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ABSTRACT 

Geothermometry is an important tool for estimating 
deep reservoir temperature from the geochemical 
composition of shallower and cooler waters. The 
underlying assumption of geothermometry is that the 
waters collected from shallow wells and seeps 
maintain a chemical signature that reflects 
equilibrium in the deeper reservoir. Many of the 
geothermometers used in practice are based on 
correlation between water temperatures and 
composition or using thermodynamic calculations 
based a subset (typically silica, cations or cation 
ratios) of the dissolved constituents. An alternative 
approach is to use complete water compositions and 
equilibrium geochemical modeling to calculate the 
degree of disequilibrium (saturation index) for large 
number of potential reservoir minerals as a function 
of temperature. We have constructed several 
“forward” geochemical models using The 
Geochemist’s Workbench to simulate the change in 
chemical composition of reservoir fluids as they 
migrate toward the surface. These models explicitly 
account for the formation (mass and composition) of 
a steam phase and equilibrium partitioning of volatile 
components (e.g., CO2, H2S, and H2) into the steam 
as a result of pressure decreases associated with 
upward fluid migration from depth. We use the 
synthetic data generated from these simulations to 
determine the advantages and limitations of various 
geothermometry and optimization approaches for 
estimating the likely conditions (e.g., temperature, 
pCO2) to which the water was exposed in the deep 
subsurface. We demonstrate the magnitude of errors 
that can result from boiling, loss of volatiles, and 
analytical error from sampling and instrumental 

analysis. The estimated reservoir temperatures for 
these scenarios are also compared to conventional 
geothermometers. These results can help improve 
estimation of geothermal resource temperature during 
exploration and early development. 

INTRODUCTION 

A major barrier to the deployment of geothermal 
energy is the financial risk associated with 
geothermal prospecting (U.S. DOE, 2011).  
Geophysical surveys and test wells are expensive, 
and advances in prospecting are needed to reduce risk 
and increase the return on prospecting investments.  
One possibility is to improve the accuracy of 
geothermometry by taking advantage of advances in 
geochemical analyses and modeling. In geothermal 
systems, physical processes (e.g., mixing, boiling) 
and geochemical processes (e.g., mineral dissolution, 
precipitation) along flow paths commonly alter the 
composition of migrating waters.  If these changes 
are not accurately characterized and quantified, 
predictions of in-situ reservoir conditions (e.g., 
temperature, pCO2) based on the chemical 
composition of sampled thermal waters may be 
erroneous, or too imprecise to be useful.  However, if 
these processes can be correctly described and their 
impact on geothermometers quantified, the 
conditions in a deep reservoir temperature can be 
estimated with greater confidence.   
 
The technical literature provides many examples of 
how geochemical modeling that simultaneously 
considers multiple mineral equilibria can be used to 
estimate the temperature of reservoir fluids from their 
geochemical fingerprints (e.g., Bethke 2008; Reed 



and Spycher, 1984; Spycher et. al., 2011).  However, 
this technique has not yet been widely adopted by the 
exploration industry, and most geothermometry is 
conducted using traditional approaches such as silica, 
Na-K, Na-K-Ca, Na-K-Ca-Mg, Na-Li, and K-Mg, 
and various gases and stable isotopes (e.g., 
Armannsson and Fridriksson, 2009; Karingithi, 2010, 
Young et. al., 2012).  These approaches are useful, 
but suffer from some inherent limitations, including: 

 Each of these geothermometers has a different 
conceptual model, and reliable selection of a 
geothermometer requires a priori knowledge 
of in-situ conditions. 

 Because of this disparate set of conceptual 
models, each geothermometer will often 
predict a different temperature for the same 
solution chemistry.   

 They do not provide for a straightforward 
method to independently assess the accuracy 
and/or reliability of the temperature prediction. 

 They do not directly account for changes in 
fluid chemistry that occur as the fluid migrates 
from the reservoir to the sampling point that 
are the result of boiling and subsequent 
venting of volatile components even if no net 
heat (enthalpy) is lost. 

