
SANDIA REPORT
2012-7800
Unlimited Release
Printed September 2012

Peridigm Users’ Guide
v1.0.0
Michael L. Parks, David J. Littlewood, John A. Mitchell, and Stewart A. Silling

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

2012-7800
Unlimited Release

Printed September 2012

Peridigm Users’ Guide

v1.0.0

Michael L. Parks David J. Littlewood
John A. Mitchell Stewart A. Silling

Computing Research Center
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-1320

Abstract

Peridigm is Sandia’s primary open-source computational peridynamics code. It is a compo-
nent software project, built largely upon Sandia’s Trilinos project and Sandia’s agile software
components efforts. It is massively parallel, utilizes peridynamic state-based material models,
Exodus/Genesis-format mesh input, Exodus-format output, and multiple material blocks. It
performs explicit dynamic, implicit dynamic, and quasistatic analyses utilizing powerful nonlin-
ear and linear solvers.

3

Acknowledgments

The author acknowledges the help, support, and encouragement of John Aidun, Andy Salinger,
and Randy Summers at Sandia National Laboratories.

The authors thank the following individuals for their contributions to Peridigm:

John Foster & James Grady (UTSA) Elastic/plastic model with hardening, nonlinear
solver development

Canio Hoffarth (ASU) Kinetic and strain energy compute classes, fric-
tion contact model, MergeFiles script

Tracy Vogler (Sandia) Funding and support for cylinder compression
problem

4

Contents

1 Introduction . 7

1.1 Quick Start Guide . 7

1.2 Typographical Conventions . 7

2 Peridynamic Theory . 9

2.1 Basic Notation . 9

2.2 State-Based Peridynamic Theory . 10

2.3 Linear Peridynamic Solid (LPS) Model . 11

2.4 Peridynamic Plasticity Model . 12

2.5 Peridynamic Viscoelastic Model . 13

2.6 Damage . 15

3 Understanding and Using Peridigm . 17

3.1 Peridigm Usage and Workflow . 17

3.2 Peridigm Input Deck Overview . 17

3.3 Peridigm Directory Structure . 18

3.4 Peridigm Software Components . 19

3.5 Downloading and Building Peridigm . 20

3.6 Spatial Discretization . 20

3.7 Explicit Time Integration . 20

3.8 Implicit Time Integration . 21

3.9 Contact . 23

3.10 Damage . 23

3.11 Output . 23

3.12 Visualization . 24

3.13 Pitfalls . 24

3.14 Bugs . 24

4 Extending Peridigm . 25

4.1 Compute Classes . 25

4.2 Material Models . 26

4.3 Creating Tests . 27

5 A Numerical Example . 28

5.1 Problem Description and Setup . 28

5.2 Writing the Peridigm Input File . 28

5.3 Running Peridigm and Visualizing Output . 29

References . 33

5

Figures

1 Subfigure (a): Each point x in the body Ω interacts directly with all points in the
sphere Hx of radius δ (the family of x). Subfigure (b): The deformation state Y
maps a bond ξ into its deformed configuration at time t. 11

2 Standard linear solid. 14
3 (a) Assuming a given bond fails at a critical stretch of s0, then the work required to

break that bond is w0. (b) Summing the work required to break all bonds across a
plane in (2.27) gives the energy release rate G0, an experimentally measurable quantity. 16

4 Incremental kinematics for implicit time integration. 21
5 Cylinder geometry and material properties. 28
6 Brittle cylinder before and after simulation. Color indicates damage (red = damaged,

blue = undamaged). 30

Tables

1 Notational conventions. 8

6

1 Introduction

This document describes the Peridigm computational peridynamics code, Sandia’s primary open-
source peridynamics code. This document complements information found at the Peridigm web site
https://software.sandia.gov/trac/peridigm. The most up-to-date information on Peridigm
and the latest version of this document can be found there.

Peridigm is a component software project, built largely upon Sandia’s Trilinos Project [4, 11].
It is massively parallel, contains peridynamic state-based material models, Exodus/Genesis-format
mesh input, Exodus-format output, utilizes multiple material blocks, and provides capabilities
for explicit and implicit dynamic and quasistatic analyses utilizing powerful nonlinear and linear
solvers. Users interested in uncertainty quantification, optimization, calibration, sensitivity analy-
sis, etc. for peridynamics can use Sandia’s DAKOTA project [3, 6] in conjunction with Peridigm.

In §2 we provide a brief discussion of the peridynamic theory as it motivates the implementation
of Peridigm. §3 discusses the implementation of Peridigm and its capabilities and features, with
§4 giving a discussion of how users can extend the capabilities of Peridigm for their own purposes.
Finally, §5 presents a numerical example, walking through the setup, execution, and visualization
of an example problem.

1.1 Quick Start Guide

For those who hate reading users’ guides, please do the following:

1. Visit the Peridigm Trac site https://software.sandia.gov/trac/peridigm/wiki.

2. Follow the instructions in the “Getting Started” page to download and install Peridigm and
the third-party libraries required by Peridigm.

3. In the Peridigm examples directory Peridigm/examples, run an example input script. For ex-
ample, in the fragmenting_cylinder directory, execute Peridigm_fragmenting_cylinder.
xml.1

4. Follow instructions in §3.12 to visualize results.

1.2 Typographical Conventions

Our typographical conventions are found in Table 1. All norms ‖·‖ are taken to be the 2-norm,
‖·‖2.

1This example will take quite some time to complete in serial, and is recommended to run it in parallel.

7

Table 1. Notational conventions.

Notation Example Description

Verbatim text make g++ Text typed at command line

<text in angle brackets> <your platform> User specified statement

Non-bold letter K, α A scalar in R
Bold lowercase letter x, ξ A vector in R3

Bold uppercase letter M, J A matrix in Rn×m
Underlined lowercase letter t, ω Scalar state (see §2.1)

Underlined bold uppercase letter T, M Vector state (see §2.1)

Underlined blackboard bold uppercase letter D, K Double state (see §2.1)

8

2 Peridynamic Theory

The following is not a complete overview of peridynamics, and only introduces peridynamics con-
cepts used in Peridigm. For more on the peridynamic theory, the reader is referred to [23, 22, 18].
To begin, we define notation.

2.1 Basic Notation

In the following, we utilize the notation of [22]. Referring to Figure 1(a), let the position of a
given point in the reference configuration be x. Let u(x, t) and y(x, t) denote the displacement
and position, respectively, of the point x at time t.

The vector between x and any point in its family is called a bond, defined as x′−x. Define the
relative displacement vector of two bonded points x and x′ as η = u(x′, t)− u(x, t). We note here
that η is time-dependent, and that ξ is not. It follows that the relative position of the two bonded
points in the current configuration can be written as ξ + η = y(x′, t)− y(x, t).

