NEAMS VLTS project : level 2 milestone summary.

PDF Version Also Available for Download.

Description

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Very Long Term Storage (VLTS) Project is to develop a simple, benchmark model that describes the performance of Zry4 d-hydrides in cladding, under conditions of long-term storage of used fuel. This model will be used to further explore the requirements of hydride modeling for used fuel storage and transport. It is expected that this model will be further developed as its weaknesses are understood, and as a basis of comparison as the Used Fuel Disposition (UFD) Campaign explores more comprehensive, multiscale approaches. Cladding ... continued below

Physical Description

38 p.

Creation Information

Hansen, Glen A.; Ostien, Jakob T. & Chen, Qiushi August 1, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Very Long Term Storage (VLTS) Project is to develop a simple, benchmark model that describes the performance of Zry4 d-hydrides in cladding, under conditions of long-term storage of used fuel. This model will be used to further explore the requirements of hydride modeling for used fuel storage and transport. It is expected that this model will be further developed as its weaknesses are understood, and as a basis of comparison as the Used Fuel Disposition (UFD) Campaign explores more comprehensive, multiscale approaches. Cladding hydride processes, a thermal model, a hydride model API, and the initial implementation of the J2Fiber hydride model is documented in this report.

Physical Description

38 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2012-5808
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 1096957
  • Archival Resource Key: ark:/67531/metadc844884

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • June 17, 2016, 3:20 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hansen, Glen A.; Ostien, Jakob T. & Chen, Qiushi. NEAMS VLTS project : level 2 milestone summary., report, August 1, 2012; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc844884/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.