

This is a preprint of a paper intended for publication in a journal or
proceedings. Since changes may be made before publication, this
preprint should not be cited or reproduced without permission of the
author. This document was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s use,
or the results of such use, of any information, apparatus, product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights. The views
expressed in this paper are not necessarily those of the United
States Government or the sponsoring agency.

INL/CON-12-24903
PREPRINT

Mining Bug Databases
for Unidentified Software
Vulnerabilities

5th International Conference on Human
System Interaction

Dumidu Wijayasekara
Milos Manic
Jason L. Wright
Miles McQueen

June 2012

1

Mining Bug Databases for Unidentified Software
Vulnerabilities

Dumidu Wijayasekara, Milos Manic
University of Idaho

Idaho Falls, ID, USA
wija2589@vandals.uidaho.edu, misko@ieee.org

Jason L. Wright, Miles McQueen
Idaho National Laboratory

Idaho Falls, ID, USA
jlwright@ieee.org, miles.mcqueen@inl.gov

Abstract— Identifying software vulnerabilities is becoming

more important as critical and sensitive systems increasingly rely
on complex software systems. It has been suggested in previous
work that some bugs are only identified as vulnerabilities long
after the bug has been made public. These vulnerabilities are
known as hidden impact vulnerabilities. This paper discusses
existing bug data mining classifiers and present an analysis of
vulnerability databases showing the necessity to mine common
publicly available bug databases for hidden impact
vulnerabilities.

We present a vulnerability analysis from January 2006 to
April 2011 for two well known software packages: Linux kernel
and MySQL. We show that 32% (Linux) and 62% (MySQL) of
vulnerabilities discovered in this time period were hidden impact
vulnerabilities. We also show that the percentage of hidden
impact vulnerabilities in the last two years has increased by 53%
for Linux and 10% for MySQL.

We then propose a hidden impact vulnerability identification
methodology based on text mining classifier for bug databases.
Finally, we discuss potential challenges faced by a development
team when using such a classifier.

Index Terms— Hidden impact vulnerabilities, Bug database
mining, Vulnerability discovery, Classifier

I. INTRODUCTION
 Software vulnerabilities are an increasing security focus as
critical and sensitive systems which operate critical
infrastructure become increasingly dependent on complex
software systems. Discovering these software vulnerabilities
as early as possible, at every stage of the software lifecycle, is
therefore of extreme importance in order to minimize the time
in which the vulnerabilities expose the systems to attack. This
includes the quicker and more effective identification of which
bugs may also be vulnerabilities.
 In [1], Arnold et al. defined hidden impact vulnerabilities as
those vulnerabilities identified as such only after the related
bug had been disclosed to the public. These software bugs are
disclosed to the public via bug databases and bug fixes, before

being identified as having a high security impact and being
labeled as vulnerabilities. Thus, even though a bug is known
to the community it may not be as quickly fixed by
developers, and a fix may not be applied in an appropriately
timely fashion by end-users, because the security implication
of the bug has not been correctly identified.
 Publicly available bug databases store and track information
about software bugs. Information contained in bug reports is
highly noisy and not in standard form [2], [3]. However, this
information has been successfully used for some classification
purposes [2], [3], [4].
 This paper first extends the work of Arnold [1] and clearly
demonstrates, empirically, that there is a need for improved
identification of which bugs are also vulnerabilities. Then we
address the feasibility and elaborate on the difficulties of
mining bug databases for discovery of potential hidden impact
vulnerabilities. The Linux kernel and MySQL bug databases
were chosen for analysis because they have been deployed for
many years, have extensive bug and vulnerability databases,
and their source code is available for future use in our
classification efforts.

Linux kernel vulnerabilities that were reported in the
MITRE CVE [5] database, during the time period from
January 2006 to April 2011 were analyzed. This analysis
showed a large portion of the most significant vulnerabilities
were hidden impact vulnerabilities and this number has
increased in the last two years.

A similar analysis of MySQL vulnerabilities reported in the
MITRE CVE database was conducted for the time period
January 2006 to April 2011. Similar to the Linux kernel, the
proportion of hidden impact vulnerabilities was significant and
the proportion has increased in the last two years for MySQL
as well.

