regarding maintenance or operational 
changes required to optimize the life of the process and/or equipment.

Figure 12. Six functional blocks in a condition monitoring system (ISO 2007).

ISO 13381 (ISO 2004) provides general guidelines for the development of machinery prognostics, 
addressing terminology, concepts, uncertainty, and degradation modeling (Tobon-Mejia et al. 2010).

ISO 18435 (ISO 2009) describes an integration model and interfaces to facilitate integration of CBM-
related information with operating and environmental information to support optimal decision-making for 
effective and efficient manufacturing (Carnahan et al. 2005).

SAE AIR5871 (SAE 2008) applies to prognostics of gas turbine engines. The standard defines 
prognostics terminology, explains potential benefits and limitations of prognostics, provides general 
guidelines for the use of prognostics using existing condition monitoring systems. Examples are included 
in this standard.

MIMOSA OSA-CBM is an implementation of the ISO-13374 functional specification (Walter 2006).
OSA-CBM uses the Unified Modeling Language (UML) to define the standard, separating the 
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information from the technical interfaces used to exchange or communicate the information. This 
implementation allows vendors and integrators to implement the most appropriate technologies for their 
application.

MIMOSA OSA-EAI defines a data repository for asset management (MIMOSA 2010). The OSA-
EAI database includes information about engineering, maintenance, operations, and reliability, as shown 
in Figure 13.

Figure 13. Major functions of OSA-EAI (reproduced courtesy of www.mimosa.org).

DiagML is a fully Extensible Markup Language (XML) schema that defines a format for transferring 
diagnostic information (Diag-ML 2011). DiagML was produced by DSI International and TYX 
Corporation. DiagML has been used in a wide variety of commercial applications. Impact Technologies, 
Boeing, and NASA’s Jet Propulsion Laboratory have all developed projects demonstrating the use of 
DiagML.
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4.2 Assessment Criteria
To assess the suitability of commercially available integrated health management frameworks for use 

in NPPs, a list of desired features has been developed.

1. Open, modular architecture.

The architecture should be independent of the selection of diagnostic or prognostic algorithms, so that 
a change in desired algorithm can be quickly and easily accomplished. This includes having well-
published interfaces allowing researchers to create algorithms that will work with the architecture.

2. Platform independence.

The architecture should not be tied to any single computer platform, but rather should be able to 
operate on as many platforms as possible.

3. Graphical user interface (GUI).

Control room or other site staff could easily be overwhelmed by the amount of data available to them.
A well-designed GUI is necessary so that the technician or operations and maintenance professional 
does not miss critical information.

4. Web-based tool set.

The use of web applications promotes flexibility in the system by allowing ready access to 
information over a computer network.

5. Scalability.

The product must be scalable to systems that range from the single motor or pump to subsystems 
within a plant (e.g., those that comprise a service water system) or modules that combine to comprise 
a full NPP.

6. Compatibility with existing or emerging standards and specifications.

Standards and specifications are used to promote interoperability and minimize redundancy. Existing 
prognostics standards and specifications are listed in Section 4.1.

4.3 COTS Products
For most efficient utilization of funding resources, use of a commercially available integrated health 

management framework would be ideal. Thirteen candidate products and architectures have been 
identified based on discussions with experts in the field, review of the literature, and Internet search. Each 
of these products is briefly described in Appendix A. The relevant features are summarized in Table 2.

The analysis presented is based on information available in product fact sheets and brochures, on 
company websites, and, in some cases, through direct communication with the vendors. PHM Modules 
columns indicate which of the six core PHM functions each architecture supports: data acquisition, 
system modeling, fault detection, diagnostics, prognostics, and advisory generation. The data acquisition 
column indicates if the product includes modules or interfaces to automatically collect data, either directly 
from sensors and other sources or by interacting with the existing plant data historian. The last six 
columns briefly indicate if the platform complies with the six criteria outlined above: open, modular 
architecture; platform independence; GUI for system development and/or results viewing; web-enabled 
tools; scalability; and standards compatibility. Where appropriate, brief notes are included to indicate the 
degree to which a product complies with each criterion.
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Table 2. Features of commercially available integrated health management frameworks.

Product Company

PHM Modules

Open, 
Modular 

Architecture
Platform 

Independence GUI

Web-
Based 
Tools Scalability

Standards 
Compatibility

Data 
Acquisition

System 
Modeling

Fault 
Detection Diagnostics Prognostics

Advisory 
Generation

AOC and 
EHM

Optimized 
Systems and 
Solutions Inc. 
(OSyS)

X X X X X X Yes Unknown Yes Yes Yes Yes

eXpress DSI 
International X X X Somewhat Windows XP 

or 7 Yes Yes Yes DiagML

FAMOS Scientech X X X X X Somewhat Windows Yes Yes Yes No

Watchdog 
Agent IMS X X X X Somewhat

Requires 
LabVIEW for 
development

Yes No No Yes

MADe PHM 
Technology No Unknown Yes Unknown Yes No

Maximo IBM X X X Yes Linux, 
Windows Yes Yes Yes Yes

Multi-Agent 
Systems

University of 
Strathclyde X X X X X Yes Unknown No Unknown Yes Unknown

Operational 
Insight and 
Equipment 
Condition 
Monitor

Matrikon X X X X X Yes Yes Yes Yes Yes OPC, ODBC, 
MIMOSA

OstiaEdge ESRG X X X Yes Windows, 
Linux Yes Yes Yes Unknown

PEP and 
PEM

University of 
Tennessee X X X Somewhat

Any OS with 
MATLAB 

2009a or later
No No No No

PlantAPS SmartSignal X X X X X No Unknown Yes Yes Yes No
SignalPro 
and 
ReasonPro

Impact 
Technologies X X X X X X Yes Unknown Yes Unknown Yes Yes

SureSense Expert 
Microsystems X X X X X Yes Yes Yes No Yes

Could be 
implemented 
by standards-
compliant 
plugins
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The reviewed products can be divided into four categories: research tools, PHM system development 
tools, deployable architectures, and peripheral tools.