Peridynamic models are frequently written using states, which we briefly describe here. For a
more complete discussion of states, see [22]. For our purposes, states are operators that act on
vectors in Hx, defined below. A vector state is an operator whose image is a vector, and may be
viewed as a generalization of a second-rank tensor. We write a vector state as A 〈ξ〉, where the
notation is understood to mean that the vector state A maps a bond vector ξ ∈ Hx to a vector in
R3. Similarly, a scalar state is an operator whose image is a scalar. We write a scalar state as a 〈ξ〉,
where the notation is understood to mean that the scalar state a maps a bond vector ξ ∈ Hx to a
scalar in R. The inner product of two vector states can be written as

A •B =

∫
Hx

A 〈ξ〉 ·B 〈ξ〉 dVξ. (2.1)

Let the symbol D denote a double state, such that D 〈ξ, ζ〉 is a second-order tensor, where ξ
and ζ are bonds in Hx. Let the right product of a vector state A and double state D be the vector
state D •A defined by

(D •A) 〈ξ〉 =

∫
Hx

D 〈ξ, ζ〉A 〈ζ〉 dVζ . (2.2)

We define Fréchet derivatives of functions of a vector state following the discussion in [20]. Let
W be a scalar-valued function of a vector state A, such that

W (A + ∆A) = W (A) +WA •∆A + o(‖∆A‖) (2.3)

holds. Then, W is said to be differentiable and WA is called the Fréchet derivative of W . Likewise,
if S is vector state valued function of a vector state A, then

S(A + ∆A) = S(A) + SA •∆A + o(‖∆A‖), (2.4)

9

where SA is a double state.

Some specific states we will find useful in our discussion of peridynamics are the deformation
and displacement states, which we define here. Referring to Figure 1(b), we define the deformation
state Y[x, t] 〈x′ − x〉 = y(x′, t) − y(x, t), where y(x, t) denotes the position of point x at time t.
We can define the closely related displacement state as U[x, t] 〈x′ − x〉 = u(x′, t)− u(x, t).

2.2 State-Based Peridynamic Theory

The peridynamic equation of motion is

ρ(x)ü(x, t) =

∫
Hx

{
T [x, t]

〈
x′ − x

〉
−T

[
x′, t

] 〈
x− x′

〉}
dVx′ + b(x, t), (2.5)

where ρ represents the mass density, T the force state described below, and b an external body
force density. The corresponding peristatic equation is

−
∫
Hx

{
T [x, t]

〈
x′ − x

〉
−T

[
x′, t

] 〈
x− x′

〉}
dVx′ = b(x, t). (2.6)

Referring to Figure 1(a), (2.5) supposes that point x interacts directly and nonlocally with all
points that lie within a distance δ of x. We call δ the horizon, and denote the spherical region of
radius δ centered at x as Hx, the family of x. Conditions on T for which (2.5) satisfies the balance
of linear and angular momentum are given in [22]. From (2.5), we see that the deformation at x
depends collectively upon the deformations of Hx and Hx′ .

T [x, t] is the force state. It is a vector state that is a function of both space x and time t that
maps bonds onto bond force densities. T is determined by the constitutive model T = T̂(Y), where
T̂ maps the deformation state to the force state. A material is elastic if there exists a differentiable
scalar valued W such that

T = T̂(Y) = WY. (2.7)

Here, W is called the strain energy density function for the material. Many peridynamic analogues
of classical material models have been developed, including linear elastic [22], elastic-plastic [14],
and viscoelastic [13] models. Additionally, it is possible to wrap and utilize classical material
models, using them to define a peridynamic force state T.

We consider only force vector states that can be written as

T = tM,

with t a scalar force state and M the deformed direction vector state, defined by

M 〈ξ〉 =

{
ξ+η
‖ξ+η‖ ‖ξ + η‖ 6= 0

0 otherwise
. (2.8)

Such force states correspond to so-called ordinary materials ([22]). These are the materials for
which the force between any two interacting points x and x′ acts along the line between the points.

10

(a) Example peridynamic domain (b) Deformation state Y 〈ξ〉 acting on bond ξ

Figure 1. Subfigure (a): Each point x in the body Ω interacts
directly with all points in the sphere Hx of radius δ (the family of
x). Subfigure (b): The deformation state Y maps a bond ξ into
its deformed configuration at time t.

All peridynamic material models utilize a nonnegative scalar state ω, known as an influence
function [22, Defn. 3.2]. For more on influence functions, see [17]. If an influence function ω
depends only upon the scalar ‖ξ‖, (i.e., ω 〈ξ〉 = ω 〈‖ξ‖〉), then ω is a spherical influence function.
In the Peridigm implementation of many material models, the influence function ω 〈‖ξ‖〉 = 1 is used.
However, the user can define their own influence function by altering the definition of OMEGA in the
appropriate method in the src/materials directory. Both spherical and non-spherical influence
functions (e.g., isotropic and non-isotropic) influence functions are permitted.

2.3 Linear Peridynamic Solid (LPS) Model

We summarize the linear peridynamic solid (LPS) material model. For complete details on this
model, the reader is referred to [22]. This model is a nonlocal analogue to a classical linear elastic
isotropic material. The elastic properties of a a classical linear elastic isotropic material are deter-
mined by (for example) the bulk and shear moduli. For the LPS model, the elastic properties are
analogously determined by the bulk and shear moduli, along with the horizon δ.

The LPS model has a force scalar state

t =
3Kθ

m
ω x+ αω ed, (2.9)

with K the bulk modulus and α related to the shear modulus G as

α =
15G

m
.

The remaining components of the model are described as follows. Define the reference position
scalar state x so that x 〈ξ〉 = ‖ξ‖. Then, the weighted volume m is defined as

m [x] =

∫
Hx

ω 〈ξ〉x 〈ξ〉x 〈ξ〉 dVξ. (2.10)

11

Let

e [x, t] 〈ξ〉 = ‖ξ + η‖ − ‖ξ‖

be the extension scalar state, and

θ [x, t] =
3

m [x]

∫
Hx

ω 〈ξ〉x 〈ξ〉 e [x, t] 〈ξ〉 dVξ

be the dilatation. The isotropic and deviatoric parts of the extension scalar state are defined,
respectively, as

ei =
θx

3
, ed = e− ei,

where the arguments of the state functions and the vectors on which they operate are omitted for
simplicity. We note that the LPS model is linear in the dilatation θ, and in the deviatoric part
of the extension ed. The influence function is ω, as described in §2.2. For a spherical influence
function, the LPS model is isotropic [22, Prop. 14.1].

Remark 2.1. The weighted volume m is time-independent, and does not change as bonds break. It
is computed with respect to the bond family defined at the reference (initial) configuration.

2.4 Peridynamic Plasticity Model

We summarize the ordinary, state-based plasticity model as presented in [14]. For complete details
on this model, the reader is referred to [14, 22]. This model is a logical extension of the elastic
LPS model of §2.3 to an elastic perfectly-plastic material. The material properties for the plasticity
model are the bulk and shear moduli, the yield stress, and the horizon δ.