After the empirical analysis of hidden impact
vulnerabilities, the practical difficulties of mining bug
databases are evaluated in a case study using the Redhat
Bugzilla bug database [6]. A vulnerability identification
methodology that utilizes text mining techniques to extract
information from bug databases and uses machine learning
techniques to identify vulnerabilities from this extracted
information is then described.

This manuscript has been authored by Battelle Energy Alliance, LLC

under Contract No. DE-AC07-05ID14517 with the U. S. Department of
Energy. The United States Government retains a nonexclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for United States Government
purposes.

2

The rest of the paper is organized as follows. Related work
on bug database mining and vulnerability discovery is
discussed in section II. Section III provides an analysis of
hidden impact vulnerabilities in the Linux kernel and the
MySQL application. Section IV analyzes a publicly available
bug database for use in data mining hidden impact
vulnerabilities. Section V proposes a hidden impact
vulnerability discovery tool and problems associated with such
a system. Section VI summarizes the conclusions and provides
a brief discussion of our future research.

II. RELATED WORK
This section highlights previous studies into different

methods of vulnerability discovery and mining bug databases.

A. Vulnerability discovery
Yamaguchi et al. used machine leaning and text mining

techniques to discover vulnerabilities in source code [7].
However, the classification results were below expectations
[7]. Similarly, Li and Leung also used machine learning
techniques to identify software defects in source code [8].

Many previous studies on vulnerability discovery focused
on static code analysis and static code analysis tools.
However, it has been shown that there are no universal static
analysis tools and static analysis by itself does not provide
satisfactory results for vulnerability discovery [9], [10], [11].
The existing tools are also very difficult to use because of the
large size of software distributions [12]. Schumacher et al.
showed the value of gathering information from vulnerability
databases to aid the discovery of vulnerabilities in software
[13]. In [14] Torri et al. evaluated 10 free and open source
static analysis tools on embedded C programs. Torri et al.
found that while the results were very poor, even the best
performing tool needed to be tweaked extensively to produce
good results, and therefore, this approach was impractical for
use in software development and vulnerability discovery [14].
Similar results were shown in [11] and [15].

Zitser et al. tested five static analysis tools on three open
source programs [16]. Low detection rates were reported for
most of the tools while the best performing tools reported very
high false positive rates (false alarm for every 12 to 46 lines of
source code) [16].

In [8], Li and Cui compared 7 free and open source static
analysis tools and concluded that each by itself did not provide
a satisfactory discovery of all vulnerabilities. Thus, it was
proposed that a variety of tools be used to compensate for the
deficiencies of each tool [8].

Austin and Williams showed that no single technique was
able to discover every type vulnerability by itself and
therefore, a combination of methods may be the optimal
means of vulnerability discovery [10].

B. Bug database mining
Previous studies have shown that the textual data contained

in bug reports may carry important information that can help
developers in the bug triaging process. Previous work on bug
database mining focuses on three main problems: 1) assigning

the correct person to fix a bug, 2) finding duplicate bug reports
and 3) assigning the correct severity to a reported bug.

In [17], [18] and [19], the authors used text mining to assign
the correct person to fix a bug. The correct person can be a
developer whose expertise is in that area, or a developer who
is responsible for the affected code. In [17] Cubranic and
Murphy used Naive Bayes to classify bugs contained in the
Eclipse bug database. Anvik et al. used a number of
classification techniques to classify bugs in the Eclipse and
Firefox databases [18]. In [19], Jeong et al. used a Markov
model for the same bug databases and showed better
classification accuracy.

Detection of duplicate bug reports is explored in [20], [21],
[22] and [23]. Runeson et al. used vector space and cosine
similarity measures to find redundant bugs in a Sony Ericsson
mobile bug database [20]. In [21], Wang et al. used similarity
measures to detect potential duplicate bugs for Eclipse and
Firefox bug databases. Wu et al. [23] also proposed a tool for
detection of duplicate bugs in Apache, Eclipse and Linux bug
databases.

In [2] and [3] Lamkanfi et al. used the textual description of
bug reports to classify severity of bugs. In [2] Lamkanfi et al.
classified Eclipse, GNOME and Mozilla bugs into three
classes of severity using Naive Bayes classifier. In [3]
Lamkanfi et al. compared classification algorithms for
classifying Eclipse and GNOME bug severity.