Research tools include codes and algorithms that are useful for prototyping new methods, 
investigating feasibility, or performing small-scale studies. These codes tend to not scale well to full 
systems and lack the development support necessary for actual implementation.

PHM system development tools include products designed to aid in the development of monitoring 
systems, but not to run analysis with online data.

Deployable architectures are those systems that appear to be developed to the point to scale to large, 
complex systems; be fully supported by the vendor for system development and implementation; and 
include most or all of the modules included in a PHM system.

4.3.1 Research Tools

Several of the systems considered are actually research tools, not deployable PHM architectures. The 
PEM and PEP toolboxes from the University of Tennessee are designed for fast prototyping of 
monitoring, fault detection, and prognostic models. This is to allow easy comparison across candidate 
models, to support development of new techniques and algorithms, and to present proof-of-principle for 
small scale systems. The toolboxes are not written to be robust enough for deployment on an actual 
system of any scale. Similarly, Watchdog Agent, developed at the Center for Intelligent Maintenance 
Systems at the University of Cincinnati, provides a set of tools for fast prototyping of monitoring, fault 
detection and diagnostics, and prognostics algorithms. However, this product is built on LabVIEW and is 
not expected to scale well to the systems and subsystems that comprise an NPP.

4.3.2 PHM System Development Tools

Three products can be considered PHM system development tools: eXpress, Maintenance Aware 
Design environment (MADe), and PHM Design. eXpress was originally designed as a tool for design 
assessment and optimization for the purpose of fault detection and diagnostics. It has since evolved with 
some online capabilities, but its core function remains evaluating a system design, either new or legacy, in 
terms of diagnostic ability. MADe is a suite of tools with a similar purpose. The MADe suite can be used 
to simulate system failures, track faults as they progress to failure and propagate through the system, 
optimize sensor placement for maximum detection and diagnosis, and generate fault symptom patterns 
based on the failure simulation and chosen sensor suite. Finally, PHM Design can be used to identify 
appropriate targets for prognostic monitoring, optimize the sensor suite, and evaluate the prognostic and 
diagnostic coverage of a proposed PHM system. While these tools are not directly useful as PHM 
systems, they can be used to guide and inform system development for pilot studies.

4.3.3 Deployable Architectures

Several products or suites of products represent deployable system monitoring architectures. Five of 
these architectures do not appear to include prognostic estimates, and it is unclear how easy it would be to 
incorporate third-party prognostic algorithms: eXpress, FAMOS, Operational Insight and Equipment 
Condition Monitor, OstiaEdge, and PlantAPS. SureSense includes the full health monitoring suite, but 
does not provide advisory generation. Both OSyS and Impact provide a pair of tools each that seem to 
employ all six models when used in tandem: AOC and EHM, and SignalPro and ReasonPro, respectively. 
Depending on the purpose of the applied system, each of these products has its own advantages and 
disadvantages, as discussed in Appendix A.
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The multi-agent system approach is very promising for developing an open, modular PHM system 
which scales to large, complex plants. However, this approach has not yet been developed into a 
commercially available product.

4.3.4 Peripheral Tools

IBM’s Maximo is an Enterprise Asset Management tool that has some basic data acquisition and 
signal thresholding capabilities, as well as engines for identifying appropriate maintenance actions and 
scheduling. Maximo should not be considered a PHM system; however, it is designed with 
interoperability in mind. It presents a useful hub for displaying and aggregating the results of third-party 
systems. In fact, the Matrikon products are designed to communicate with Maximo, and it is expected that 
other products do or will interact with Maximo in the future.
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5. SUMMARY AND CONCLUSIONS
There are an extensive body of knowledge and some commercial products available for calculating 

prognostics, remaining useful life, and damage index parameters. The application of these technologies 
within the nuclear power community is still in its infancy. Online monitoring and condition-based 
maintenance are seeing increasing acceptance and deployment, and these activities provide the 
technological bases for adding predictive and prognostics capabilities. The three key aspects of 
implementing a PHM system have been presented and discussed: component/system/structure selection, 
prognostic algorithms, and prognostics architectures.

Four criteria were presented for component selection: feasibility, failure probability, consequences of 
failure, and benefits of the PHM system.

The basis for and methods commonly used for prognostics algorithms were reviewed and 
summarized.

Six criteria for evaluating PHM architectures were presented given: open, modular architecture; 
platform independence; graphical user interface for system development and/or results viewing; web-
enabled tools; scalability; and standards compatibility.

