Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint

PDF Version Also Available for Download.

Description

This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ... continued below

Physical Description

16 p.

Creation Information

Hoke, A.; Butler, R.; Hambrick, J. & Kroposki, B. July 1, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

Physical Description

16 p.

Source

  • Related Information: To be published in IEEE Transactions on Sustainable Energy

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NREL/JA-5500-55094
  • Grant Number: AC36-08GO28308
  • Office of Scientific & Technical Information Report Number: 1051922
  • Archival Resource Key: ark:/67531/metadc844200

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • April 3, 2017, 8:36 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hoke, A.; Butler, R.; Hambrick, J. & Kroposki, B. Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint, article, July 1, 2012; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc844200/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.