However, neither previous studies in vulnerability discovery
nor bug database mining focused on discovery of hidden
impact vulnerabilities.

III. HIDDEN IMPACT VULNERABILITY ANALYSIS
In this section an analyses of hidden impact vulnerabilities

for the Linux kernel and the MySQL database server are
presented. It is shown that a significant portion of
vulnerabilities are hidden impact vulnerabilities and the
number of hidden impact vulnerabilities has, if anything,
increased in recent years.

In [1], Arnold et al. defined hidden impact vulnerabilities as
those vulnerabilities identified some time after the related bug
has been disclosed to the public. This bug disclosure can be
via a patch which has been made available to the public or a
publicly accessible bug report. The importance of these
vulnerabilities, as elaborated in [1] is twofold. First, it is easier
for an attacker to use this disclosed information to discover a
potentially high impact exploit. Second, even though a patch is
available, systems may be at risk, because system
administrators tend not to apply lower severity patches that are
released for a system. This study focuses on the feasibility of
using the disclosed information, in the form of a bug report, to
discover a vulnerability before an attacker can take advantage
of it.

Hidden impact vulnerabilities for Linux kernel and MySQL
database server are analyzed in this section. For each software
package, vulnerabilities were divided into two groups
depending on when they were first reported: time period from
the 1st of January 2006 to the 31st of December 2008, which
will be called the first time period and the time period from

3

the 1st of January 2009 to the 30th of April 2011 which will
be called the second time period.

A. Linux Kernel Vulnerability Analysis
In their study Arnold et al. used a database of Linux kernel

vulnerabilities for the first time period (i.e. from the 1st of
January 2006 to the 31st of December 2008). For this time
period the Linux kernel had 218 vulnerabilities reported out of
which 56 (25.69%) had an impact delay of at least 2 weeks.
Impact delay was defined as the time from the public
disclosure of the bug in the form of a patch to the time a CVE
was assigned to the bug because it had now been identified as
a vulnerability. It was also shown that for any given day in the
time period there was an average of 8.5 hidden impact
vulnerabilities present that affected the Linux kernel.

The number of reported vulnerabilities in software has been
increasing over the past few years [5], [24]. In order to
evaluate whether the number of hidden impact vulnerabilities
has also increased over time, a similar analysis was performed
for Linux kernel vulnerabilities for the second time period (i.e.
from the 1st of January 2009 to the 30th of April 2011). For
this analysis specific rules were applied to the vulnerability
database downloaded from [5]. Vulnerabilities that affected 1)
multiple processors, 2) multiple distributions and 3) Linux
kernel 2.6 and above, were selected for the vulnerability
database for the time period. Vulnerabilities that affected only
a single processor were excluded because these vulnerabilities
affected only a small subset of users and it is difficult to
identify whether they were caused by a kernel issue. Similarly,
vulnerabilities that affected only one distribution were
excluded because there is no way of clarifying if the
vulnerability was due to a kernel issue. Vulnerabilities that
affected Linux kernel 2.6 and above were selected because it
was the latest version available in 2006. These rules also seem

to match the rules applied in [1]. Thus the vulnerability
database contained 185 vulnerabilities for the second time
period, which is a 15% reduction from the first time period.
However, the number of vulnerabilities with at least 2 weeks
of impact delay increased to 73 (39.46%). Fig. 1 shows the
number of hidden impact vulnerabilities with different impact
delays. Table I shows the number of vulnerabilities with at
least 2, 4 and 8 weeks of impact delay for the two time
periods.

Further, on any given day, there were 9.8 hidden impact
vulnerabilities in existence on average during the second time
period. Fig. 2 shows the number of hidden impact
vulnerabilities that existed on each day for the second time
period.

Thus, the number of hidden impact vulnerabilities in the
Linux kernel has increased in both percentage and magnitude
for the 2009 to 2011 time period. Furthermore, the average
number of hidden impact vulnerabilities in existence per each
day has also increased for the same time period.

B. MySQL Vulnerability Analysis
To expand on the knowledge gained from examining a

single product (the Linux kernel), the MySQL database server
was analyzed. Like Linux, MySQL has a public database of
bugs and a significant number of vulnerabilities in the MITRE
CVE database.