The peridynamic plasticity model additively decomposes the deviatoric extension state ed of
(2.9) into elastic and plastic parts, as

ed = ede + edp. (2.11)

Motivated by the observation that for many ductile materials plastic deformations are independent
of the pressure, the isotropic elastic constitutive model given in (2.9) is written using the additive
decomposition as:

t =
3Kθ

m
ω x+ αω (ed − edp) (2.12)

= ti + td, (2.13)

where ti and td are the scalar volumetric and deviatoric force states, respectively. A corresponding
rate form of the above equation can also be written. In order to utilize the elastic constitutive
relation for plasticity calculations, a scalar valued function f , called the yield function, is used to
define a set of allowable scalar deviatoric force states as

f(td) = ψ(td)− ψ0 < 0, (2.14)

12

where ψ(td) = 1
2‖t

d‖2. Note that f does not include hardening, analogous to local perfect-plasticity,
where ψ0 is a positive constant representing the yield (flow) point of the material. The plastic flow
rule is defined

ėdp = λ∇dψ, (2.15)

where ∇dψis the constrained Fréchet derivative of ψ and λ ≥ 0 is the so-called consistency param-
eter. Note that ∇dψ produces functions with no dilatation.

When force states td are such that f(td) < 0, there is no change in the plastic deformation,
edp = 0, and the material is instantaneously elastic. Likewise, force states td are inadmissible if
f(td) > 0, and so plastic deformations only occur when f(td) = 0. The value of the consistency
parameter λ is non-negative and correlated with the rate of plastic deformation. When deformations
are elastic, λ = 0, but otherwise λ > 0 under under plastic deformations. The consistency parameter
and the yield function taken together are required to to satisfy the Kuhn-Tucker complementary
conditions

λ ≥ 0, f(td) ≤ 0, λf(td) = 0. (2.16)

The above conditions imply that when f(td) < 0, the consistency parameter λ must be zero. Under
this condition, deformations are elastic. When λ > 0, admissability of scalar force states implies
that f(td) = 0. Under these conditions, the force state is said to be on the yield surface, and
must also persist on the yield surface. Therefore ḟ(td) = 0. This is a plastic loading scenario.
An unloading condition occurs if f(td) = 0 and ḟ(td) < 0. In this case, we also have that λ = 0.
Combining these conditions (loading and unloading) gives the consistency condition,

λḟ(td) = 0. (2.17)

A backward Euler scheme is used to incrementally integrate the deviatoric force state edp in
(2.12). See [14] for the details, as well as a derivation of ψ0 and a proof that (2.12) is thermody-
namically consistent.

2.5 Peridynamic Viscoelastic Model

We summarize the ordinary, state-based videoelastic model as presented in [13]. For complete
details on this model, the reader is referred to [13]. A viscoelastic model is a logical intermediate
between a fluid and a solid. In a viscous fluid, there is little or no elastic resistance to shear, but
resistance to compressive volumetric deformations. In an elastic solid, there is elastic resistance to
both shear and volumetric deformations. The peridynamic viscoelastic solid is conceptually similar
to the plasticity model in §2.4, but adds viscous terms to deviatoric portion of extension state, but
the bulk response remains elastic. The model uses internal state variables which are analogous to
back strain(s) in the local theory. In its most elementary form, this model is conceptually similar
to the standard linear solid used in the local theory. The material properties of this viscoelastic
model are the bulk and shear moduli, the horizon δ, and the parameters ηi and τ bi , defined below.

13

Figure 2. Standard linear solid.

The total deviatoric extension state dd in (2.9) is additively decomposed into elastic and back
parts as

ed = ede + edb(i). (2.18)

Under assumptions given in [13], we may express the peridynamic viscoelastic scalar force state as

t =
3Kθ

m
ω x+ (α∞ + αi)ω e

d � αiω edb(i) (2.19)

= ti + td, (2.20)

where ti and td are the scalar volumetric and deviatoric force states, respectively. The elastic
parameters α∞ and αi are defined as in a standard linear solid (see Figure 2)

α =
15µ

m
(2.21)

= α∞ + αi, (2.22)

where µ is the elastic shear modulus and m is the weighted volume. To prevent unbounded creep
of this model, we require α∞ > 0. It is assumed that αi > 0, otherwise the model degenerates
to a Kelvin model, which is not practical for implementation in explicit or implicit codes with
kinematically driven constitutive models. Therefore, the additional constraint

0 < αi < α (2.23)

is required.

The evolution equation for the scalar deviatoric back extension is given based upon the following
assumptions:

td = ηiė
db(i) (2.24)

= αi(e
d � edb(i)), (2.25)

14

where tdb(i) is the scalar deviatoric force state in the dashpot and, by Newtons 3rd law, also the
force in the adjoining spring. Therefore, the evolution equation is

ėdb(i) =
1

τ bi
(ed − edb(i)), (2.26)

where τ bi = ηi/αi is a time constant associated with the material response. The state of viscoelastic
materials is history dependent. It is assumed that edb(i) → 0 in the limit as t → −∞. Selection
of τ bi is constrained by thermodynamics, and expected or relevant material response. Note that
we restrict ηi > 0, as η < 0 would cause the viscous effect not to oppose motion, and η = 0,
degenerates to two springs in parallel, causing 1/τ bi to become undefined. Thus, τ bi is positive since
ηi is positive. Please see [14] for the details on the time integration scheme used to integrate the
evolution equation (2.26) as well as proof that (2.19) is thermodynamically consistent.

2.6 Damage

Two material points in a body within each other’s horizon in the reference configuration may stop
interacting if damage is incurred. This can be represented by removing these points from each
other’s family. When this occurs, the removed bond carries no force, and so the remaining bonds
must bear that load. This increased load makes it more likely that these other bonds will break,
leading to progressive failure. Cracks propagate through this process of bond breakage and load
redistribution.

Several different criteria for bond breaking have been proposed. For example, see [9] for a
discussion of a bond failure criterion based upon the rate dependent crack initiation toughness of a
material. However, we discuss here only one criterion for bond breaking, called the critical stretch
criterion [21]. Referring to Figure 3(a), suppose that the work required to to break bond ξ is w0(ξ).
Figure 3(b) shows that the energy release rate is found by summing this work per unit crack area,
giving

G0 =

∫ δ

0

∫
R+

w0(ξ)dVξds. (2.27)

This allows us to solve for the critical stretch s0 in terms of the energy release rate G0, where G0

is an experimentally determinable quantity.

Following [21], we define for every bond ξ a boolean variable µ that is zero if a bond has broken,
and one otherwise. We define the damage at a point x as

ϕ(x, t) = 1−

∫
Hx µ(ξ, t)dVξ∫
Hx dVξ

. (2.28)

15

(a) (b)

Figure 3. (a) Assuming a given bond fails at a critical stretch of
s0, then the work required to break that bond is w0. (b) Summing
the work required to break all bonds across a plane in (2.27) gives
the energy release rate G0, an experimentally measurable quantity.