 They do not explicitly account for the multiple 
influences of mineral alteration reactions on 
solution chemistry in a manner that allows for 
improvements in thermodynamic datasets and 
analytical technologies to be easily adopted. 

Many of these weaknesses can be addressed if 
geochemical reaction path modeling is used as a basis 
for geothermometry.  Modern geochemical models 
couple up-to-date thermodynamic datasets with user-
provided aqueous solution and gas-phase 
composition to rapidly calculate the temperature-
dependent saturation states of a fluid with hundreds 
of different minerals.  These calculations, coupled 
with inverse parameter optimization, can be used to 
estimate reservoir temperature by determining the 
point at which multiple equilibria “converge” to a 
common temperature. 
 
In this paper, we outline some of the concepts for a 
multicomponent equilibrium approach to 
geothermometry and discuss how these concepts can 
be implemented. The potential validity of this 
approach is tested using simulated datasets of 
synthetic geothermal waters that have a known 
reservoir temperature and hydrogeochemical history.  
We use that dataset to test an inverse numerical 
optimization approach for estimating geothermal 
reservoir temperatures using multicomponent 
equilibrium geothermometry.  

MULTICOMPONENT GEOTHERMOMETRY 

A simple conceptual model of a geothermal system is 
illustrated in Figure 1. While different sites have 
unique, site-specific aspects, the base conceptual 
model captures key chemical and physical features 
common to most geothermal systems.  

 
Figure 1: Conceptual model for geothermal system.  

Water and steam rising up to a thermal 
spring or shallow aquifer, experiencing 
cooling and venting of volatile 
components. 

 
In this conceptual model, fluids in a deep reservoir 
are heated to reservoir temperature and react with the 
reservoir mineral assemblage. Equilibrium is 
assumed because the rates of reaction are expected to 
be relatively fast at these elevated temperatures. 
These geothermal waters then rise along a fracture, 
pressure drops and a portion of the water separates 
into a vapor phase (Figure 2).   

 
Figure 2: Pressure versus temperature (red line, 

bottom axis) and pressure versus mass 
fraction of vapor (green line, top axis) for 
water in constant enthalpy system. 
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This process also reduces fluid temperature, even 
though the total combined enthalpy of the fluids 
remains constant due to the latent heat of 
vaporization. The resulting two-phase system 
concentrates the non-volatile constituents in the 
liquid phase and partitions volatile components such 
as CO2, CH4, H2, and H2S to a steam phase; altering 
solution pH and redox (Eh) and shifting the 
saturation state for mineral equilibria. Near the 
surface, the geothermal system subsequently vents 
volatile components to the atmosphere (spring or 
well), or mixes with shallow groundwater (e.g., 
aquifer mixing). These cooler waters, or a steam 
condensate, are typically sampled during geothermal 
exploration and then analyzed for their mass and/or 
isotopic composition. The geochemical data collected 
from these samples are then used to estimate the 
temperature of the fluid in the deep reservoir, based 
on the assumption that the relatively slow rates of 
mineral dissolution and precipitation reactions at the 
lower temperatures along the migration path allow 
the solution to retain the geochemical fingerprint of 
the deep reservoir. 
 
Some of the basic concepts of multicomponent 
geothermometry of been described by others (e.g., 
Bethke 2008; Reed and Spycher, 1984; Spycher et. 
al., 2011). The methodology involves calculating 
saturation indices of the near-surface water sample as 
a function of temperature. The reservoir temperature 
can then be defined as the temperature at which the 
multiple mineral species deemed likely to be present 
in the system are in equilibrium with the solution 
composition, when mineral saturation states are 
plotted as a function of temperature. This definition 
is depicted in the following example (Bethke, 2008).  
 
