Delta f Monte Carlo Calculation Of Neoclassical Transport In Perturbed Tokamaks

PDF Version Also Available for Download.

Description

Non-axisymmetric magnetic perturbations can fundamentally change neoclassical transport in tokamaks by distorting particle orbits on deformed or broken flux surfaces. This so-called non-ambipolar transport is highly complex, and eventually a numerical simulation is required to achieve its precise description and understanding. A new delta#14;f particle code (POCA) has been developed for this purpose using a modi ed pitch angle collision operator preserving momentum conservation. POCA was successfully benchmarked for neoclassical transport and momentum conservation in axisymmetric con guration. Non-ambipolar particle flux is calculated in the non-axisymmetric case, and results show a clear resonant nature of non-ambipolar transport and magnetic braking. ... continued below

Creation Information

Kimin Kim, Jong-Kyu Park, Gerrit Kramer and Allen H. Boozer April 11, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Non-axisymmetric magnetic perturbations can fundamentally change neoclassical transport in tokamaks by distorting particle orbits on deformed or broken flux surfaces. This so-called non-ambipolar transport is highly complex, and eventually a numerical simulation is required to achieve its precise description and understanding. A new delta#14;f particle code (POCA) has been developed for this purpose using a modi ed pitch angle collision operator preserving momentum conservation. POCA was successfully benchmarked for neoclassical transport and momentum conservation in axisymmetric con guration. Non-ambipolar particle flux is calculated in the non-axisymmetric case, and results show a clear resonant nature of non-ambipolar transport and magnetic braking. Neoclassical toroidal viscosity (NTV) torque is calculated using anisotropic pressures and magnetic fi eld spectrum, and compared with the generalized NTV theory. Calculations indicate a clear #14;B2 dependence of NTV, and good agreements with theory on NTV torque pro les and amplitudes depending on collisionality.

Source

  • Physics of Plasmas (April 2012)

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-4752
  • Grant Number: DE-ACO2-09CH11466
  • Office of Scientific & Technical Information Report Number: 1063119
  • Archival Resource Key: ark:/67531/metadc844804

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 11, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • July 18, 2016, 5:24 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 15

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kimin Kim, Jong-Kyu Park, Gerrit Kramer and Allen H. Boozer. Delta f Monte Carlo Calculation Of Neoclassical Transport In Perturbed Tokamaks, report, April 11, 2012; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc844804/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.