Thirteen software products were identified as potentially useful for establishing a PHM program in an 
NPP. These products were evaluated based on the six criteria using information available from company 
websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. 
The thirteen products were classified into four groups of software: research tools, PHM system 
development tools, deployable architectures, and peripheral tools. Eight software tools fell into the 
deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. 
Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite 
but lacked operations and maintenance support. Each product is briefly described in Appendix A. 
Selection of the most appropriate software package for a particular application will depend on the chosen 
component, system, or structure. Ongoing research will determine the most appropriate choices for a 
successful demonstration of PHM systems in aging NPPs.
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Appendix A
Assessment Criteria

Several commercially available prognostics and health management (PHM) architectures have been 
identified for possible application NPPs. This appendix discusses each of the products summarized in 
Section 4.3. Products information was gleaned from available literature and data sheets, which are 
included in Appendix B, “Survey of Industries Focusing on Maintenance”. When possible, direct 
communication with company representatives provided clarification and additional information. The 
prognostics architectures are reviewed based on the assessment criteria outlined in Section 4.2. Beyond 
assessing the degree to which each product meets these criteria, no judgment of the products is made or 
should be inferred. The products reviewed represent a complete list of the available architectures that 
would scale to a system of the size and complexity of an NPP to the best of the authors’ knowledge. 
Exclusion of any available product is purely an oversight.

A-1. EHM

Equipment Health Management (EHM) by OSyS utilizes data collected online and through routine 
walk-around inspections to perform the major tasks of a PHM system through their Asset Optimization 
Centre (AOC) framework. Their system is built in five layers: data acquisition, data consolidation, data 
analysis, data presentation, and risk-based maintenance planning.

AOC includes hundreds of standard interfaces for connecting to a wide variety of online data sources. 
Additionally, several manual data entry points are available to include information from non-instrumented 
data, as found condition, and event records. AOC also includes algorithms to ensure that extracted 
information is reliable and conforms to defined quality standards. This is characterized through a quality 
index that is assigned to data as it is loaded into the system. This quality index then moves with the data 
through the system to inform how data is utilized. High quality, high reliability data are given more 
weight in analysis and decision making, whereas less reliable data and data sources are given less 
importance.

Data consolidation utilizes existing data historians and SCADA systems. Data are preprocessed to 
reduce data volume and extract important and useful information from the many, disparate data sources. 
Preprocessing methods include change detection, frequency spectra analysis, and anomaly detection and 
isolation. In some cases, only the anomalous data are sent to AOC for further analysis.

The data analysis layer includes system modeling, diagnosis, and prognosis; these steps represent the 
EHM portion of the full AOC system. OSyS AOC includes the ability to train and evaluate empirical 
models of nominal system behavior. A library of modeling, analysis, and anomaly detection routines is 
included that can be configured and applied by the user through a well-defined step by step process. 
However, if the user has first principle-based models of system operation, these can easily be 
incorporated in the analysis system through the Analytical Building Framework, which uses MATLAB 
Simulink to design, develop, and test analytic solutions. Legacy models, third-party models, and other 
proprietary or separately developed created in other environments can also be easily imported into EHM.

The diagnostic system uses a model-based approach built through a drag-and-drop fusion of analytic 
methods, modeling techniques, and first-principles knowledge. The diagnostic engine includes an 
estimated confidence value for the presence of all known machine failure modes, instead of choosing a 
single, most likely fault mode to display. The system naturally fuses multiple diagnostic techniques to 
improve confidence in fault detection and diagnoses, thereby reducing false positives and improving 
confidence that the fault has been correctly diagnosed.



41

Prognostic analysis in EHM is relatively immature. Simple regression methods are available for 
benign trends. State-based prognostic analysis is available based on the results of the diagnostic engine. 
As faults are detected and diagnosed, and as additional information becomes available, the system moves 
through appropriate prognostic techniques for the current situation. OSyS continues both fundamental and 
applied research to improve signal processing techniques and develop prognostic capabilities.

Results of the data analysis are displayed in a collaboration portal, which combines information from 
OSyS products and other vendors based on commercial open system standards. EHM combines multiple 
interfaces into this system and allows functions to be accessed simultaneously by multiple users. This 
environment is based on Microsoft Sharepoint, which allows for a highly flexible and configurable 
environment.

The OSyS system is completely open, allowing customers to view, analyze, or extract data as they 
wish. It communicates with any Data Access Specification (OPC) enabled data acquisition system. It is 
also extensible by integrating proprietary algorithms developed by the user or a third party into the overall 
system. Additionally, EHM and the OSyS AOC include proven solutions for specific plant components. 
Several of the available components and failure modes are pertinent to NPP operation, including pump, 
pipe, and pressure vessel monitoring,

A-2. eXpress

DSI International provides eXpressTM tools for diagnostic capability assessment and online 
diagnostics. eXpress was originally developed to perform design assessment and optimization for 
diagnostics for both new and legacy designs. This assessment includes the probability of detecting a fault 
and correctly isolating the cause of the fault. The diagnostic tool has been expanded to also produce a 
Prognostics Candidate report, which indicates the failure modes that would most benefit from prognostic 
monitoring. In addition to diagnostic assessment, eXpress also includes plug-ins like Workbench and the 
Run-Time Authoring Tool. eXpress Workbench is designed to be used by technicians to deploy 
diagnostics in production and maintenance environments. Workbench can be used to reduce false alarms, 
isolate and identify a fault, and aid in determining appropriate repair actions. The Run-Time Authoring 
Tool is a web-based client for displaying the results of eXpress and Workbench. Run-Time Authoring 
Tool runs on the DiagML standard and facilitates the visual mapping of faults and root causes to elements 
in the system design. Through this standard, the results of eXpress and Workbench can easily be exported 
into standard-compliant third-party applications.

The eXpress toolkit is continuously being expanded. The DSI Maintenance Reasoner, expected in 
2011, supports real-time diagnostic analysis based on real-world conditions. While prognostics and 
mission planning are not currently implemented in the eXpress framework, such capabilities are expected 
in the pending Operation and Support Simulation module.