16

3 Understanding and Using Peridigm

In this section we overview the capabilities and features of Peridigm. The most up-to-date infor-
mation on Peridigm can be found at https://software.sandia.gov/trac/peridigm.

3.1 Peridigm Usage and Workflow

After building Peridigm (see §3.5), execute Peridigm with

Peridigm Input.xml

where Input.xml is a properly formatted Peridigm input deck (see §3.2).

Typical usage of Peridigm follows this general outline:

1. (Optional) Generate input mesh with mesh-generation tool, such as CUBIT [2].
2. Write Peridigm input deck. (Use Peridigm internal mesh generator if not using externally

generated input mesh.)
3. Run Peridigm.
4. Merge Exodus output files (for parallel runs) with the python script scripts/MergeFiles.py.
5. Visualize and analyze results using visualization tool, such as Paraview [12].

Detail on each of these steps is provided in the sections below, with a complete example contained
in §5.

3.2 Peridigm Input Deck Overview

A Peridigm input deck is an XML-formatted text file utilizing Teuchos ParameterLists [5, p.86].
We provide a brief overview of the structure of a Peridigm input deck below. A complete and
up-to-date description with examples can be found at the Peridigm trac site https://software.

sandia.gov/trac/peridigm. A working example input deck is presented in §5. See the tests and
examples distributed with Peridigm for examples of other use cases.

A Peridigm input deck takes the form
<ParameterList>

[Discretization Section]

[Materials Section]

[Damage Models Section]

[Blocks Section]

[Contact Section]

[Boundary Conditions Section]

[Solver Section]

17

[Output Section]

</ParameterList>

We elaborate on each of these sections below.

Discretization Section Contains filename of input mesh, or arguments to Peridigm internal mesh
generator.

Materials Section Contains the names of the material models used and arguments for their
constitutive parameters.

Damage Models Section Contains the names of the damage models used and arguments for
their constitutive parameters.

Blocks Section Contains a listing of the material blocks, associating each block with material
and damage models.

Contact Section Contains a listing of the contact models and the kind of contact model to be
applied when two blocks or materials come into contact in a simulation.

Boundary Conditions Section Contains the initial and boundary conditions for the simulation.
Solver Section Contains the solver to be used (explicit dynamics, implicit dynamics, or quasistat-

ics) along with solver parameters.
Output Section Contains the output filename and output frequency along with a listing of the

variables to be output.

3.3 Peridigm Directory Structure

The directory structure of Peridigm takes the following form:

doc Contains configuration file for Doxygen – Used to build Peridigm Doxygen documentation
directly from source code.

examples Contains input decks and mesh files for several demonstration computations.
scripts Contains helpful python script used by the build system as well as the output
src Contains all source code and unit tests.
test Contains verification and regression tests.

Within the src directory, the following directories exist:

compute Contains source code and unit tests for the compute classes. See §4.1 to write your own.
contact Contains source code and unit tests for the contact models.
core Contains source code and units for core Peridigm functionality.
damage Contains source code and units for damage models.
evaluators Contains source code for the Phalanx evaluators [15].
io Contains source code for mesh input, discretization tools, and output managers.
materials Contains source code and unit tests for the Peridigm materials library. See §4.2 to write

your own.
muParser Contains source code for muParser, a freeware function parser library written by Ingo

Berg [8].

18

All Peridigm source code is contains markup for Doxygen. Doxygen documentation for the
entire Peridigm project may be found from the Peridigm trac site, https://software.sandia.
gov/trac/peridigm.

The compute class and material model interfaces have been written to be easily user extensible,
allowing users to easily compute any quantity of interest to them, or to easily deploy their own new
material model within Peridigm. See §4 for more.

3.4 Peridigm Software Components

Peridigm is a component software project, built largely upon Sandia’s Trilinos project and Sandia’s
agile software components efforts. We briefly describe the Trilinos Project here, showing some of
the Trilinos packages consumed by Peridigm.

The Trilinos Project is an effort by Sandia National Laboratories to develop algorithms and en-
abling technologies within an object-oriented software framework for the solution of large-scale,
complex multi-physics research and engineering problems [11]. Please see http://trilinos.

sandia.gov for more. Trilinos is a collection of loosely coupled interoperable packages. Each
Trilinos package focuses on a specific capability, such as linear solvers, preconditioners, nonlinear
solvers, parallel linear algebra, etc. Application developers can utilize capabilities from various Trili-
nos packages to create an end-user application, focusing on the specific details of their application
rather than reimplementing foundational capabilities.

Peridigm uses many packages from Trilinos, including:

Belos next-generation iterative linear solvers
Epetra serial and parallel linear algebra libraries
EpetraExt extensions to Epetra, such as matrix and vector i/o
IFPACK a suite of object-oriented algebraic preconditioners for preconditioned iterative solvers
NOX nonlinear solvers
Phalanx local field evaluation kernel
Shards common tool suite for for numerical and topological data
STK the Sierra ToolKit, providing an unstructured in-memory, parallel-distributed mesh database
SEACAS the The Sandia Engineering Analysis Code Access System, proving tools for the reading,

writing, and manipulating Exodus database files
Teuchos common tools suite, including BLAS/LAPACK wrappers, smart pointers, parameter

lists, and XML parsers
Zoltan parallel dynamic load balancing and related services

Peridigm inherits man standards and practices from the Trilinos Project. This includes use
of CMake, a family of tools that can assist with builds across multiple platforms and regression
testing across a set of target platforms [1]. Peridigm developers are also required to run a pre-checkin
test suite before pushing new code to the repository. Peridigm also utilizes continuous integration
testing. A project webpage is maintained at https://software.sandia.gov/trac/peridigm, and
a user mailing list at peridigm-users@software.sandia.gov.

19

3.5 Downloading and Building Peridigm

Please see the “Getting Started” link on the Peridigm trac site https://software.sandia.gov/

trac/peridigm for the latest instructions on how to download and build Peridigm and the software
components that it depends upon.

After building and installing Peridigm, please run ctest in your build directory to run all tests
and confirm that you have a clean build.

3.6 Spatial Discretization

The region defining a peridynamic material is discretized into elements with some characteristic
dimension ∆xi, where each element i possesses some volume Vi. All fields are assumed to be
constant over an element, analogous to a midpoint quadrature discretization of the strong form
equation (2.5). For any element i, let Fi denote the family of elements for which element i shares
a bond in the reference configuration. That is,

Fi = {p | ‖xp − xi‖ ≤ δ}. (3.1)

The discretized equation of motion for element i replaces (2.5) with the semi-discrete equation

ρiüi =
∑
p∈Fi

{
T [xi, t]

〈
x′p − xi

〉
−T [xp, t] 〈xi − xp〉

}
Vp + bni , (3.2)

where subscripts denote the element number. We may express the semi-discrete equation of motion
for the entire body as

Mü = f(u) + b(u), (3.3)

where

M =

 ρ1

ρ2

. . .