A brine containing 3 molal Cl and 0.05 molal Ca at 
pH 5 is equilibrated with quartz, calcite, albite, K-
spar, and muscovite at 250°C. This geothermal water 
is transported to the surface where the gas phase is 
condensed and reconstituted with the liquid phase at 
25°C and the pH and dissolved constituents are 
measured. The system represents a closed 
hydrothermal system where both the liquid phase and 
the gas phase could be sampled. Speciation 
calculations are made at 25°C, at the pH measured at 
that temperature. The water is then speciated as a 
function of temperature over the range of 25°C to 
300°C, allowing the pH to be calculated using The 
Geochemist’s Workbench® (Version 9). Plotting the 
calculated mineral saturation indices as a function of 
temperature (Figure 3) shows that the indices for 
quartz, calcite, albite, K-feldspar, and muscovite 
converge common point where Q/K = 1 (log (Q/K) = 
0) at 250 °C.  This point where the saturation indices 

converge to zero is the reservoir temperature 
estimated by the multicomponent geothermometry 
approach. This estimate is identical to that used to 
generate the subsurface fluid chemistry in this simple 
example.  However, real-world systems are more 
complex than this idealized example, and additional 
processes will need to be considered.  
 

 

Figure 3: Plot of mineral saturation state versus 
temperature for a hypothetical closed 
geothermal system (Bethke, 2008). 

 
For example, consider Figure 4, which shows how 
the system depicted in Figure 3 would behave if CO2 
was lost to the atmosphere at the sampling location 
(e.g., a spring).  Here, the mineral saturation plots for 
albite, K-feldspar, and quartz appear to converge, but 
calcite and muscovite do not. Further, the 
convergence of albite, K-feldspar and quartz suggests 
a reservoir temperature of about 256°C rather than 
250°C.  Even for these three minerals, the saturation 
occurs at 257.4, 256.0, and 249.8°C, respectively. 

 
Figure 4: Plot of mineral saturation state versus 

temperature for the system depicted in 
Figure 3, but open to the atmosphere 
(Bethke, 2008). 
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This result clearly indicates that loss of volatile 
constituents from a geothermal system can have a 
significant impact on the relationship between fluid 
chemistry and estimated reservoir temperature.  
However, field sampling programs for geothermal 
exploration typically do not gather sufficient data to 
directly account for loss of volatile constituents. 
Thus, the optimization process should explicitly 
include volatile components lost (CO2 in this case) as 
an optimization parameter.   
 
In Figures 3 and 4, we have shown only the 
saturation indices of the minerals with which the 
initial reservoir fluid was equilibrated. It is important 
to note, however, that geochemical models can 
provide saturation indices for hundreds of mineral 
phases making graphical as well as numerical 
estimation of the reservoir extremely difficult, if not 
impossible. Fortunately, it is unnecessary and 
actually incorrect to include all potential solid phases 
in such calculations. For equilibrium, the Gibbs phase 
rule defines the maximum number of independent 
variables within a system (equation 1). 
 
1. F = C – P +2; where 

F = degrees of freedom (independent variables) 
C = number of components in system 
P = number of phases in system 

 
For cases where there is a fluid phase present and 
system temperature and pressure are correlated (e.g., 
steam saturated water), the phase rule can be used to 
determine the maximum number of equilibrium 
phases that are appropriate for the calculation 
(equation 2).  
 
2. M = C – F; where 

M = number of equilibrium minerals, and 
M < C 

 
Although the Gibbs phase rule limits the number of 
minerals that can be considered, it does not tell us 
which minerals need to be included. Mineral 
selection represents an area of continuing uncertainty.  
The choice of minerals is dependent upon the 
reservoir lithology. The geoscience literature contains 
numerous studies that identify alteration mineral 
assemblages that form when hot water interacts with 
reservoir minerals (e.g., Schwartz, 1959). Many 
hydrothermal systems are equilibrated with the 
alteration mineral assemblages rather than the 
primary reservoir lithology (e.g., Bethke, 2008; 
Giggenbach, 1988).  It is possible to conduct inverse 
numerical optimization calculations that test different 