The eXpress analysis is based on a model of the system or plant developed in a CAD-like graphical 
user interface (GUI). For a system as large and complex as an NPP, it is recommended that the overall 
plant be divided into systems and subsystems that can be easily modeled and afterwards be connected to 
provide the full plant model.

A-3. FAMOS

The Fleet Asset Management and Optimization Solutions (FAMOSTM) suite of products is available 
from Scientech. FAMOS includes six core modules: PEPSE, PMAX, CMAX, PdP, R*TIME, and Rules 
Engine. PEPSE is a power plant thermal modeling, design, and performance analysis program currently 
implemented in all United States’ NPPs. PMAX is the online extension of PEPSE that performs thermal 
performance monitoring, analysis, and optimization. It is currently used in 59 U.S. NPPs for thermal 
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performance monitoring. CMAX provides condition monitoring and diagnostics using both online and 
off-line data. PdP quickly detects and identifies operational, process, and equipment problems based on 
predictive pattern recognition. R*TIME provides online data capture and archiving on both a local plant 
and fleetwide level to support fast, reliable data retrieval and processing. Finally, Rules Engine works 
across the suite of products for diagnosis and decision support. FAMOS does not currently include any 
support for prognostics or prognostic-based maintenance planning.

PEPSE and PMAX both focus specifically on plant thermal efficiency assessment and optimization.
PEPSE performs a steady-state system analysis for an entire plant, a subsystem, or a specific component. 
It is used to analyze boundary conditions, assess the effects of plant changes, and optimize thermal 
performance. PMAX performs online thermal performance monitoring. It also is able to validate 
incoming data to detection instrument faults and calibration errors.

CMAX monitors equipment condition using both online and offline data. This utility offers 
continuous monitoring and risk assessment for the overall plant status, comprehensive component 
condition monitoring, and early warning of equipment degradation. The tool plugs in with the Rules 
Engine to automatically perform fault diagnosis. The Rules Engine is a rule-based diagnostic system,
which includes embedded tools for the user to create and modify rules. These rules can incorporate all 
available information sources, both online and offline. Pre-configured rules for various common fault 
conditions are included in a Component Rules Library, but the exact nature and breadth of these rules is 
not known. Fault warnings are generated based on pre-defined, component-specific critical fault sizes.

PdP is an additional fault detection engine. It utilizes existing data acquisition systems, data 
historians, and information from other monitoring systems such as PMAX and CMAX. PdP performs 
fault detection through the traditional monitoring approach. An empirical system model is built based on 
available historical, nominal data. Expected nominal sensor values are compared to the actual sensor 
values to characterize how well the system behavior agrees with the expected behavior through residuals. 
Simple thresholding techniques are applied to these residuals to determine if the system is operating in a 
nominal or faulted condition.

Several of the core modules of FAMOS include the ability to integrate third party applications. 
R*TIME, the data acquisition and data historian tool, allows inclusion of in-house fault detection 
applications into the full FAMOS suite. FAMOS also has portals for interfacing with other solutions, such 
as Enterprise Resource Planning (ERP) utilities. The full suite of modules is controlled through a single, 
web-enabled GUI for easier implementation and training. However, each of the tools can be run 
separately to provide the specific solutions needed; it is not required that all modules be implemented. 
The functions available in FAMOS are designed to scale to a complex system such as an NPP. 
Additionally, it is designed to monitor a system or component, a single plant, or an entire fleet.

A-4. LabVIEW WITH WATCHDOG AGENT

Watchdog Agent® is a LabVIEW-based toolkit developed by researchers at the Center for Intelligent 
Maintenance Systems at the University of Cincinnati. The toolkit is scheduled for commercial release in 
fall, 2011. Because it is based on LabVIEW, the toolkit can run on a variety of platforms including 
Windows, MacOSX, and Linux, provided that LabVIEW is installed. If LabVIEW is not available, the 
monitoring system can be developed using Watchdog Agent and LabVIEW, and then compiled to run on 
any machine. Similarly, the functionality of LabVIEW can be used to convert Watchdog Agent into a 
web-enabled toolkit; however, web connectivity is not naturally supported.

Watchdog Agent employs a multi-sensor approach to meet four of the OSA-CBM layers: signal 
processing, condition monitoring, health assessment, and prognostics. The toolbox extracts performance-
related features from inputs of sensor data, controller signals, and expert knowledge, and models 
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historical feature values to estimate system health. Over 20 classes of algorithms are included in the 
Watchdog Agent, as shown in Table A-1. Additionally, Watchdog Agent can integrate third-party or user-
developed algorithms, provided they are available in a format that is compatible with LabVIEW. 
Performance, and therefore health, evaluation is performed through a statistical approach that compares 
the most recent observations and features with those seen during nominal operation. The overlap between 
the current distribution of signatures and the nominal distribution is called the Confidence Value (CV). 
As the system health deteriorates, this value trends toward zero. Similarly, if signature distributions are 
available for faulty conditions, the CV can be used to determine which fault the system is most likely 
experiencing. Watchdog Agent is designed to be an adaptable system, able to learn the signatures of new
faults as they become available to improve fault detection and diagnostics during future operation. This 
feature is particularly attractive to aging components which may experience faults not previously seen or 
considered.

