Spectral Components Analysis of Diffuse Emission Processes

PDF Version Also Available for Download.

Description

We develop a novel method to separate the components of a diffuse emission process based on an association with the energy spectra. Most of the existing methods use some information about the spatial distribution of components, e.g., closeness to an external template, independence of components etc., in order to separate them. In this paper we propose a method where one puts conditions on the spectra only. The advantages of our method are: 1) it is internal: the maps of the components are constructed as combinations of data in different energy bins, 2) the components may be correlated among each other, ... continued below

Physical Description

21 pages

Creation Information

Malyshev, Dmitry & /KIPAC, Menlo Park September 14, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We develop a novel method to separate the components of a diffuse emission process based on an association with the energy spectra. Most of the existing methods use some information about the spatial distribution of components, e.g., closeness to an external template, independence of components etc., in order to separate them. In this paper we propose a method where one puts conditions on the spectra only. The advantages of our method are: 1) it is internal: the maps of the components are constructed as combinations of data in different energy bins, 2) the components may be correlated among each other, 3) the method is semi-blind: in many cases, it is sufficient to assume a functional form of the spectra and determine the parameters from a maximization of a likelihood function. As an example, we derive the CMB map and the foreground maps for seven yeas of WMAP data. In an Appendix, we present a generalization of the method, where one can also add a number of external templates.

Physical Description

21 pages

Source

  • Journal Name: arXiv:1202.1034

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-14861
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 1050850
  • Archival Resource Key: ark:/67531/metadc844203

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 14, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • June 20, 2016, 9:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Malyshev, Dmitry & /KIPAC, Menlo Park. Spectral Components Analysis of Diffuse Emission Processes, article, September 14, 2012; United States. (digital.library.unt.edu/ark:/67531/metadc844203/: accessed September 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.