feasible alteration mineral assemblages. However, 
this approach may not yield satisfactory results in 
cases where the number of minerals approaches or 
becomes equal to the number of independent 
constraints (i.e. compositional measurements). In this 
case, convergence to a common set and values for 
optimization parameter would become increasingly 
sensitive to inherent measurement errors.  An 
alternative is to develop a dataset of commonly 
observed alteration mineral assemblages for a 
specific lithology at low, medium, or high reservoir 
temperature; and then select the appropriate mineral 
set – using the Gibbs Phase Rule for guidance in the 
number of minerals to consider.  This would allow 
the analyst to conduct multiple calculations, using the 
same computational and conceptual basis, but with 
different input parameters; and then contrast results 
with available field data.  The relative merits of these 
approaches should be assessed in future work. 
 
Another challenge associated with geothermometry is 
accounting for uncertainty in geochemical analyses. 
The calculations associated with Figures 3 and 4 are 
based on idealized systems in which all the 
parameters were “measured” with perfect certainty. 
In reality, chemical analyses contain analytical errors 
that can contribute to the overall uncertainty in the 
estimation of the reservoir temperature. We need to 
better understand the magnitude of this uncertainty 
and develop methods that allow us in incorporate 
analytical uncertainty into the uncertainty in the 
estimates of reservoir temperature. 

APPROACH 

Geochemical Calculations 
As we have discussed in the previous section, several 
factors need to be considered for improved 
geothermometry:  

 Estimating the steam-water partitioning that 
occurs as geothermal fluids migrate from 
depth to the sampling location. 

 Partitioning of volatiles between the gas and 
liquid phases 

 Identifying the mineral phases that control 
water-rock equilibrium in the deep reservoir. 

 Assessing the impact of analytical error on the 
estimates of reservoir temperature 

 
With respect to steam-water partitioning, pressure 
reductions and cooling that occurs when fluids rise 
from deep geothermal systems alter the percentage of 
total water that is present as a liquid. For example, 
consider the trends in Figure 2, which depicts water 
partitioning in a closed, constant enthalpy system. At 



8 MPa pressure, the system consists of ~2% steam 
and ~98% water at 300 °C.  At constant total 
enthalpy, the same fluid at atmospheric pressure is 
~40% steam and ~60% water and 100 °C.  This 
partitioning will concentrate dissolved ions in water 
and facilitate the partitioning of volatile species in to 
the steam phase.  Liquid water loss can be treated by 
two different approaches:  

 For a general case; specifying a % mass loss of 
water due to vaporization. 

 For a closed, constant enthalpy system; 
calculating the mass of water lost to the vapor 
phase along each temperature step 

 
The mass loss of volatile species from solution (e.g., 
CO2, H2S) can be treated similarly.  For the general 
case, the mass loss can be specified directly.  For a 
closed, constant enthalpy system; mass loss of 
volatile components can be iteratively calculated.  
Both approaches use mass loss as an optimization 
parameter, but the closed system approach allows for 
calculations to be made for cases where the aqueous 
and gas phases may follow different paths.  If volatile 
loss is calculated iteratively, a mass balance is 
performed over both phases as shown in equation 3. 

3.  

 
where:   

Pk,k,g = partial pressure of the kth gas component,  
KH,k = Henry’s coefficient,  

H2O,l = density of liquid water,  
Mk,total = total mass of component k,  
Xk,g = mass fraction of water in the gas phase,  
M0

H2O = initial mass of water,  
H2O,g = density of the vapor phase,  
k = fugacity coefficient for gas component k 

Ck,i,l = molal concentrations of species i 
containing component k with stoichiometric 
coefficient aik.  

 
We are currently testing both of these approaches for 
accounting for loss of water and volatile components. 
However, for this paper, we are demonstrating these 
concepts using the more general approach that does 
not require the assumption of a closed, constant 
enthalpy system. 