Table A-1. Watchdog Agent® Toolbox algorithms (IMS 2011).
Signal Processing and Feature Extraction Health Assessment

Time Domain Analysis Logistic Regression
Frequency Domain Analysis Statistical Pattern Recognition
Time-Frequency Analysis Gaussian Mixture Modeling (GMM)
Wavelet/Wavelet Packet Analysis Feature Map Pattern Matching 

(Self-Organizing Maps)
Expert Extracted Features Neural Network Pattern Matching
Autoregressive (AR) Model/AR Model Roots Adaptive Filtering
Principal Component Analysis (PCA) Hidden Markov Model (HMM)

Performance Prediction Health Diagnosis
Autoregressive Moving Average (ARMA) Feature Map Pattern Matching 

(Self-Organizing Maps)
Elman Recurrent Neural Network Support Vector Machine (SVM)
Match Matrix Bayesian Belief Network (BBN)
Trajectory Similarity Based Prediction Hidden Markov Model (HMM)
Stochastic Filtering
Fuzzy Logic

The layer definitions of the available layers in Watchdog Agent are the same as the generic layer 
definitions of standards such as MIMOSA OSA-CBM. A full system, which meets the requirements of 
this standard, could be developed using the Watchdog Agent platform. However, data acquisition and 
decision making support must be realized by peripheral applications and algorithms outside of the 
Watchdog Agent system.

To date, Watchdog Agent has not been applied to a system with the size and complexity of an NPP. 
Watchdog Agent has been applied to vehicle component prognosis, spindle bearing monitoring, machine 
tool health monitoring, and elevator door monitoring, among others. The system appears to be well-suited 
to monitoring components or small subsystems, but scalability may prove to be an issue for a system as 
complex as an NPP or for fleet wide plant monitoring.
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A-5. MADe

Maintenance Aware Design environment (MADe) is a software tool provided by PHM Technology 
that models system failures and behavior to identify possible functional issues and mitigate risk during the 
design process. This product suite is not an integrated PHM system, but it supports PHM system design 
and development. For that reason, it is briefly reviewed here. The MADe suite of products includes the 
original MADe studio, MADe RAM, and MADe PHM.

MADe models parts, components, subsystems, and systems to identify and assess potential functional 
and safety issues in system design. MADe analysis starts with a functional model of the plant built with 
available components from a generic library or customized components created for specific projects or 
platforms. System-wide responses to failures are simulated through system hierarchies. This provides 
automated failure mode tracking through the system hierarchy.

MADe reliability, availability, and maintainability (RAM) utilizes the MADe model to determine 
design and functional issues that will affect reliability and availability from the line replaceable unit 
(LRU) level through to the full system level. This package generates fault trees which can be used to drill 
down from system failures to the associated components and systems which caused or contributed to the 
failure. This analysis can be used to generate a detailed failure database which has been optimized for 
RAM functions. These results can be exported to other analysis and decision support tools.

Finally, MADe PHM generates optimal sensor sets for a system based on Failure Modes, Effects, and 
Criticality Analysis (FMECA) results. Existing or candidate sensor sets can be evaluated, and additional 
sensors are automatically suggested which can achieve the required coverage and result ambiguity. A 
library of available sensors and manufacturers allows competing sensor sets to be quickly and easily 
compared on features such as cost, reliability, etc. The system can accommodate design issues that 
preclude certain locations for sensors; this is particularly important in the harsh environment of an NPP 
where some locations simply cannot support sensors or the associated electronics. This package generates 
a diagnostic symptom set based on the chosen sensor set and simulated system failures, which can be 
used in other applications, such as a fault detection and diagnostic routine.

While the MADe suite of tools is not suited for analysis of system health or state advisory, it can be 
used to inform and design such a system. MADe and MADe RAM can be used to better understand fault 
modes and their effects as they propagate throughout the entire system. MADe PHM can be used to 
evaluate the efficacy of the available sensor suite for detecting and differentiating fault modes, to suggest 
optimal sensor types and placement to augment the existing suite, and to generate a list of fault symptoms 
based on the available sensors, which can be used to develop a diagnostic engine.

A-6. MAXIMO

Maximo® Asset Management is an enterprise asset management (EAM) hub developed by IBM,
which supports management of all types of business assets, including service, contract, materials, 
procurement, physical asset, and work management. The asset management portion of Maximo allows for 
monitoring of asset and location conditions to enable proactive maintenance. Condition monitoring 
interfaces allow for tracking unlimited measurement points. Alarm limits can be specified by the user, as 
well as maintenance actions associated with alarms for preventative maintenance. Maximo is designed to 
enable fleet-wide monitoring of components, equipment, or full systems.

Beyond simple signal thresholding for fault detection, Maximo does not seem to include any 
advanced prognostic or health management routines. However, as a web-enabled platform, PHM systems 
from third-party providers can be incorporated into Maximo through cut-and-paste functionalities. 
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Currently, Matrikon’s PHM solutions are designed to tie in with Maximo. Maximo can be integrated with 
plant-based data acquisition systems and hardware to support condition-based maintenance systems.

IBM offers a software suite specialized for application in the nuclear industry called Maximo for 
Nuclear Power. This version of the EAM tool includes industry-specific enhancements that correspond to 
goals such as scalability and standardization. It incorporates key best-practices outlined in the Standard 
Nuclear Performance Model, including equipment reliability (AP-913) and configuration control 
(AP-929).

