Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry (GC-VUV-MS)

Gabriel Isaacmana*, Kevin R. Wilsonb, Arthur W. H. Chana, David R. Wortona,c, Joel R. Kimmeld,e,f, Theodora Nahg, Thorsten Hohausd, Marc Goninf, Jesse H. Krollh,i, Doug R. Worsnopd, and Allen H. Goldsteina,j,k

University of California, Berkeley
Department of Environmental Science, Policy, and Management
130 Mulford Hall #3114
Berkeley, CA 94720-3114
*gabriel.isaacman@berkeley.edu

a Environmental Science, Policy, and Management, University of California, Berkeley, CA
b Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
c Aerosol Dynamics Inc., Berkeley, CA
d Center for Aerosol and Cloud Chemistry, Aerodyne Research, Inc., Billerica, MA
e Cooperative Institute for Research in the Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO
f Tofwerk AG, Thun, Switzerland
g Chemistry, University of California, Berkeley, CA
h Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA
i Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
j Environmental and Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA
k Civil and Environmental Engineering, University of California, Berkeley, CA
This supplementary information contains the mass spectra of known compounds using vacuum ultraviolet (VUV) ionization at transfer temperatures of 150 °C (38 compounds) and 275 °C (84 compounds). Parent ion is shown in bold (not shown for chlorinated compounds because the prevalence of both 35Cl and 37Cl leads to multiple "parent" ions). Mass spectra using electron impact (EI) ionization for all reported compounds are available online from the NIST WebBook (reference provided in manuscript).

1. **Spectra at a transfer temperature of 150 °C** ... 3
 1.1. Normal alkanes .. 3
 1.2. Branched aliphatic hydrocarbons .. 8
 1.3. Acids .. 10
 1.4. Aromatics and oxygenated polycyclic aromatic hydrocarbons 13
 1.5. Other oxygenated compounds (ketones, esters, aldehydes) ... 16

2. **Spectra at a transfer temperature of 275 °C** ... 19
 2.1. Normal alkanes .. 19
 2.2. Branched aliphatic hydrocarbons .. 27
 2.3. Hopanes and steranes ... 29
 2.4. Acids .. 32
 2.5. Aromatics and oxygenated polycyclic aromatic hydrocarbons 38
 2.6. Phthalates and other oxygenated aromatics ... 41
 2.7. Nitrogenated aromatics ... 44
 2.8. Chlorinated aromatics ... 47
 2.9. Oxygenated aliphatic compounds (ketones, esters, aldehydes) 50
S.1. Spectra at a transfer temperature of 150 °C

S.1.1. Normal alkanes

tetradecane

Ion abundance (arb. units)

Ion mass-to-charge, m/Q (Th)

198

VUV: 150 °C, 10.5 eV

pentadecane

Ion abundance (arb. units)

Ion mass-to-charge, m/Q (Th)

212

VUV: 150 °C, 10.5 eV
hexadecane

Ion mass-to-charge, m/Q (Th)

Ion abundance (arb. units)

VUV: 150 °C, 10.5 eV

heptadecane

Ion mass-to-charge, m/Q (Th)

Ion abundance (arb. units)

VUV: 150 °C, 10.5 eV

octadecane

Ion mass-to-charge, m/Q (Th)

Ion abundance (arb. units)

VUV: 150 °C, 10.5 eV
S.1.2. Branched aliphatic hydrocarbons

Phytane
- VUV: 150 °C, 10.5 eV
- Ion mass-to-charge, m/Q (Th)
- Ion abundance (arb. units)

- Ion masses: 126, 183, 282

Pristane
- VUV: 150 °C, 10.5 eV
- Ion mass-to-charge, m/Q (Th)
- Ion abundance (arb. units)

- Ion masses: 112, 154, 183, 268
S.1.3. Acids

3,4-dimethoxybenzoic acid & homovanillic acid (coelution) VUV: 150 °C, 10.5 eV

4-methylphthalic acid VUV: 150 °C, 10.5 eV
isopimaric acid

hexadecanoic acid

octadecanoic acid

VUV: 150 °C, 10.5 eV

Ion abundance (arb. units)