Inverse Optimizations 
For estimating the reservoir temperature, we use an 
optimization approach rather than the graphical 
approach illustrated in Figures 3 and 4. Ultimately, 
these calculations will be conducted by coupling The 
Geochemist’s Workbench® (GWB) with the general 
parameter estimation and optimization code PEST 
(Doherty, 2005). However, for this paper we have 
done the calculations by iteratively applying GWB to 
generate a dataset of mineral saturation as a function 
of temperature and volatile constituents lost, and then 
finding the optimum solution for an objective 
function that indicates the system’s overall mineral 
saturation state. We have defined our objective 
function as the minimization of the Total Saturation 
Index (TSI), shown in equation 4.  

4. TSI =  (SIi / wti)2;     
SIi  = log (Qi/Ki) for the ith equilibrium mineral 
wti = weighting factor based on the number of 

thermodynamic components (i.e., 
independent chemical variables) and the 
number of time each component appears 
in the ith mineral dissolution reaction.  

Because of the squared term in Equation 4, TSI 
values are always greater than or equal to zero and 
can pass through both positive minima and maxima. 
The advantages of expressing the objective function 
in ways other than the Euclidean norm, will be 
explored in future work. 
 
For a system in equilibrium and with no 
measurement errors, the overall equilibrium state 
occurs at the point at which TSI = 0.  For real water 
samples subject to sampling and analytical errors, the 
TSI value should always be greater than zero. The 
weighting factor ensures that each mineral that 
contributes to the equilibrium state is considered 
equally and the results are not skewed by reaction 
stoichiometry.  The weighting factors used in our 
calculations are based on writing the reactions so that 
a total of 1 mole of ions are added to solution. 
Weighting factors for some example minerals are 
provided in Table 1. Other weighting methods can 
also be used. 

Table 1: Weighting factors for selected minerals.  

Mineral Thermodynamic 
Components 

Weight 
factor 

Albite 1*Al3+, 1*Na+, 3*SiO2 5 
Calcite 1*Ca2, 1*CO3

2- 2 
K-feldspar 1*Al3+, 1*K+, 3*SiO2 5 
Muscovite 3*Al3+, 1*K+, 3*SiO2 7 

Quartz 1*SiO2 1 
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Example Test Cases 
To illustrate the potential power and limitations of 
the multicomponent equilibrium geothermometry 
approach, we have tested the inverse reaction path 
modeling approach against simulated data from four 
different geothermal scenarios.  The scenarios were 
generated using The Geochemist’s Workbench®, 
Version 9 (Bethke and Yeakel, 2011), using the 
thermo.dat thermodynamic database. These simulated 
numerical datasets assumed a reservoir mineral 
assemblage, equilibrated water with that assemblage 
at a given temperature, and then subjected the 
simulated deep waters to a sequence of thermal and 
chemical events (e.g., boiling, cooling venting).  The 
computed water chemistry represents the chemistry 
of water collected from a thermal spring or sampling 
well.  We also investigate the potential impacts of 
sampling errors.  
 
For each case, the given solution chemistry was input 
into The Geochemist’s Workbench®, and the log 
(Q/K) calculated as a function of temperature for a 
assumed equilibrium mineral assemblage of albite, 
calcite, K-feldspar, muscovite, and quartz were.  The 
calculations were conducted for the range of 25°C to 
300°C. The effect of mass loss of CO2 due to 
volatilization was assessed by numerically adding 
CO2(aq) back in to the solution at increments of 0.1 
molal over the range of 1e-4 to 1.0 molal.  In some 
cases, increments of 0.02 and 0.05 molal were also 
considered over the range of 1e-4 to 0.1 molal.  For 
each case, these calculations yielded a dataset of TSI 
and temperature in increments of CO2-added.  This 
dataset was then used to estimate the both reservoir 
CO2 and temperature by the condition at which TSI 
had its minimum value using the following process: 

1. The optimum mass of CO2 added (mol/kg) 
was determined by finding the minimum on a 
plot of TSI at dTSI/dT = 0 versus CO2 added  

2. The optimum temperature was determined by 
plotting temperature at dTSI/dT = 0 versus 
CO2 added, and then determining the 
temperature at the point that corresponds to the 
optimum mass of CO2 added. 

