U.S. Electric Power Futures: Preliminary Results

Anthony Lopez, Jeffrey Logan, and Trieu Mai

Clean Energy Regulatory Forum III: Background Study
National Renewable Energy Laboratory
April 19-20, 2012

NREL/PR-6A20-55826
Approach

• We use our Regional Energy Deployment Systems (ReEDS) capacity expansion model to simulate the evolution of the U.S. power sector under a number of policy and technology variables over the mid-term (2036).

• Technology cost and performance assumptions are based on Black & Veatch (2012); fuel cost assumptions are based on the Energy Information Administration’s (EIA) Annual Energy Outlook 2011 unless otherwise noted.

• Results presented here are preliminary.
Regional Energy Deployment Systems (ReEDS)

• **Capacity Expansion and Dispatch**
 - For the contiguous U.S. electricity sector, including transmission and all major generator types.

• **Minimize Total System Cost** *(20-year net present value)*
 - All constraints (e.g. balance load, planning and operating reserves, etc.) must be satisfied
 - Linear program (with non-linear statistical calculations for variability)
 - Sequential optimization (2-year investment period 2010-2050).

• **Multi-regional** *(356 wind/solar resource regions, 134 balancing authorities)*
 - Regional resource characterization
 - Variability of wind/solar
 - Transmission capacity expansion.

• **Temporal Resolution**
 - 17 timeslices in each year
 - Each season = 1 typical day = 4 timeslices
 - 1 summer peak timeslice.

• **Full Documentation**
 - Complete documentation of the ReEDS model is available at: http://www.nrel.gov/analysis/reeds/.
ReEDS Schematic

Region Definitions
Time-slice Definitions

Transmission Data
Resource Data
Initial Capacity
Load Growth Forecast
Technology Cost/Performance Forecasts
Load and Resource Variability Parameters
State/Federal Rules/Incentives
Financing Assumptions
System Requirements

Load Requirements
Transmission Capacity
Installed Capacity
Fuel Supply Curves
Technology Cost/Performance Data

ReEDS Optimization
(minimizes total system cost for expansion and dispatch)

New Generating Capacity
New Transmission Capacity
Dispatch

Variability Parameter Calculations
Electricity Price
Fuel Usage and Price

2-year recursive

2010 2012 2014 ...
2036

PRELIMINARY – DO NOT CITE OR DISTRIBUTE
Endogenous Retirement within ReEDS

• ReEDS will endogenously retire all power plants according to criteria.
 o Coal: Age-based standard (65-75 years, depending on size) and/or usage-based (minimum generation needed)
 o Oil/Gas Steam: Age-based (55 years)
 o Nuclear: Age-based standard (60-80 years, depending on year deployed)
 o NG-CC: 55 years
 o Others: Age-based standard.
• Other plants can be retired with exogenous user-inputs.
Fossil Fuel Representation in ReEDS

- Natural gas fuel supply curves in ReEDS to capture response of price to power sector demand
- Captures full-economy effects through multivariate linear regression analysis of ~40 scenarios from EIA’s Annual Energy Outlook
- Low-, high-, and mid-Estimated Ultimate Recovery (EUR) supply curves developed for separate scenarios in ReEDS
- Electricity and power sector NG demand excludes CHP.
Scenarios Considered

• Baseline Family: Status quo projection. For comparison only, not a prediction.
• Coal Retirement: 80 GW by 2026.
• Clean Energy Standard: 80% Clean Energy by 2036 with crediting similar to Bingaman CES.
• Advanced Technology: Nuclear capital costs decline by half (2020); PV costs decline substantially.
• Results summarized in table format on penultimate page.
Scenario Framework & Assumptions

Clean Electricity Scenarios
- 80% clean electricity by 2035
- Crediting:
 - 100% for Nuclear and RE
 - 95% for NG-CCS
 - 90% for Coal-CCS
 - 50% for NG-CC
 - 0% for all others.

Coal Retirement Scenario
- Considers full set of EPA rule impacts that result in 80 GW of coal retirements by 2025.
- Also considers NSPS-like future (no new coal w/o CCS)
- See retirement map for distribution of retirements.

Technology Improvement Scenarios
- Considers breakthrough in nuclear capital cost reductions (half of current value by 2020)
- Considers most advancement in PV and wind deployment costs
- See capital cost matrix table.