Ion mass-to-charge, m/Q (Th)
cis-5,8,11,14,17-eicosapentaenoic acid

VUV: 150 °C, 10.5 eV

Ion abundance (arb. units)

Ion mass-to-charge, m/Q (Th)

108
166
148
284
302
S.1.4. Aromatics and oxygenated polycyclic aromatic hydrocarbons

Graph of dodecyl benzene

- Ion mass-to-charge, m/Q (Th): 246
- Ion abundance (arb. units): 92
- Conditions: VUV: 150 °C, 10.5 eV

Graph of phenanthrene

- Ion mass-to-charge, m/Q (Th): 178
- Ion abundance (arb. units)
- Conditions: VUV: 150 °C, 10.5 eV
chrysene

Ion abundance (arb. units)

VUV: 150 °C, 10.5 eV

228

4,4-dimethoxybenzophenone

Ion abundance (arb. units)

VUV: 150 °C, 10.5 eV

242

9H-fluoren-9-one

Ion abundance (arb. units)

VUV: 150 °C, 10.5 eV

180
S.1.5. Other oxygenated compounds (ketones, esters, aldehydes)

Hexadecanoic methyl ester

Octadecanoic methyl ester

VUV: 150 °C, 10.5 eV
2-pentadecanone

VUV: 150 °C, 10.5 eV

Ion abundance (arb. units)

ion mass-to-charge, m/Q (Th)

2-octadecanone

VUV: 150 °C, 10.5 eV

Ion abundance (arb. units)

ion mass-to-charge, m/Q (Th)

γ-dodecalactone

VUV: 150 °C, 10.5 eV

Ion abundance (arb. units)

ion mass-to-charge, m/Q (Th)
S.2. Spectra at a transfer temperature of 275 °C
S.2.1. Normal alkanes

- Tetradecane
 - Ion mass-to-charge, m/Q (Th)
 - Ion abundance (arb. units)
 - VUV: 275 °C, 10.5 eV

- Pentadecane
 - Ion mass-to-charge, m/Q (Th)
 - Ion abundance (arb. units)
 - VUV: 275 °C, 10.5 eV
S.2.2. Branched aliphatic hydrocarbons
S.2.3. Hopanes and steranes

17α(H)-22,29,30-trisnorhopane

VUV: 275 °C, 10.5 eV

17α(H),21β(H)-30-norhopane

VUV: 275 °C, 10.5 eV
S.2.4. Acids

3,4-dimethoxybenzoic acid & homovanillic acid (coelution)

VUV: 275 °C, 10.5 eV

4-methylphthalic acid

VUV: 275 °C, 10.5 eV
S.2.5. Aromatics and oxygenated polycyclic aromatic hydrocarbons

![Graph of dodecyl benzene](image)

- **VUV: 275 °C, 10.5 eV**
 - Ion abundance (arb. units)
 - Ion mass-to-charge, m/Q (Th)
 - Ion abundance (arb. units)
 - Ion mass-to-charge, m/Q (Th)

- **Phenanthrene**
 - 178

- **Dodecyl benzene**
 - 246

- **VUV: 275 °C, 10.5 eV**
 - Ion abundance (arb. units)
 - Ion mass-to-charge, m/Q (Th)
9H-fluoren-9-one

VUV: 275 °C, 10.5 eV

9,10-anthracenedione

VUV: 275 °C, 10.5 eV

Xanthone

VUV: 275 °C, 10.5 eV
S.2.6. Phthalates and other oxygenated aromatics

![Mass spectra of dimethyl phthalate and diethyl phthalate](image)

Dimethyl Phthalate: VUV: 275 °C, 10.5 eV

Diethyl Phthalate: VUV: 275 °C, 10.5 eV
S.2.7. Nitrogenated aromatics
4,6-dinitro-2-methyl phenol

VUV: 275 °C, 10.5 eV

Ion abundance (arb. units)

Ion mass-to-charge, m/Q (Th)
S.2.8. Chlorinated aromatics
S.2.9. Oxygenated aliphatic compounds (ketones, esters, aldehydes)
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

DE–AC02–05CH11231