A-7. MULTI-AGENT SYSTEMS

Multi-agent systems (MAS) provide a promising approach to the problem of information fusion for 
health monitoring (McArthur et al. 2004; Catterson et al. 2005; Catterson et al. 2009). An agent is defined 
by Wooldridge (1995) as software that displays autonomy, reactivity, pro-activeness, and social ability. 
Autonomy in this sense means that the agent operates in an unsupervised mode. Reactivity and 
pro-activeness refer to the agents’ ability to react to surroundings and take action to solve problems so 
that they may continue to perform their task. Finally, agents are able to cooperate and communicate with 
other agents, giving them social ability. A multi-agent system employs a collection of agents that operate 
independently, but cooperatively, to achieve the system goal. Separate agents can be developed for each 
task in the monitoring system, including data collection and pre-processing; multiple independent 
monitoring, anomaly detection, and diagnostic routines; corroboration of results from anomaly detection 
and diagnostic routines; appropriate prognostic modules for each fault type; and result reporting. Often, 
no one routine is best for detecting and diagnosing all possible faults; each routine is well suited to a 
subset of the possible faults. The multi-agent approach is attractive because it is inherently extensible to 
include many disparate fault detection and identification routines. As new routines are developed and 
refined, they can be easily added to the system by the development of appropriate agents. Additionally, 
the corroboration agent can account for the differences in accuracy of each of the independent fault 
detection and diagnostic modules. By considering the “confidence” of each test result, the final diagnosis 
will account for the inherent uncertainty in each of the diagnostic modules; a framework for this 
corroboration is given in (McArthur et al., 2004). For optimum remaining useful life (RUL) accuracy, 
separate prognostics models are used for each possible fault type. These models may or may not employ 
the same modeling algorithm. In fact, different prognostic model types may be appropriate for different 
fault modes, depending on the information that can be collected concerning the fault. The estimated RUL 
is then used for operation and maintenance planning to minimize unnecessary maintenance and in-
operation failure, which may be employed by even another agent or group of agents.

The MAS approach has not been implemented in commercially available software, but it presents an 
architecture for the PHM system, which can easily be designed to meet all the requirements and criteria 
outlined. MAS-based PHM systems have been studied at the University of Strathclyde for condition 
monitoring of large transformers using ultra-high frequency data (McArthur et al., 2004). Their system is 
inherently modular, with separate agents for each task, including data handling agents, isolation agent, 
classification agents, corroboration agent, engineer assistant agent, etc. The modular nature of the system 
makes it particularly attractive for combining with agents that perform fault detection and diagnostics 
based on other information, such as dissolved gas analysis (DGA) or Supervisory Control and Data 
Acquisition (SCADA) results (Catterson et al. 2005). The developed online monitoring system was 
deployed on two transformers nearing end of life (Catterson et al. 2009). This system used data collected 
from 50+ sensors to detect and diagnose anomalies. The MAS system was shown to be flexible and 
extensible to incorporate output from other monitoring and interpretation techniques.

No commercially available MAS-based PHM software has been identified; however, this approach is 
promising as a prognostics architecture due to its inherent ability to incorporate and consolidate 
information from many different, sometimes conflicting, modules.
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A-8. OPERATIONAL INSIGHT AND EQUIPMENT 
CONDITION MONITOR

Two products from MatrikonTM are pertinent to the area of PHM: Operational Insight and Equipment 
Condition Monitor. Operational Insight is a web-based data visualization and Key Performance Indicator 
(KPI) dashboard. Equipment Condition Monitor uses both real-time and historical data to predict, 
diagnose, and prevent critical equipment failures. Both products are built on the Open operations and 
maintenance standard which combines OPC data communication standards and MIMOSA compatibility 
standards.

Operational Insight provides data integration, KPIs, and visualization from existing data acquisition 
and historian systems. Using OPC-based communication technology, Operational Insight is able to 
connect to any data source through over 500 OPC interfaces. The software includes trending tools to 
monitor and analyze plant conditions; graphical presentations built through drag-and-drop creation; both 
ad-hoc and automated report generation to present important data as it is needed; and comprehensive 
charting ability to visualize data and KPIs. Complex calculations are also supported across data sources 
through a graphical calculation tool.

While Operational Insight provides the data aggregation and visualization capabilities, Equipment 
Condition Monitor performs equipment health monitoring. Equipment Condition Monitor connects to 
multiple data sources simultaneously through the same OPC protocols and identifies corrupt and missing 
data. Inferential models are used to perform sensor validation using existing plant knowledge and data 
resolution. Entire processes and systems are continuously monitored to detect, diagnose, and prevent 
potential failures. Operations and maintenance requirements are prioritized according to the results of the 
detection and diagnosis.

Matrikon offers operational excellence guidance specifically for power generation. This program 
includes solutions in maintenance and reliability, productivity and efficiency, safety and compliance, and 
environmental management. The productivity and efficiency toolset include solutions for equipment 
monitoring such as the Equipment Condition Monitor, alarm management, control asset performance 
management, and centralized monitoring across the entire fleet. Matrikon is a first and second level 
support partner for IBM’s Maximo product.

A-9. OstiaEdge

OstiaEdgeTM is a suite of monitoring tools provided by Engineering Software Reliability Group 
(ESRG). OstiaEdge provides plant level or fleetwide monitoring of equipment health through the web-
based Ostia Portal. OstiaEdge Plant Edition (PE) monitors a single plant or system, while OstiaEdge 
Central Edition (CE) combines the results of multiple OstiaEdge PE systems for a fleetwide assessment of 
health.

OstiaEdge PE compliments and integrates with the plant’s existing data historian to integrate both 
online and offline data sources, including sensed data, control system information, vibration monitors, etc. 
OstiaEdge “qualifies” data for various user-specified machine states. By identifying the state of the 
system, unique rule sets can be applied specific to that system state. User-defined machine state 
algorithms are used to trigger alarms and collect data on events as they unfold.