 (3.4)

is the peridynamic “mass matrix” under this discretization – a diagonal matrix of the densities of
each element.

3.7 Explicit Time Integration

In the following sections, we denote the time at timestep n as tn. The displacement vector u at
time tn is written as un = u(x, tn), and similarly for the other field variables. At timestep n, (3.3)
is written as

Mün = fn(un) + bn(un). (3.5)

A velocity-Verlet scheme is used for explicit time integration in Peridigm. Both the position and
velocity of an element are stored explicitly. The velocity-Verlet scheme is generally expressed in
three steps, as shown in Algorithm 1. The internal and external force densities are reevaluated at
the new displacements un+1 between steps 2 and 3.

20

Algorithm 1 Velocity Verlet

1: vn+1/2 = vn + ∆t
2 M�1(fn + bn)

2: un+1 = un + ∆tvn+1/2

3: vn+1 = vn+1/2 + ∆t
2 M�1(fn+1 + bn+1)

(a) (b)

Figure 4. Incremental kinematics for implicit time integration.

3.8 Implicit Time Integration

Peridigm employs the familiar Newmark-β method [7, §6.3.3] which we repeat here for completeness,
following the discussion in [14]. The displacement and velocity at timestep n+ 1 are computed as

un+1 = un + u̇n∆t+

[(
1

2
� β

)
ün + βün+1

]
(∆t)2, (3.6)

u̇n+1 = u̇n +
[
(1� α)ün + αün+1

]
∆t, (3.7)

where the accuracy and stability of the integrator are determined by the choice of α, β and the
timestep ∆t. Figure 4(a) graphically illustrates the point x and its displacement un and current
location yn = x + un at timestep n. We write (3.3) at timestep n+ 1 as

Mün+1 = fn+1(un+1) + bn+1(un+1). (3.8)

Solving (3.6) for ün+1 and substituting into (3.8) gives

Mun+1 = β(∆t)2
[
fn+1(un+1) + bn+1(un+1)

]
+ M

[
un + u̇n∆t+

(
1

2
� β

)
(∆t)2ün

]
. (3.9)

This is an implicit nonlinear equation for un+1. We can rewrite (3.9) as the residual equation

r(un+1) = Mun+1 � β(∆t)2
[
fn+1(un+1) + bn+1(un+1)

]
(3.10)

�M

[
un + u̇n∆t+

(
1

2
� β

)
(∆t)2ün

]
, (3.11)

21

and solve r(un+1) = 0 for un+1 using Newton’s method. Because the problem is in general nonlin-
ear, the incremental solution strategy for a load step consists of finding an increment, ∆u, to the
displacement un. For Newton iteration k ≥ 0 of a load step we write

yn+1
k+1 = yn+1

k + ∆uk, (3.12)

where

yn+1
k = x + un+1

k , (3.13)

where un+1
k is known from the previous iteration. A graphical illustration of the kinematics for

iteration k is shown in Figure 4(b). Newton’s method to determine ∆uk requires a Jacobian matrix
associated with the internal force. Using (3.3) and (3.13), the internal force density vector at time
step n+ 1, iteration k, is defined as

fn+1
k (un+1

k) =

∫
Hx

{
T
[
x, tn+1

] 〈
x′ − x

〉
−T

[
x′, tn+1

] 〈
x− x′

〉}
dVx′ , (3.14)

where the right-hand side of (3.14) is evaluated at un+1
k . The first order approximation to fn+1

k+1 is
given as

fn+1
k+1 ≈ fn+1

k +
∂fn+1

∂un+1

∣∣∣∣
un+1

k

·∆uk, (3.15)

where we define

∂fn+1

∂un+1

∣∣∣∣
un+1

k

≡
∫
Hx

{
(K[x, t] •∆Uk[x, t])

〈
x′ − x

〉
−
(
K[x′, t] •∆Uk[x

′, t]
) 〈

x− x′
〉}
dVx′ . (3.16)

The rightmost term in (3.15) denotes the derivative of fn+1 with respect to un+1 evaluated at un+1
k

in the direction ∆uk. Important in the evaluation of this term is the modulus state K [20]. For
implicit solution algorithms, evaluation of K is crucial for optimal convergence rates. For the elastic
model of §2.3 and the elastic-plastic model of §2.4, analytical expressions for K are given in [14].
For the viseoelastic model of §2.5, an analytical expression for K is given in [13]. In Peridigm, the
modulus state can also be evaluated numerically via a finite difference approximation, or exactly
via the Trilinos automatic differentiation package Sacado [16].

The directional derivative of the residual (3.10) is the second-rank tensor

∂rn+1

∂un+1

∣∣∣∣
un+1

k

= M− β(∆t)2

(
∂fn+1

∂un+1
+
∂bn+1

∂un+1

)∣∣∣∣
un+1

k

. (3.17)

Newton’s method requires us to solve

r
(
un+1
k+1

)
≈ r

(
un+1
k

)
+

∂r

∂un+1

∣∣∣∣
un+1

k

·∆uk = 0 (3.18)

for ∆uk. For completeness, the residual required for each Newton iteration is given by

r(un+1
k) = Mun+1

k − β(∆t)2
[
fn+1
k (un+1

k) + bn+1
k (un+1

k)
]

−M

[
un + u̇n∆t+

(
1

2
− β

)
(∆t)2ün

]
.

Note that values at step n do not include a subscript since they are converged values from the
previous load step.

22

Quasistatics

In a quasistatic simulation, (3.3) becomes

−f(u) = b(u), (3.19)

and is discretized into a finite number fictitious time steps and written as

−fn(un) = bn(un), (3.20)

where the time t here need not be the real time, but can refer to a parameter controlling the
externally applied force b. The proceeding equation is solved using the techniques of the previous
section.

3.9 Contact

In the model discussed so far, elements interact only through their bond forces. To account for
interactions between non-bonded elements, we utilize the simple contact model of [19]. We add to
the force b in (3.3), for each element i, the force

fS = min
{

0,
cS
δ

(
∥∥yp − yi

∥∥− dpi)} yp − yi∥∥yp − yi
∥∥ , (3.21)

where dpi is a specified short-range interaction distance between elements p and i, and

cS =
18K

πδ4
. (3.22)

Note that the short-range force is always repulsive, never attractive. Contact forces appear only
when elements are under compression.

3.10 Damage

Two elements in a body within each other’s horizon in the reference configuration may stop inter-
acting if damage is incurred. This manifests in a simulation by removing these elements from each
other’s bond family Fi (see (3.1)). Peridigm supports the critical stretch bond breaking criteria,
as discussed in §2.6. When instantiating a damage model in the input deck, a user must input a
critical stretch.