Reference Scenarios
- No new policy
- Conservative technology costs (B&V 2012, see capital cost matrix)
- AEO 2010 electricity demand, reference case non-electric sector gas demand
- Standard retirements (~25 GW of coal by 2026)
- Exogenously input 53 GW of dist. PV by 2036.
Capital Cost Matrix

- Technology Cost and Performance data, including capital costs, developed by Black and Veatch (2012)
- Black and Veatch Technology Cost and Performance projections used for all scenarios except for the Technology Improvement Scenarios
- Fuel cost assumptions are similar to those used by AEO 2011 (O&M and fuel).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All Other Scenarios</td>
<td>Gas-CC</td>
<td>Gas-CT</td>
</tr>
<tr>
<td>All Other Scenarios</td>
<td>1,083</td>
<td>573</td>
</tr>
<tr>
<td>Technology Improvement Scenarios</td>
<td>Advanced RE</td>
<td>1,083</td>
</tr>
<tr>
<td>Technology Improvement Scenarios</td>
<td>Advanced Nuclear</td>
<td>1,083</td>
</tr>
</tbody>
</table>

Assumptions for Utility-scale PV and Wind cost reductions are outlined in the forthcoming NREL report “Renewable Electricity Futures,” 2012.
Fraction of national total EPA regulation-driven retirements for Coal Retirement scenario.
Reference Scenarios

• In Mid-EUR case, natural gas generation accounts for 35% of the total in 2036, coal 35%, non-hydro RE 12%, nuclear 11%, and hydro 7%
• Low natural gas EUR leads to small amount of new coal generation by 2036.

Clean Electricity Standard Scenarios

• A CES leads to greater NG power generation in the near-term followed by reliance on RE (and to a lesser extent, CCS and nuclear) in the long-term
• Under a CES, 2036 RE power generation is significant, even with High-EUR and CCS deployment
• Without CCS, NG uses peaks around 2030 and then begins to decline as 50% crediting for NG-CC no longer meets target most efficiently
• Low-EUR future results in significantly less NG generation and more RE and coal.
Generation Comparison

Coal Scenarios
• In the 80 GW retirement case, retired coal generation is primarily replaced by NG-CC generation, but some new coal generation picks up around 2032.
• NSPS (with only 25 GW of coal retirement by 2025) is very similar to the baseline reference case.

Technology Improvement Scenarios
• In the advanced RE case, non-hydro RE generation increases from 10% of the total in 2020 to 20% in 2036.
• Nuclear advancements coupled with Low-EUR shifts generation mix away from NG toward new nuclear, and to a lesser extent, new coal and RE.
Reference Scenarios
• Significant natural gas capacity expansion: Up to ~350 GW NG-CC & ~300 GW NG-CT by 2036
• Low-EUR reduces NG capacity growth and increases coal and RE growth
• Limited near-term plant retirements.

Clean Electricity Standards Scenarios
• Large increase in RE starting around 2025; more coal retires since it is not used
• CCS plays minor role in late 2020s
• Low-EUR results in more RE and less NG.
Coal Scenarios
• In the retirement case, coal capacity declines to roughly 200 GW in 2036
• NSPS capacity similar to reference baseline.

Technology Improvement Scenarios
• In the advanced RE case, improvements in RE technologies reduce costs, increasing non-hydro RE capacity to ~386 GW by 2036 (~129 GW in 2020)
• Nuclear advancements coupled with Low-EUR shifts generation.
Reference Mid-EUR Scenario: Natural Gas Expansion (2030)
• CES can lead to deep cuts in carbon emissions (upstream emissions should be considered in setting CES crediting scheme).
• Abundant low cost NG (High-EUR) can help lower CO₂ and cost of meeting a CES.
• A stringent CES target of 80% can be met without CCS, although the cost is likely to be higher.

Power Sector CO₂ Emissions

- CES High-EUR
- CES High-EUR, No-CCS
- CES Low-EUR
- Reference Mid-EUR
- Retire 80GW
- No New Non-CCS Coal

MTons CO₂

- 2,300
- 2,100
- 2,000
- 1,900
- 1,700
- 1,500
- 1,300
- 1,100
- 900
- 700

Electricity Price

- Advances in nuclear do little to drive down costs, but this is a result of assuming a Low-EUR natural gas future.
- Advances in RE reduce the national average electricity price due to lower capital cost assumptions.
Among the CES scenarios, non-hydro RE generation reaches 35%-43% of the total in 2036; much of this is wind and would require massive new transmission infrastructure. Barriers to deploying this level of variable RE and operational challenges (e.g. curtailment) need further study.
Summary Results Matrix