3. The TSI at the optimum mass of CO2 added 
was calculated similarly.  

For cases where water was lost due to boiling, the 
impact of water loss was qualitatively assessed by 
conducting replicate calculations at different extents 
of water loss.  The test cases are described below, 
and the associated solution chemistry is provided in 
Table 2.  
 
Case 1: Open system (Bethke, 2008). A brine 
containing 3 molal Cl and 0.05 molal Ca at pH 5 is 
equilibrated with quartz, calcite, albite, K-spar, and 
muscovite at 250°C. This geothermal water is 
transported to the surface where the fluid cools to 
25°C and CO2 vents to the atmosphere. The system 
represents a geothermal water that has reached the 
surface, cooled under closed conditions and then was 
exposed to the atmosphere.  
 
Case 2: Effect of Analytical Errors. This simulation 
is the same as Test Case 1 except that random errors 
are introduced into the data: 15% relative standard 
deviation for Al, 10 % for HCO3

-, 5% for Ca, Cl, K, 
Na, SiO2, 0.15 units for pH, and 1°C for temperature. 
 
Case 3: Deep Boiling. A brine containing 3 molal Cl 
and 0.05 molal Ca at pH 5 is equilibrated with quartz, 
calcite, albite, K-spar, and muscovite at 250°C. This 
geothermal water is then isothermally boiled until 
15% of the water is lost while maintaining 
equilibrium with the reservoir mineral assemblage. 
The resulting water is then transported to the surface 
where the fluid cools to 25°C and CO2 vents to the 
atmosphere.  
 
Case 4: Flashing. A brine containing 3 molal Cl and 
0.05 molal Ca at pH 5 is equilibrated with quartz, 
calcite, albite, K-spar, and muscovite at 250°C. This 
geothermal water is then isothermally boiled until 
15% of the water is lost but mineral reaction does not 
occur during boiling.  The resulting water is then 
transported to the surface where the fluid cools to 
25°C and CO2 vents to the atmosphere. This scenario 
represents fluid flashing within a well. 
 

 
Table 2: Solution Chemistry for Numerical Test Cases.   

Case Al3+ 
(mg/kg) 

Ca2+ 
(mg/kg) 

Na+ 
(mg/kg) 

K+ 
(mg/kg) 

Cl- 
(mg/kg) 

HCO3
- 

(mg/kg) 
SiO2 

(mg/kg) pH Sample 
Temp.  

1 8.66 e-3 2.00 e3 6.39 e4 1.01 e4 1.13 e4 2.39 e3 2.10 e2 5.10 25 °C 
2 9.53 e-3 1.96 e3 6.64 e4 0.98 e4 1.10 e4 2.20 e3 2.12 e2 5.09 24.4 °C 
3 7.65 e-3 2.35 e3 7.66 e4 1.21 e4 1.33 e4 2.41 e3 2.07 e2 5.13 25 °C 
4 10.2 e-3 2.36 e3 7.52 e4 1.19 e4 1.31 e4 0.85 e3 2.45 e2 5.20 25 °C 

 



RESULTS  

Results from the inverse geochemical calculations are 
summarized in Table 3.  For the relatively simple 
scenario in Case 1, the inverse method independently 
predicted reservoir temperature to within ± 1 °C.  
This result is a significant improvement over the 
results gained when only temperature is considered 
(e.g., Figure 4), and demonstrates how including 
volatile loss as part of the optimization scheme can 
greatly improve geothermometry.  
 
Table 3: Results from Inverse Calculations. For all 

cases, the actual temperature is 250 °C.  