The OstiaEdge suite operates on a Windows or Linux platform, both for system development and 
operation. The web-based results portal presents information on machinery run hours, alarms, trends, and 
events. Event data can be plotted and trended to glean additional information.
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A-10.THE PEM AND PEP TOOLBOXES

Two MATLAB-based toolboxes have been developed by the Prognostics and Reliability
Optimization and Control Technologies (PROaCT) Lab at the University of Tennessee. The Process and 
Equipment Monitoring (PEM) Toolbox provides functionality for automated system monitoring and fault 
detection. The Process and Equipment Prognostics (PEP) Toolbox supports fast prototyping of a variety 
of prognostic algorithms. It is important to note that the PEM/PEP toolboxes are not commercially 
available products. The toolboxes are intended for research purposes and are maintained for such use. 
They are not deployable as a standalone health monitoring system.

The PEM and PEP toolboxes are currently implemented as command-line MATLAB functions. Some 
GUI support is provided in the PEM toolbox for preliminary functions such as variable grouping. Both 
toolboxes make use of MATLAB structures for model development and analysis. The toolboxes are 
designed to work together, with an independently developed diagnostic model, to offer a full health 
monitoring system as shown in Figure A-1.

Figure A-1. Integration of the PEM and PEP toolboxes.

A-10.1 Process and Equipment Monitoring Toolbox

The PEM Toolbox is a MATLAB based set of tools that currently provides a generalized set of 
functions for use in process and equipment monitoring applications, specifically online monitoring 
systems (OLM). The current architecture of the PEM Toolbox is organized into six function categories as 
shown in Figure A-2. The first category allows for data to be acquired from multiple sources and 
conditioned to assure data quality. The next category includes tools to aid in model development 
including variable grouping and multivariate model optimization. Several model types are supported by 
PEM, including auto associative kernel regression (AAKR), auto associative neural networks (AANN), 
and linear regression models. Once a model is developed, functions for parameter prediction and 
performance analysis are available to compare competing models. The final two function categories 
provide methods for uncertainty estimation and fault detection.

PEM PEP
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Figure A-2. PEM toolbox architecture.

A-10.2 Process and Equipment Prognostics Toolbox

The purpose of the PEP toolbox is to provide a complete set of tools to facilitate prognostic model 
development. A myriad of prognostic algorithms have been developed that use a variety of information
sources, models, data processing algorithms, etc. Typically, prognostic model development depends 
highly on the expertise of the developer. The PEP toolbox reduces the development burden on the system 
designer and facilitates the rapid development of competing models. As described earlier, prognostic 
algorithms can be classified by the type of information used to make RUL estimates. Algorithms in each 
of the three classes are included in the PEP toolbox, along with associated estimates of uncertainty. The 
PEP toolbox architecture is shown in Figure A-3.

Figure A-3. PEP toolbox architecture.



49

A-11.PlantAPS

SmartSignal’s® Plant Availability and Performance Solution (PlantAPSTM) combines the monitoring 
and fault detection power of EPI*Center with the diagnostic solution of SHIELD. EPI*Center interacts 
with a plant’s existing data historian to monitor a system with the data-based Multivariate State 
Estimation Technique (MSET) algorithm developed at Argonne National Laboratory. SHIELD, the 
diagnostic engine, leverages SmartSignal’s repository of operating information collected over hundreds of 
millions of machine hours on a variety of systems. This historical data was used to generate symptom 
patterns which describe tens of thousands of failures captured by SmartSignal. SHIELD uses these fault 
patterns, in combination with operating data and information, to diagnose faults and assign a “priority” to 
the faults. The fault priority gives an indication of the severity of the fault, aiding in scheduling 
maintenance and corrective action. An apparent disadvantage of the SHIELD approach to diagnostics is 
its inflexibility in defining fault symptoms. Symptoms are based on the data available in the SmartSignal 
database, and there is no indication that these can be tailored to a specific plant or augmented with 
additional information, expert knowledge, or independently developed symptom patterns. Currently, 
SHIELD is able to detect faults in equipment pertinent to NPPs, including boiler feed pumps and other 
generic pumps, condensers, cooling water circuits, generators, and steam turbines. Figure A-4 lists the 
failure modes that have been detected and identified by SmartSignal in NPPs.

Figure A-4. NPP failure modes detected by SmartSignal (2011).

PlantAPS is a centralized monitoring suite which interacts with the plant’s existing Distributed 
Control System (DCS) or OSI PI infrastructure to perform the monitoring, fault detection, and fault 
diagnostic tasks available in EPI*Center and SHIELD. PlantAPS is managed and maintained by 
SmartSignal on their servers. It provides web-based communication of impending plant faults and failures 
through e-mail notification of key plant personnel. The system can be hosted onsite by the utility, but the 
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particulars of this are not clear. The program does not seem to be extensible or modular in anyway; there 
is no indication that it would be easy or even possible to incorporate third-party algorithms.

A-12.SignalPro and ReasonPro

Impact Technologies offers a variety of products and tools that are applicable to the nuclear power 
industry (Impact Technologies 2010). Several of these products are geared to specific components within 
the plant. CBMiTM performs real-time monitoring of critical equipment based on vibration data. 
BearingLifeTM and ImpactLifeTM work together to monitor and detect failure modes in ball and roller 
bearings, such as spalling, pitting, and corrosion. GearLifeTM fuses design, monitoring, and operational 
information with a finite element fatigue model to prognose the remaining useful life of gears. They have 
also developed custom solutions for steam turbines. Two of their products are more generally applicable 
to health monitoring: SignalProTM and ReasonProTM.

