SIMPLIFIED METHODS FOR COMBINING MECHANICAL VENTILATION AND NATURAL INFILTRATION

PDF Version Also Available for Download.

Description

During the past ten years, the means of ventilating single-family residences has received considerable attention. In many areas, the use of natural ventilation for infiltration has either come under close scrutiny, or has already been supplanted by mechanical ventilation systems. To evaluate the energy efficiency and ventilation effectiveness of both mechanical and natural ventilation strategies, both complex and simplified infiltration models are used. This paper examines the inaccuracies associated with using simplified models to compare ventilation strategies. Two simplified techniques for combining mechanical ventilation flows to the flows caused by wind and stack effects are examined. The simplified combination techniques ... continued below

Physical Description

15 p.

Creation Information

Modera, M. & Peterson, F. January 1, 1985.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

During the past ten years, the means of ventilating single-family residences has received considerable attention. In many areas, the use of natural ventilation for infiltration has either come under close scrutiny, or has already been supplanted by mechanical ventilation systems. To evaluate the energy efficiency and ventilation effectiveness of both mechanical and natural ventilation strategies, both complex and simplified infiltration models are used. This paper examines the inaccuracies associated with using simplified models to compare ventilation strategies. Two simplified techniques for combining mechanical ventilation flows to the flows caused by wind and stack effects are examined. The simplified combination techniques are compared with the results obtained with an iterative flow-balance simulation. The flow-balance simulation determines the ventilation by balancing the incoming and outgoing flows under the pressure conditions resulting from the combination of wind effect, stack effect and mechanical ventilation. These comparisons result in three major conclusions: (1) the commonly used flow superposition technique (flow combination in quadrature) provides better estimates of the total flow than does a technique that takes into account measured flow exponents, (2) although flow combination in quadrature overpredicts ventilation when combining wind-induced and stack-induced flows, this is not the case when mechanical ventilation is added to the picture, and (3) a simple correction for the errors caused by the simplified flow superposition technique is not easy to achieve due to the large variations in error that occur with changes in wind direction and individual flow ratios.

Physical Description

15 p.

Source

  • Journal Name: SIMPLIFIED METHODS FOR COMBINING MECHANICAL VENTILATION AND NATURAL INFILTRATION

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-18955
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1007486
  • Archival Resource Key: ark:/67531/metadc844994

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1985

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 15, 2016, 9:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Modera, M. & Peterson, F. SIMPLIFIED METHODS FOR COMBINING MECHANICAL VENTILATION AND NATURAL INFILTRATION, article, January 1, 1985; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc844994/: accessed November 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.