<table>
<thead>
<tr>
<th>Reference Scenarios</th>
<th>2020</th>
<th>2036</th>
<th>2020</th>
<th>2036</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capacity (GW)</td>
<td>Generation (TWh)</td>
<td>CO2 (Mtons)</td>
<td>NG Price (2009$/MMBtu)</td>
</tr>
<tr>
<td>Mid-EUR</td>
<td>1,082</td>
<td>4,259</td>
<td>2,107</td>
<td>5.93</td>
</tr>
<tr>
<td>Low-EUR</td>
<td>1,081</td>
<td>4,252</td>
<td>2,113</td>
<td>6.33</td>
</tr>
<tr>
<td>Mid-EUR Low-Demand</td>
<td>1,061</td>
<td>4,173</td>
<td>2,035</td>
<td>4.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CES Scenarios</th>
<th>2020</th>
<th>2036</th>
<th>2020</th>
<th>2036</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capacity (GW)</td>
<td>Generation (TWh)</td>
<td>CO2 (Mtons)</td>
<td>NG Price (2009$/MMBtu)</td>
</tr>
<tr>
<td>High-EUR</td>
<td>1,083</td>
<td>4,280</td>
<td>2,026</td>
<td>4.83</td>
</tr>
<tr>
<td>High-EUR No-CCS</td>
<td>1,084</td>
<td>4,289</td>
<td>2,006</td>
<td>4.44</td>
</tr>
<tr>
<td>Low-EUR</td>
<td>1,086</td>
<td>4,249</td>
<td>2,024</td>
<td>7.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coal Scenarios</th>
<th>2020</th>
<th>2036</th>
<th>2020</th>
<th>2036</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capacity (GW)</td>
<td>Generation (TWh)</td>
<td>CO2 (Mtons)</td>
<td>NG Price (2009$/MMBtu)</td>
</tr>
<tr>
<td>Retire 80GW</td>
<td>1,075</td>
<td>4,238</td>
<td>2,020</td>
<td>7.29</td>
</tr>
<tr>
<td>No New Non-CCS</td>
<td>1,082</td>
<td>4,259</td>
<td>2,107</td>
<td>6.74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology Improvement Scenarios</th>
<th>2020</th>
<th>2036</th>
<th>2020</th>
<th>2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced RE</td>
<td>1,084</td>
<td>4,264</td>
<td>2,113</td>
<td>6.64</td>
</tr>
<tr>
<td>Advanced Nuclear (Low-EUR)</td>
<td>1,086</td>
<td>4,227</td>
<td>2,180</td>
<td>9.59</td>
</tr>
<tr>
<td>Reference Scenarios</td>
<td>2036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-EUR</td>
<td>10.5%</td>
<td>35.7%</td>
<td>35.1%</td>
<td>0%</td>
</tr>
<tr>
<td>Low-EUR</td>
<td>10.6%</td>
<td>31.4%</td>
<td>37.5%</td>
<td>0%</td>
</tr>
<tr>
<td>Mid-EUR Low-Demand</td>
<td>13%</td>
<td>27.5%</td>
<td>39.7%</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CES Scenarios</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High-EUR</td>
<td>10.9%</td>
</tr>
<tr>
<td>High-EUR No-CCS</td>
<td>10.8%</td>
</tr>
<tr>
<td>Low-EUR</td>
<td>11.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coal Scenarios</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Retire 80GW</td>
<td>10.7%</td>
</tr>
<tr>
<td>No New Non-CCS</td>
<td>10.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology Improvement Scenarios</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced RE</td>
<td>10.6%</td>
</tr>
<tr>
<td>Advanced Nuclear (Low-EUR)</td>
<td>16.3%</td>
</tr>
</tbody>
</table>
Selected Conclusions

- NG generation doubles by 2036 from today’s level in a mid-Estimated Ultimate Recovery (EUR) framework, but is further constrained in low-EUR case. The future of natural gas is highly sensitive to assumptions about EUR.
- NG prices for power generators rise to nearly $6/MMBtu in our baseline scenario in 2020, and just over $8/MMBtu in 2036.
- NG plays a dominant role in substituting for coal plants that retire; wind is more economic in a limited number of cases.
- NG generation peaks in the late 2020s under a Clean Energy Standard unless CCS is available at costs estimated by Black and Veatch (2012).
- Nuclear becomes economically competitive when its capital costs decline by half and gas prices rise, as in the Low-EUR case.