Using the same criteria as discussed in Section III.A for the
first time period, there were 37 vulnerabilities in the MITRE
CVE database out of which 22 (59.5%) had an impact delay of

Fig. 1. Number of hidden impact vulnerabilities by impact delay for Linux
kernel (January 2009 to April 2011)

Fig. 2. Number of hidden impact vulnerabilities that existed per day for the
Linux kernel (January 2009 to April 2011)

TABLE I. HIDDEN IMPACT VULNERABILITIES (LINUX KERNEL)

 2006 Jan.
 - 2008 Dec.
(First time

period)

2009 Jan.
 - 2011 Apr.
(Second time

period)

Total

Total 218 185 403
At least 2 weeks
of impact delay 56 (25.69%) 73 (39.46%) 129 (32.01%)

At least 4 weeks
of impact delay 38 (17.43%) 55 (29.73%) 93 (23.08%)

At least 8 weeks
of impact delay 31 (14.22%) 29 (15.68%) 60 (14.99%)

Fig. 3. Number of hidden impact vulnerabilities by impact delay for MySQL
(December 2003 to April 2011)

4

at least 2 weeks (see Table II). An average of 3.45 hidden
impact vulnerabilities affected the MySQL database server per
day for the same time period.

For the second time period, 29 vulnerabilities were reported
and 19 (65.5%) of these were hidden impact vulnerabilities
that had an impact delay of at least 2 weeks. Although the
number of hidden impact vulnerabilities has not increased in
absolute terms, it has increased percentagewise in the 2009 to
2011 time period.

Fig. 3 shows the number of vulnerabilities by impact delay
for the MySQL database server. Comparing Fig. 1 and Fig. 3
shows that the median impact delay time for MySQL is much
higher (11 weeks for Linux and 20 weeks for MySQL). Also,
the distribution is of a different shape which may reflect the
different priorities of the developers of the two projects.

Finally, Fig. 4 shows the number of hidden impact
vulnerabilities on a given day for MySQL for the time period
from January 2009 to April 2011. At any given day during the
second time period, on average there existed 3.75 hidden
impact vulnerabilities for the MySQL database server.

Thus, similar to Linux, MySQL hidden impact
vulnerabilities account for a significant portion of the total
number of vulnerabilities and the percentage of hidden impact
vulnerabilities has increased in the second time period.

IV. EVALUATION OF BUG DATABASES FOR USE IN DATA
MINING FOR VULNERABILITIES

 Bug databases for software are kept in order to keep track of
the bugs existing in the software. Publicly available bug
databases benefit from information provided by users with a
diverse set of technical backgrounds as well as programmers
and developers [25]. These bug databases allow developers to
identify previously unforeseen bugs in the software and at the

same time users can track the resolution process of each bug.
It has been shown that these databases are extremely useful in
increasing the quality and reliability of the software as well as
containing vital information that can be used for various
purposes such as improving future design requirements [4],
gathering vital feedback from users [25], and improving
software reliability [26], [27].
 In this section bug reports from Redhat Bugzilla database
are analyzed. The Redhat Bugzilla database was selected
because 1) it is one of the most extensive bug databases
available, 2) all other Bugzilla bug databases generally follow
the same format, 3) most of the Linux vulnerabilities
examined in this paper are associated with bugs in the Redhat
Bugzilla database, 4) at the time of writing the paper, Linux
Kernel Bugzilla database [28] was restricted from public
access due to a security breach. Although the Redhat Bugzilla
database "is not an avenue for technical assistance or support,
but simply a bug tracking system" [6], it has been shown that
certain details in the bug reports can be used for various forms
of classification as mentioned in Section II.A [2], [3], [4].