3.11 Output

Peridigm supports the ExodusII output format [24] through the Trilinos package SEACAS [24].
Although formally known as ExodusII, we will refer to this format simply as the Exodus format
in the following. Exodus is based upon NetCDF, and also includes the nemesis parallel extensions.
Exodus is fundamentally a serial output format, and each MPI process will open and write its own

23

Exodus database for all the elements that it owns. If a load rebalance occurs during the course of
a parallel simulation, each MPI process must close its Exodus database and open a new database
containing the elements owned by that process after the rebalance. The net effect is that many
Exodus output files may be generated during the course of a parallel simulation. Tools in the
SEACAS package to help in merging these separate files together into a single Exodus database.
To automate this process, a python script is distributed with Peridigm, and can be executed as

MergeFiles.py <File Base Name> <# of Processors>

where we are executing the MergeFiles.py script from the Peridigm install directory, not the source
directory. This script will produce a single Exodus database file containing the complete simulation
output.

3.12 Visualization

Any visualization package capable of reading and displaying Exodus-format data may be used to
visualize the output of a Peridigm simulation. We use Paraview [12], an open-source, multi-platform
data analysis and visualization application. Binary installers for Windows, Linux, and MaxOS are
distributed from the Paraview website.

3.13 Pitfalls

Defining the peridynamic horizon δ. The user must specify the horizon δ in the input
deck. This argument determines which elements interact when the simulation is initialized. It is
recommended that δ be set to a small fraction of a lattice constant larger than desired.

For example, if the mesh spacing is 0.0005 and you wish to set the horizon to three times the
mesh spacing, then set δ to be 0.0015001, a value slightly larger than three times the mesh spacing.
This guarantees that elements three lattice constants away from each other are still bonded. If δ
is set to 0.0015, for example, floating point error may result in some pairs of elements three mesh
spacings apart not being bonded.

3.14 Bugs

The user is cautioned that this code is under active development. If you are confident that you
have found a bug, please send an email to the developers. The most useful thing you can do for
us is to isolate the problem. Run it on the smallest problem and fewest number of processors and
with the simplest input script that reproduces the bug. In your email, please describe the problem
and any ideas you have as to what is causing it or where in the code the problem might be. We’ll
request your input script and data files if necessary.

24

4 Extending Peridigm

Peridigm was developed to be easily user extensible. In particular, there are two easy mechanisms
to extend Peridigm for your own purposes. The first, compute classes, allow a user to write only
serial code to compute any quantity of interest as a function of any state variable in Peridigm. The
second, material model classes, allow a user to easily implement their own material model. Users
are requested to produce unit, regression, or verification tests for any new features deployed into
the Peridigm distribution.

4.1 Compute Classes

Compute classes, found in src/compute, allow users to compute any quantity of interest. Any
compute class is required to implement the following interface:
1: //! Default constructor

2: Compute()

3:

4: //! Destructor

5: virtual Compute()

6:

7: //! Returns the fieldspecs computed by this class

8: virtual std::vector<Field NS::FieldSpec> getFieldSpecs() const = 0;

9:

10: //! Initialize the compute class

11: virtual void initialize(Teuchos::RCP< std::vector<PeridigmNS::Block> > blocks) const ;

12:

13: //! Perform computation

14: virtual int compute(Teuchos::RCP< std::vector<PeridigmNS::Block> > blocks) const = 0;

The getFieldSpecs() method returns an std::vector of FieldSpecs, telling Peridigm what
data it should allocate for the compute class. A fieldspec can be thought of as a data type used by
Peridigm. A complete listing of all fieldspecs can be found in src/io/mesh_output/Field.h, and
includes scalar and vector quantities defined for nodes and elements as well as global scalar and
vector quantities.

The initialize() method allows the compute class an opportunity to initialize any storage
or private state data before the simulation begins. Lastly, the compute() method computes the
quantity of interest.

After creating a new compute class, be sure to add it to the file src/compute/compute_

includes.hpp. After that, re-run cmake in your Peridigm build directory, and then rebuild
Peridigm. You compute class can now be requested as an output field in any Peridigm input
deck.

As a practical example, we walk through the Peridigm_Compute_Acceleration compute class.
The source for the relevant methods of the compute class appears below:
1: std::vector<Field NS::FieldSpec> PeridigmNS::Compute Acceleration::getFieldSpecs() const {
2: std::vector<Field NS::FieldSpec> myFieldSpecs;

3: myFieldSpecs.push back(Field NS::ACCEL3D);

25

4: return myFieldSpecs;

5: }
6:

7: int PeridigmNS::Compute Acceleration::compute(Teuchos::RCP< std::vector<PeridigmNS::Block> > blocks

) const {
8: int retval(0);

9:

10: Teuchos::RCP<Epetra Vector> force, acceleration;

11: std::vector<PeridigmNS::Block>::iterator blockIt;

12: for(blockIt = blocks->begin() ; blockIt != blocks->end() ; blockIt++){
13: Teuchos::RCP<PeridigmNS::DataManager> dataManager = blockIt->getDataManager();

14: force = dataManager->getData(Field NS::FORCE DENSITY3D, Field ENUM::STEP NP1);

15: acceleration = dataManager->getData(Field NS::ACCEL3D, Field ENUM::STEP NP1);

16: *acceleration = *force;

17: double density = blockIt->getMaterialModel()->Density();

18: // Report if any calls to Scale() failed.

19: retval = retval || acceleration->Scale(1.0/density);

20: }
21: return retval;

22: }

The getFieldSpecs() routine returns the fieldspec for a nodal acceleration vector, telling Peridigm
to ensure storage is allocated for that vector field variable. The compute() routine takes an
std::vector of material blocks and, for each block, extracts the force and acceleration vectors for
the nodes in that block. It initially fills the acceleration vector by copying the force vector, and
then divides by the density.

The Compute_Acceleration routine is invoked whenever the acceleration is requested as an
output. For example, in the Peridigm input deck in Algorithm 2, line 85, the acceleration is
requested as one of several outputs. The acceleration compute class above is called every time
output is written to disk.

After creating a new compute class, just specify that compute class in the requested output
fields and it will be called every time output is written to disk.

4.2 Material Models

Material model classes, found in src/materials, allow users to compute any quantity of interest.
Any compute class is required to implement the following interface:
1: //! Standard constructor

2: Material(const Teuchos::ParameterList & params) {}
3:

4: //! Destructor

5: virtual Material(){}
6:

7: //! Return name of material type

8: virtual string Name() const = 0;

9:

10: //! Returns the density of the material

11: virtual double Density() const = 0;

12:

26

13: //! Returns the bulk modulus of the material

14: virtual double BulkModulus() const = 0;

15:

16: //! Returns the shear modulus of the material

17: virtual double ShearModulus() const = 0;

18:

19: //! Returns the horizon

20: virtual double Horizon() const = 0;

21:

22: //! Returns a vector of field specs that specify the variables associated with the material

23: virtual Teuchos::RCP< std::vector<Field NS::FieldSpec> > VariableSpecs() const = 0;

24:

25: //! Initialize the material model

26: virtual void initialize(...) const {}
27:

28: //! Evaluate the internal force

29: virtual void computeForce(...) = 0;

30:

31: //! Evaluate the jacobian

32: virtual void computeJacobian(...) const;

Most of the methods return basic material properties. The VariableSpecs() method returns an
std::vector of FieldSpecs, telling Peridigm what data it should allocate for the material model
class. The initialize method initializes any allocated storage, an the computeForce method fills
the force vector as a function of the current state data (positions, displacements, velocity, etc.) For
implicit time integration and quasistatics, the computeJacobian method is required.