SignalPro is an anomaly detection system built on a data-driven system modeling engine that 
effectively increases the signal to noise ratio of sensed data. In this way, it looks for subtle changes in 
system behavior, such as instrument faults or system degradation. SignalPro can be used in systems with 
high variability in expected nominal measurements due to changes in operating condition such as load or 
season. SignalPro can be implemented alone or in conjunction with existing data historians and condition 
monitoring systems.

ReasonPro is a model-based diagnostic and prognostic reasoning software. It captures both evidence-
and temporal-based relationships between fault symptoms and failure modes to provide robust fault 
isolation and identification. Because causality (temporal) information is considered, fault propagation to 
failure can be analyzed based on associated PHM monitor sequences. ReasonPro has been developed to 
run in multiple settings—online for real-time system monitoring, on mobile devices for walk-around 
analysis, and offline for test stands and post analysis applications.

A-12.1 IMS and PBMS

In addition to the monitoring and diagnostic software, Impact Technologies offers two products to aid 
in condition-based maintenance scheduling. The Impact Maintenance Scheduler (IMSTM) uses machinery 
health information, estimates of RUL, and Enterprise Resource Planning (ERP) information to determine 
the optimal maintenance actions and schedule in order to maximize readiness and/or minimize cost. The 
Prescription Based Maintenance Management System (PBMSTM) intelligently ranks maintenance tasks 
based on the likelihood of success and the effects to cost and downtime. PBMS incorporates information 
from PHM systems in determining which failure modes are most likely and most important, indicating 
which maintenance tasks are most pressing. Both IMS and PBMS are built on open system architecture to 
facilitate collaboration with PHM and logistics systems.

A-12.2 PHM Design

The PHM DesignTM tool aids in designing, developing, evaluating, and deploying PHM and CBM 
systems. Much like the MADe suite of products, this tool is not an online PHM engine. It is a 
development tool to aid in designing a system using information from a FMECA, the current sensor suite, 
and visual system design. PHM Design can identify the most appropriate components or system for PHM 
monitoring based on fault risk; evaluate the prognostic coverage of the proposed system for catastrophic 
failures; and evaluate the ability to correctly isolate and identify faults using the available sensors and 
information. In addition to designing and evaluating a PHM system, PHM Design can autogenerate 
aspects of the final system from existing databases, such as a fault isolation system using a generic 
reasoner and the Extensible Markup Language (XML) database.
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A-13.SureSense

SureSense® is the health monitoring research and development framework provided by Expert 
Microsystems (EM). SureSense is built on EM’s Diagnostic Monitoring Studio software, which is a 
highly-customizable java-based architecture that supports modular plug-in of any of EM’s proprietary 
models or any third-party or customer proprietary models. The software suite displays results through a 
user-designed HMI screen, with data visualization and plotting tools, and a data export feature to move 
results into another system as desired.

This is not a web-enabled tool; it is workstation based and is designed with the system engineer in 
mind. The suite is not designed for fleet-wide monitoring, but scales to a full nuclear power plant model.
Because of the plug-in nature of the software package, compliance to standards such as OPC and 
MIMOSA is straightforward. Data acquisition and data reporting modules can be easily developed to 
meet these criteria.

The SureSense architecture is based on five hierarchical levels of data analysis, including data 
validation, state prediction, fault detection, diagnostic decision, and prognostic decision, as shown in
Figure A-5. The software can interface with any existing data acquisition system through the included 
universal data acquisition interface. The data validation layer, also called data qualification, uses filters 
and data conditioning tools to ensure data quality. SureSense also uses this stage to optionally identify 
equipment’s operating conditions to apply mode partitioning for condition-specific modeling. Mode 
partitioning reduces false and missed alarms caused by nominal changes in plant characteristics due to
seasonal operating changes or characteristics of equipment aging. The state prediction layer generates the 
expected system operating conditions using an appropriate first-principle or empirical model, which can 
be one from the bank of available models or an independently developed third-party plug-in model. The 
actual data collected from the system and the expected data generated in the state prediction layer are 
compared in the third layer, fault detection. Fault detection routines include simple thresholding, range 
monitoring, noise estimation, derivative tests, the sequential probability ratio test (SPRT), and the EM 
proprietary Adaptive Sequential Probability test. If a fault is detected, the fourth layer attempts to 
diagnose the type of fault using a Bayesian Belief Network, which can be developed through a 
drag-and-drop interface. Finally, the system moves to the prognostic decision layer, which can make 
estimates of RUL at any point in the system’s life based on the information currently available such as 
runtime, fault detection and diagnostic results, and system data. As indicated, the system is fully 
customizable at each layer by the use of third-party or customer developed proprietary models, which fit 
into the java-based Diagnostic Monitoring Studio framework.
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Figure A-5. SureSense architecture (expert microsystems).

SureSense has been used at power generation plants including NPPs in the U,S. and abroad. Most 
notably, it has been employed by Tennessee Valley Authority, Excelon Energy, South Carolina Electric 
and Gas, and British Energy for sensor calibration interval extension and performance-critical equipment 
monitoring. EM is currently partnered with Constellation Energy for a pilot study applying the SureSense 
suite for monitoring tendon slips and breaks in the containment structure at Ginna Nuclear Power Plant 
in Ontario, New York. They are also engaged in studies using fiber optic sensors to monitor and detect 
flow-induced corrosion in steam ducts.
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Appendix B

Survey of Industries Focusing on Maintenance
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Appendix B

Table B-1. Survey of industries focusing on maintenance (from Kothamasu et al. [2006]).