A. Bug Reports and Bug Life Cycle
 After a bug is reported, it is reviewed and the reported bug
is assigned a bug ID, which is a unique identifier and enters
the bug resolution process. Fig. 5, shows the typical life cycle
of a bug after it is reported.
 When a bug is reported, the reporter can assign as many
parameters to the bug report as he or she sees fit. These
parameters include terms such as severity, priority, product,
component and keywords. During the life cycle of the bug,
these parameters may be changed according to its nature and
severity. Apart from these set parameters, the person who
reports the bug must provide a title for the bug which is a short
description of the bug, and a comment which is a longer
description of the bug and should describe the bug in more
detail. The long description may include code snippets, how to
recreate the bug, the specifications of the hardware setup etc.,
which are meant to allow the developer to more easily identify
and rectify the bug.
 The status of the bug changes according to the position of
the bug in the life cycle, thus allowing users to be informed on
the progress of the bug. Further, comments can be added by

Fig. 4. Number of hidden impact vulnerabilities that existed per day for the
MySQL database (January 2009 to April 2011)

TABLE III. HIDDEN IMPACT VULNERABILITIES (MYSQL)

 2006 Jan.
 - 2008 Dec.
(First time

period)

2009 Jan.
 - 2011 Apr.
(Second time

period)

Total

Total 37 29 66
At least 2 weeks
of impact delay 22 (59.46%) 19 (65.52%) 41 (62.12%)

At least 4 weeks
of impact delay 21 (56.76%) 19 (65.52%) 40 (60.62%)

At least 8 weeks
of impact delay 17 (45.95%) 16 (55.17%) 33 (50%)

Fig. 5. Typical life cycle of a Bugzilla bug.

5

users and administrators to convey the progress and
development of the bug fix or other relevant facts.
 As of 2011-4-18 the Redhat Bugzilla database contained
202,896 entries. The first bug which is a test bug report was
added to the database on 1998-11-1. Table III shows the
distribution of bugs per year and the mean number of bugs per
day in the Redhat Bugzilla [6] database. The number of bugs
reported has been increasing (see Fig. 6 and 7), which might
be due to the surprising fact that mature releases of the same
software tend to have more bugs reported [27].
 The main problem with such bug reports is that most of the
parameters of the bug are set by the person who reports the
bug, thus leading to inconsistencies within the bug database
[23]. For example, the severity and priority of a bug may
change according to person and environment [23]. Also it has
been shown that Bugzilla typically uses too many severity
levels [29]. Similarly the bug may be reported by a normal
user, an expert, or automatically, thus, each entity will report
the bug according to their own level of expertise and
preference.
 Due to these factors previous studies on bug database
mining have focused on using the short and long descriptions
of the bugs, as they contain the most generalized information
about the bug [2], [3].

B. Bug Reports associated with Linux Vulnerabilities
 As this study investigates the possibility of using bug
reports in order to identify software vulnerabilities, it is
necessary to discover bug reports that are associated with
vulnerabilities. Since some bug reports do not state the

specific vulnerability it is associated with, the bug ID
associated with each vulnerability in the MITRE CVE [5]
database was used to identify these bugs.
 The vulnerability database contained vulnerabilities for the
Linux kernel from January 2006 to April 2011. By applying
the rules stated in Section III.A, the number of vulnerabilities
was reduced to 403. However, 72 vulnerabilities did not have
associated bug reports. As mentioned above, most of the
remaining vulnerabilities were associated with bug reports
from the Redhat Bugzilla [6] database. Only 15 vulnerabilities
were associated with bug reports from the Linux Kernel
Bugzilla database [28]. Out of these 15 bugs only 5 were
associated exclusively with bug reports from Linux Kernel
Bugzilla database [28]. Therefore out of the original 388
MITRE CVE listed vulnerabilities, 326 were associated with
bugs from the Redhat Bugzilla database [6].
 From the remaining 326 vulnerabilities, 197 were non
hidden impact vulnerabilities while 129 were hidden impact
vulnerabilities.
 Although all the remaining 326 vulnerabilities had a bug ID
associated with them, 152 of the bug IDs either did not match
a bug ID in the Redhat Bugzilla [6] database or the bug reports
were not accessible. Therefore, only 76 hidden impact
vulnerabilities and 98 non-hidden impact vulnerabilities were
matched with a bug report (see Table IV).