Case H2O 
loss 

T  
(°C) 

CO2-aq 
added 

(mol/kg) 

TSI at 
optimum 

1 n.a. 250.6 0.52 5.12 e-4 
2 n.a. 253.0 0.45 7.72 e-4 

3 

none 249.7 0.63 4.50 e-4 
10% 242.0 0.44 1.33 e-3 
20% 233.5 0.29 2.69 e-3 
30% 221.2 0.14 7.03 e-3 

4 

none 259.6 0.08 6.50 e-2 
10% 254.1 0.07 1.13 e-2 
20% 248.7 0.06 9.27 e-3 
30% 233.3 0.03 2.03 e-2 

 
The influence of volatile loss is also seen in the plot 
of Total Saturation Index (TSI) versus potential 
reservoir temperature for each amount of CO2 added 
(Figure 5).  In this plot, the different colored curves 
correspond to different masses of CO2-added back 
into the system. Each of these curves shows a 
minimum that corresponds with the “convergence 
point” of saturation indices that can be qualitatively 
identified from a plot of temperature versus the log 
(Q/K) for sets of minerals that are likely to be present 
in a reservoir.  The minimum becomes more clearly 
resolved as CO2 is added back into the system to 
account for venting.  
 
The blue line in Figure 5 represents a fully vented 
system (e.g., as in Figure 4).  The lines where greater 
than 0.3 mol/kg H2O of CO2-(aq) have been added 
back into the system represent the closed system – 
prior to loss of volatiles (e.g., as in Figure 3).  The 
line with the lowest minimum represents the best 
solution.  This point can be more easily identified 
from the derivative of the TSI function.  The point at 
which dTSI/dT = 0 defines the minimum point in the 
TSI plot.  An example of this is shown in Figure 6. 

The zero-point for this sequence of dTSI/dT plots is 
used to determine the amount of CO2 needed to reach 
the minimum possible saturation index over a 2-D 
range of CO2 and temperature.  This is shown 
graphically in Figure 7, where the y-axis represents 
the set of points where a plot of TSI versus 
temperature is at a minimum.  

 
Figure 5: Plot of the total saturation index (TSI) as a 

function of temperature and added CO2 
for a shallow water sample derived from a 
deep geothermal reservoir that has lost 
volatiles as per Case 1 (e.g. Figures 3, 4).    

 
Figure 6: Plot of dTSI/dT as a function of 

temperature and added CO2 for the same 
case as in Figure 5.  

 
Figure 7: Plot of TSI at the point where dTSI/dT = 0 

for all amounts of CO2 added for the same 
case as in Figures 5 – 6. 
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The minimum of this value, when plotted against 
CO2 added, yields a minimum point for CO2 added, 
over the entire set.  This minimum point for CO2 
added is then used to calculate the corresponding 
temperature value, as shown in Figure 8. 

 
Figure 8: Plot of temperature at the point where 

dTSI/dT = 0 for all amounts of CO2 added 
for Case 1 (e.g. Figures 3 – 7).   

 
For Case 2, which incorporated the impact of typical 
analytic error, application of this inverse optimization 
method for geochemical modeling independently 
predicted reservoir temperature to within ± 3 °C.  
This result suggests that typical analytical errors can 
be tolerated in geothermometry.   
 
The results for Test Case 3 (deep boiling) and Test 
Case 4 (flashing) are also encouraging for cases 
where there was water loss due to boiling.  When the 
optimum value of TSI was at an approximate 
minimum with respect to mass of water loss, as 
estimated by selecting the temperature prediction for 
the water loss case with the lowest TSI at the 
optimum point, the method predicted the correct 
result to within ± 1 °C.  Interestingly, the method 
selected an optimum point at no water loss for the 
deep boiling case (Case 3), and at 20% water loss for 
the steam flashing case (Case 4). In both instances, 
the actual amount of water loss was 15%. In Case 3, 
there is mass transfer due to the mineral equilibria, 
but no mass transfer in Case 4. This suggests that, if 
the extent of water partitioning can be independently 
measured (e.g., via isotopic techniques), then 
comparison of predicted and actual mass loss may 
provide a way to estimate the extent to which 
mineralization occurs within the geothermal system.  
 