4.3 Creating Tests

Any new compute classes or material models added to Peridigm should be supported by unit,
regression, or verification tests. Most source directories have unit_test directories that contain
unit tests for code in that directory. The test/verification and test/regression directories
contain verification and regression tests, respectively. Any of these tests can be used as a template
for the generation of new tests.

27

5 A Numerical Example

To introduce Peridigm, we work through a nontrivial example problem, describing the setup, sim-
ulation, and visualization steps.

5.1 Problem Description and Setup

Motivated by the tube fragmentation experiments of Winter [26] and Vogler [25] as explained by
Grady [10], we consider the fragmentation of a homogeneous hollow cylinder. The geometry of the
cylinder and its material properties are shown in Figure 5.

Property Value

Inner Radius r1 0.020 m

Outer Radius r2 0.025 m

Length 2a 0.100 m

Density ρ 8700 kg/m3

Bulk modulus K 130 GPa

Shear modulus µ 78 GPa

Yield stress Y 500 GPa

Ultimate stress Y 700 GPa

Elongation at failure Y 0.02

Figure 5. Cylinder geometry and material properties.

The initial velocity of the cylinder is prescribed to be

v(r) = Vr0Vr1

(a
z

)2
, (5.1)

v(z) = Vz0

(a
z

)
, (5.2)

v(θ) = 0, (5.3)

where Vr0 = 200 m/s, Vr1 = 50 m/s, Vz0 = 100 m/s. To model a brittle cylinder, we assume the
linear peridynamic solid model of §2.3.

5.2 Writing the Peridigm Input File

We discuss the example input script from Algorithm 2, covering the sections discussed in §3.2 that
are used in this example. This input script is distributed with Peridigm as
examples/fragmenting_cylinder/fragmenting_cylinder.xml.

28

The discretization section begins on line 5. PdQuickGrid, Peridigm’s internal mesh generator,
is used. The horizon is specified, and the Spherical neighborhood type specifies that the distances
between points are to be computed using a 2-norm. Line 9 begins the section that specifies the
geometry of the cylinder. In particular, line 17 specifies the number of mesh elements through the
thickness of the cylinder.

Line 21 starts the material model section. In this section, all material models used in the
simulation must be described and material properties given. In this example, we use only the linear
peridynamic solid model of §2.3.

Line 30 starts the damage models section. In this example, we use the critical stretch damage
model of §2.6.

Line 37 starts the material blocks section. In this section, each material block must be associated
with a material model, and, optionally, a damage model. User-specified names (i.e., “My Linear
Elastic Material”) are associated with each block by name. In this example, there is only one
material block.

Line 45 starts the section where initial and boundary conditions are specified. In this example,
we specify an initial velocity for every element in the cylinder as a function of its (x, y, z) coordinates.

Line 66 starts the solver section, where the solver and its parameters are specified. In this
example, we do explicit time integration using the integrator described in §3.7.

Line 75 starts the output section, where the output file type and output variables are specified as
well as the output filename and frequency of output. Every variable listed on the output variables
section on line 81 will be output.

5.3 Running Peridigm and Visualizing Output

For expediency, we run this example in parallel as

mpiexec -np 12 Peridigm fragmenting_cylinder.xml

When the progress bar has reached 100%, the simulation is complete. As Exodus is a fundamen-
tally serial output format, each MPI process writes its own Exodus database. For ease in visualizing
the entire simulation, it is convenient to merge the separate databases into a single database. A
python script is distributed with Peridigm to automate this process, and can be executed as

MergeFiles.py fragmenting_cylinder 12

where we are executing the MergeFiles.py script from the Peridigm install directory, not the source
directory. This script will produce a single exodus database file fragmenting_cylinder.e contain-
ing the complete simulation output.

To visualize the results, run

29

Paraview fragmenting_cylinder.e

Be sure to hit the green “apply” button on the right. Press the “play” button at the top to display
the simulation results. One can use the “glyph” filter in Paraview to replace each element by a
small sphere, and then color those spheres by the element damage. The results are shown in Figure
5.3.

(a) Time=0.0 ms. (b) Time=2.5 ms.

Figure 6. Brittle cylinder before and after simulation. Color
indicates damage (red = damaged, blue = undamaged).

30

Algorithm 2 Peridigm Input Deck for Fragmenting Brittle Cylinder
1: <ParameterList>

2:

3: <Parameter name="Verbose" type="bool" value="false"/>

4:

5: <ParameterList name="Discretization">

6: <Parameter name="Type" type="string" value="PdQuickGrid"/>

7: <Parameter name="Horizon" type="double" value="0.00417462"/>

8: <Parameter name="NeighborhoodType" type="string" value="Spherical"/>

9: <ParameterList name="TensorProductCylinderMeshGenerator">

10: <Parameter name="Type" type="string" value="PdQuickGrid"/>

11: <Parameter name="Inner Radius" type="double" value="0.020"/>

12: <Parameter name="Outer Radius" type="double" value="0.025"/>

13: <Parameter name="Cylinder Length" type="double" value="0.100"/>

14: <Parameter name="Ring Center x" type="double" value="0.0"/>

15: <Parameter name="Ring Center y" type="double" value="0.0"/>

16: <Parameter name="Z Origin" type="double" value="0.0"/>

17: <Parameter name="Number Points Radius" type="int" value="5"/>

18: </ParameterList>

19: </ParameterList>

20:

21: <ParameterList name="Materials">

22: <ParameterList name="My Linear Elastic Material">

23: <Parameter name="Material Model" type="string" value="Elastic"/>

24: <Parameter name="Density" type="double" value="7800.0"/>

25: <Parameter name="Bulk Modulus" type="double" value="130.0e9"/>

26: <Parameter name="Shear Modulus" type="double" value="78.0e9"/>

27: </ParameterList>

28: </ParameterList>

29:

30: <ParameterList name="Damage Models">

31: <ParameterList name="My Critical Stretch Damage Model">

32: <Parameter name="Damage Model" type="string" value="Critical Stretch"/>

33: <Parameter name="Critical Stretch" type="double" value="0.02"/>

34: </ParameterList>

35: </ParameterList>

36:

37: <ParameterList name="Blocks">

38: <ParameterList name="My Group of Blocks">

39: <Parameter name="Block Names" type="string" value="block 1"/>

40: <Parameter name="Material" type="string" value="My Linear Elastic Material"/>

41: <Parameter name="Damage Model" type="string" value="My Critical Stretch Damage Model"/>

42: </ParameterList>

43: </ParameterList>

44:

31

45: <ParameterList name="Boundary Conditions">

46: <ParameterList name="Initial Velocity X">

47: <Parameter name="Type" type="string" value="Initial Velocity"/>

48: <Parameter name="Node Set" type="string" value="All"/>

49: <Parameter name="Coordinate" type="string" value="x"/>

50: <Parameter name="Value" type="string" value="(200-50*((z/0.05)-1)^2)*cos(atan2(y,x))+rnd(5)"/>

51: </ParameterList>

52: <ParameterList name="Initial Velocity Y">

53: <Parameter name="Type" type="string" value="Initial Velocity"/>

54: <Parameter name="Node Set" type="string" value="All"/>

55: <Parameter name="Coordinate" type="string" value="y"/>

56: <Parameter name="Value" type="string" value="(200-50*((z/0.05)-1)^2)*sin(atan2(y,x))+rnd(5)"/>

57: </ParameterList>

58: <ParameterList name="Initial Velocity Z">

59: <Parameter name="Type" type="string" value="Initial Velocity"/>

60: <Parameter name="Node Set" type="string" value="All"/>

61: <Parameter name="Coordinate" type="string" value="z"/>

62: <Parameter name="Value" type="string" value="(100*((z/0.05)-1))+rnd(5)"/>

63: </ParameterList>

64: </ParameterList>

65:

66: <ParameterList name="Solver">

67: <Parameter name="Verbose" type="bool" value="false"/>

68: <Parameter name="Initial Time" type="double" value="0.0"/>

69: <Parameter name="Final Time" type="double" value="2.5e-4"/>

70: <ParameterList name="Verlet">

71: <Parameter name="Fixed dt" type="double" value="1.0e-8"/>

72: </ParameterList>

73: </ParameterList>

74:

75: <ParameterList name="Output">

76: <Parameter name="Output File Type" type="string" value="ExodusII"/>

77: <Parameter name="Output Format" type="string" value="BINARY"/>

78: <Parameter name="Output Filename" type="string" value="fragmenting cylinder"/>

79: <Parameter name="Output Frequency" type="int" value="250"/>

80: <Parameter name="Parallel Write" type="bool" value="true"/>

81: <ParameterList name="Output Variables">

82: <Parameter name="Proc Num" type="bool" value="true"/>

83: <Parameter name="Displacement" type="bool" value="true"/>

84: <Parameter name="Velocity" type="bool" value="true"/>

85: <Parameter name="Acceleration" type="bool" value="true"/>

86: <Parameter name="Force Density" type="bool" value="true"/>

87: <Parameter name="ID" type="bool" value="true"/>

88: <Parameter name="Dilatation" type="bool" value="true"/>

89: <Parameter name="Damage" type="bool" value="true"/>

90: <Parameter name="Weighted Volume" type="bool" value="true"/>

91: </ParameterList>

92: </ParameterList>

93:

94: </ParameterList>

32

References

[1] CMake - Cross Platform Make. http://www.cmake.org/.

[2] The CUBIT Tool Suite Web Page. http://cubit.sandia.gov.

[3] DAKOTA Project Web Page. http://dakota.sandia.gov.

[4] Trilinos project web page. http://trilinos.sandia.gov.

[5] Trilinos tutorial, Tech. Report SAND2004-2189, Sandia National Laboratories, 2004. Available
at http://trilinos.sandia.gov/Trilinos10.12Tutorial.pdf.

[6] B. Adams, W. Bohnhoff, K. Dalbey, J. Eddy, M. Eldred, D. Gay, K. Haskell,
P. Hough, and L. Swiler, Dakota, a multilevel parallel object-oriented framework for de-
sign optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:
Version 5.0 user’s manual,, Tech. Report SAND2010-2183, Sandia National Laboratories,
2009.

[7] T. Belytschko, W. K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and
Structures, Wiley, 2000.

[8] I. Berg, MuParser webpage. http://muparser.sourceforge.net/index.html.

[9] J. T. Foster, Dynamic crack initiation toughness: Experiments and peridynamic modeling,
Tech. Report SAND2009-7217, Sandia National Laboratories, 2009.

[10] D. Grady, Fragmentation of Rings And Shells: The Legacy of N.F. Mott, Springer, 2006.

[11] M. Heroux, R. Bartlett, R. H. Vicki Howle, J. Hu, T. Kolda, R. Lehoucq,
K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro,
J. Willenbring, and A. Williams, An overview of trilinos, Tech. Report SAND2003-2927,
Sandia National Laboratories, 2003.

[12] Kitware Inc., ParaView web page. http://www.paraview.org/.

[13] J. A. Mitchell, A non-local, ordinary-state-based viscoelasticity model for peridynamics,
Tech. Report SAND2011-8064, Sandia National Laboratories, 2011.

[14] , A nonlocal, ordinary, state-based plasticity model for peridynamics, Tech. Report
SAND2011-3166, Sandia National Laboratories, 2011.

[15] R. Pawlowski and E. Phipps, Phalanx webpage. http://trilinos.sandia.gov/

packages/phalanx/.

[16] E. Phipps, Sacado webpage. http://trilinos.sandia.gov/packages/sacado/.

[17] P. Seleson and M. Parks, On the role of the influence function in the peridynamic theory,
Int. J. Mult. Comp. Eng., (2010). Submitted.

[18] S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces,
Journal of the Mechanics and Physics of Solids, 48 (2000), pp. 175–209.

33

[19] S. A. Silling. Personal communication, 2007.

[20] S. A. Silling, Linearized theory of peridynamic states, Journal of Elasticity, 99 (2010), pp. 85–
111.

[21] S. A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid
mechanics, Computer and Structures, 83 (2005), pp. 1526–1535.

[22] S. A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and
constitutive modeling, J. Elasticity, 88 (2007), pp. 151–184.

[23] S. A. Silling and R. B. Lehoucq, Peridynamic theory of solid mechanics, Advances in
Applied Mechanics, 44 (2010), pp. 73–168.

[24] G. D. Sjaardema, L. A. Schoof, and V. R. Yarberry, Exodus ii: A finite element data
model, Tech. Report SAND92-2137, Sandia National Laboratories, 2006.

[25] T. Vogler, T. Thornhill, W. Reinhart, L. Chhabildas, D. Grady, L. Wilson,
O. Hurricane, and A. Sunwoo, Fragmentation of materials in expanding tube experiments,
Int. J. Impact Eng., 29 (2003), pp. 735–746.

[26] R. Winter, Measurement of fracture strain at high strain rates, Inst. Phys. Conf. Ser., 47
(1979), pp. 81–89.

34

DISTRIBUTION:

1 MS 1322 John Aidun, 1425

1 MS 1318 Steve Bond, 1444

1 MS 1320 Richard Lehoucq, 1444

1 MS 1320 John Mitchell, 1444

1 MS 1320 Michael Parks, 1444

1 MS 1320 Stewart Silling, 1444

1 MS 1320 Randy Summers, 1444

1 MS 0899 Technical Library, 9536 (electronic copy)

35

36

v1.38

