Characterization of Group V Dubnium Homologs on DGA Extraction Chromatography Resin from Nitric and Hydrofluoric Acid Matrices

PDF Version Also Available for Download.

Description

Studies of the chemical properties of superheavy elements (SHE) pose interesting challenges due to their short half-lives and low production rates. Chemical systems must have extremely fast kinetics, fast enough kinetics to be able to examine the chemical properties of interest before the SHE decays to another nuclide. To achieve chemistry on such time scales, the chemical system must also be easily automated. Most importantly however, a chemical system must be developed which provides suitable separation and kinetics before an on-line study of a SHE can be performed. Relativistic effects make studying the chemical properties of SHEs interesting due to ... continued below

Physical Description

PDF-file: 20 pages; size: 0.2 Mbytes

Creation Information

Despotopulos, J D & Sudowe, R February 21, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 60 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Studies of the chemical properties of superheavy elements (SHE) pose interesting challenges due to their short half-lives and low production rates. Chemical systems must have extremely fast kinetics, fast enough kinetics to be able to examine the chemical properties of interest before the SHE decays to another nuclide. To achieve chemistry on such time scales, the chemical system must also be easily automated. Most importantly however, a chemical system must be developed which provides suitable separation and kinetics before an on-line study of a SHE can be performed. Relativistic effects make studying the chemical properties of SHEs interesting due to the impact these effects could have on the SHEs chemical properties. Relativistic effects arise when the velocity of the s orbital electrons approach the speed of light. As this velocity increases, the Bohr radius of the inner electron orbitals decreases and there is an increase in the particles mass. This contraction results in a destabilization of the energy of the outer d and f electron orbitals (5f and 6d in the case of SHE), which can cause these to expand due to their increased shielding from the nuclear charge. Another relativistic effect is the spin-orbit splitting for p, d, and f orbitals into j = 1 {+-} 1/2 states. This can lead most interestingly to a possible increased stability of element 114, which due to large spin-orbit splitting of the 7p orbital and the relativistically stabilized 7p{sub 1/2} and 7s orbital gives rise to a closed shell ground state of 7s{sup 2}7p{sub 1/2}{sup 2}. The homologs of element 105, dubnium (Db), Ta and Nb and the pseudo-homolog Pa, are well known to hydrolyze and form both neutral and non-neutral monoatomic and polyatomic species that may cause issues with extraction from a given chemical system. Early ion-exchange and solvent-extraction studies show mixed results for the behavior of Db. Some studies show Db behaving most similar to Ta, while others show it behaving somewhere between Nb and Pa. Much more recent studies have examined the properties of Db from HNO{sub 3}/HF matrices, and suggest Db forms complexes similar to those of Pa. Very little experimental work into the behavior of element 114 has been performed. Thermochromatography experiments of three atoms of element 114 indicate that the element 114 is at least as volatile as Hg, At, and element 112. Lead was shown to deposit on gold at temperatures about 1000 C higher than the atoms of element 114. Results indicate a substantially increased stability of element 114. No liquid phase studies of element 114 or its homologs (Pb, Sn, Ge) or pseudo-homologs (Hg, Cd) have been performed. Theoretical predictions indicate that element 114 is should have a much more stable +2 oxidation state and neutral state than Pb, which would result in element 114 being less reactive and less metallic than Pb. The relativistic effects on the 7p{sub 1/2} electrons are predicted to cause a diagonal relationship to be introduced into the periodic table. Therefore, 114{sup 2+} is expected to behave as if it were somewhere between Hg{sup 2+}, Cd{sup 2+}, and Pb{sup 2+}. In this work two commercially available extraction chromatography resins are evaluated, one for the separation of Db homologs and pseudo?homologs from each other as well as from potential interfering elements such as Group IV Rf homologs and actinides, and the other for separation of element 114 homologs. One resin, Eichrom's DGA resin, contains a N,N,N',N'-tetra-n-octyldiglycolamide extractant, which separates analytes based on both size and charge characteristics of the solvated metal species, coated on an inert support. The DGA resin was examined for Db chemical systems, and shows a high degree of selectivity for tri-, tetra-, and hexavalent metal ions in multiple acid matrices with fast kinetics. The other resin, Eichrom's Pb resin, contains a di-t-butylcyclohexano 18-crown-6 extractant with isodecanol solvent, which separates analytes based on steric interactions between the cavity of the crown ether and electrostatic interactions between the oxygen's of the ether and cations in the mobile phase. This particular resin has been shown to have an extremely high uptake affinity for Pb, a direct homolog of element 114, and is thus a good initial extractant to examine for a potential element 114 chemical system. Figure 1.1 shows the respective extractant molecules from the DGA and Pb resins. Batch uptake experiments were conducted to examine the uptake behavior of Ta on the DGA resin. Batch uptake experiments were also conducted to examine the uptake behavior of Ge on the Pb resin. Column experiments were designed based on batch uptake experiments of Ta, Am, Pa, Np, Zr, and Nb to establish a sequential extraction of Group IV/V homologs as well as Am for potential use as a Db chemical system.

Physical Description

PDF-file: 20 pages; size: 0.2 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LLNL-SR-531417
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/1036873 | External Link
  • Office of Scientific & Technical Information Report Number: 1036873
  • Archival Resource Key: ark:/67531/metadc844965

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 21, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 22, 2016, 10:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 1
Past 30 days: 3
Total Uses: 60

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Despotopulos, J D & Sudowe, R. Characterization of Group V Dubnium Homologs on DGA Extraction Chromatography Resin from Nitric and Hydrofluoric Acid Matrices, report, February 21, 2012; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc844965/: accessed May 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.