A comparison of results of the multicomponent 
geothermometry approach with some traditional 
geothermometers is provided in Table 4.  The quartz 
geothermometer underestimates the reservoir 
temperature by as much as 80°C, while the Na-K 

geothermometers overestimate the reservoir 
temperature by 13 to 22 °C. In contrast, the 
multicomponent geothermometry method 
consistently estimates reservoir temperature to within 
± 1 – 3 °C when water loss is taken into account. 
 
Table 4: Comparison with temperature estimates 

using traditional geothermometers. Same 
cases as for Table 3.  

Method Case 1 
T (°C) 

Case 2 
T (°C) 

Case 3
T (°C)

Case 4
T (°C)

Inverse 
Modeling  251 253 250 249 
1 Fournier 

Quartz      
(no steam) 

183 184 182 194 

1 Fournier
Quartz     

(max steam) 
170 172 170 180 

1 Fournier 
Chalcedony 156 157 156 168 

1 Fournier 
Am-SiO2  

59 60 59 70 
2 Fournier 

Na-K 271 263 270 271 
3Giggenbach 

Na-K  272 265 272 272 
1 Truesdell and Fournier (1977)  
2 Fournier et. al. (1979) 
3 Giggenbach (1988) 

SUMMARY AND CONCLUSIONS 

The basic concepts of geothermometry have been 
available for about five decades and many of the 
early geothermometers are still being applied today. 
The application of these techniques can result in a 
wide range of estimated reservoir temperatures and 
limited ability to judge the uncertainty of the 
calculations. In this paper, we have proposed a 
multicomponent geothermometry technique that is an 
extension of the concepts provided by Reed and 
Spycher (1984).  We take advantage of the advances 
that have been made in geochemical modeling, 
thermodynamic databases, and optimization tools to 
improve the estimates of reservoir temperatures.   
 
To test these concepts, we have used The 
Geochemist’s Workbench® to simulate the chemical 
composition of geothermal waters following cooling, 
loss of water vapor, loss of volatile constituents and 
mineral reactions. These simulations were then used 
to demonstrate our ability to replicate the initial 
reservoir temperatures. The results indicate that the 
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multicomponent geothermometry presented here has 
excellent potential for improving the practice of 
geothermometry for geothermal exploration and 
resource characterization.  These preliminary results 
indicate that most geothermometry problems can be 
usefully resolved if the following factors are properly 
accounted for: 

 Selection of the appropriate number of mineral 
phases to control solution equilibrium. 

 Accurately selecting which minerals to use for 
geochemical calculations, on the basis of 
regional geology. 

 Properly accounting for the impact of steam-
water partitioning on solution chemistry. 

 Properly accounting for the impact of the loss 
of volatile components on solution chemistry.  

 
Typical analytical errors have only minimal effect on 
estimates of reservoir temperature.  Overall, the 
results suggest that the multicomponent 
geothermometry method is relatively robust and 
could greatly improve the industry’s ability to 
estimate deep reservoir temperatures. Additional 
improvements to the multicomponent 
geothermometry approach that are being explored 
include the use of other objective functions and 
alternative weighting functions, improved techniques 
for tracking gas phase partitioning, inclusion of 
additional volatile components (e.g., H2S, H2, CH4), 
assessment of mineral reactions along the path from 
the deep reservoir and the sampling point, and 
methods for determining mineral assemblages. 
Extending this method beyond the relatively simple 
system explored via these simulations would require 
optimization of additional parameters and use of 
automated numerical optimization software that can 
conduct multi-component optimizations.  This work 
is currently underway. 
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