V. CLASSIFICATION FOR VULNERABILITY IDENTIFICATION VIA
BUG DATABASES

 Bug reports in publicly available bug databases are
extremely varied due to the fact that the bug reporting systems
are not standardized and the expertise and requirements of the
bug reporters vary. However, previous work on bug triaging
and classification successfully makes use of the short and long
descriptions of bug reports.
 Thus, we propose a bug classification methodology that

TABLE III. NUMBER OF REPORTED BUGS PER YEAR IN THE REDHAT
BUGZILLA [6] DATABASE

Year Number of bug
reports

Number of bugs
per day

From Nov.1998 336 5.5
1999 3,788 10.4
2000 5,846 16
2001 7,839 21.5
2002 9,200 25.3
2003 8,497 23.3
2004 11,951 32.7
2005 12,428 34
2006 15,283 41.9
2007 17,263 47.3
2008 20,916 57.3
2009 27,052 74.1
2010 43,301 118.6

to April 2011 19,185 139
Unknown 11

Total 202.896 44.5

Fig. 6. Number of bugs reported in the Redhat Bugzilla database [6]

Fig. 7. Average number of bugs per day reported in the Redhat Bugzilla
database [6]

TABLE IV. LINUX KERNEL VULNERABILITIES ASSOCIATED WITH BUG
REPORTS

Description Number
Number of hidden impact vulnerabilities with bug
reports in Redhat Bugzilla 76

Number of non-hidden impact vulnerabilities with bug
reports in Redhat Bugzilla 98

Number of vulnerabilities with bug reports that are not
accessible 152

Number of vulnerabilities with bug reports exclusively
from Linux Kernel Bugzilla 5

Number of vulnerabilities with no bug reports
associated with them 72

Total 403

6

uses the short and long descriptions of bug reports in publicly
available bug databases, and advanced text mining techniques
coupled with machine learning algorithms to aid discovery of
hidden impact vulnerabilities. The proposed methodology,
illustrated in Fig. 8, will extract the short and long descriptions
from a reported bug and generate a feature vector via text
mining. The text mining will involve: tokenizing, removal of
stop-words, combining synonyms and hyponyms, stemming
and matrix enhancing. Furthermore a static code analysis of
the location or module the bug was reported in will add to the
feature vector. The classifier will then classify the reported
bug as a normal bug or a vulnerability using the feature vector.
 The implementation of the proposed classifier was initiated
for the Linux kernel vulnerabilities by using the Redhat
Bugzilla bug database as the source of bug descriptions. The
bug reports in the database were divided into three classes:
normal bugs (~200,000), bugs that are vulnerabilities (98), and
bugs that are hidden impact vulnerabilities (76). The set of
vulnerabilities considered were vulnerabilities reported from
2006 to 2011, and the earliest bug report that was associated
with a vulnerability was from 2004. Therefore, the set of
normal bugs considered for the classifier contained bugs
reported from 2004 to 2011. Thus according to Table III, the
normal set contained 167,390 bugs.
 This general classifier faces two main problems: first the
large dimensionality of the feature vector and second the base-
rate fallacy problem. The following Sub-Sections illustrates
these two problems.

A. Generation of the feature vector
 Because of the large number of unique words contained in
the textual descriptions of bugs and the large number of bugs
considered, the dimensionality of the feature vector will be
large. Such a high dimensionality will increase the training
time of the classifier as well as the memory and processor
requirement. Thus, in order to reduce the dimensionality of the
feature vector without losing the most significant information

in the bug report, the following methodology was used to
extract the feature vector.
 First, the long and short descriptions of the bugs were
extracted. Tokenization was used to extract the unique words
in the descriptions. In the tokenization process special
characters and numbers were removed, and capitalization and
other text formatting was also removed from the text. Because
of the large number of normal bugs, a random sample of 4000
bugs were used for the extraction of unique words. Table V
shows the number of unique words in each category of bug.
 Second, stop words were removed from the extracted
unique word lists. Stop words are words that are commonly
used in the English language and do not carry any information.
By removing stop words, the number of unique words was
reduced without loss to the information contained in the text.
 Third, Wordnet [30] was used to identify synonyms and
hyponyms and combine these. Synonyms and hyponyms are
words that carry the same information in a different form. This
step combines words that carry similar information and further
reduced the number of unique words.
 Porter stemming [31] was performed as the fourth step. In
this step words are stemmed into their most basic form.
Similar to combining synonyms and hyponyms this step
combined words that carry similar information, and further
reduced the number of unique words.
 As the final step for generating the term document matrix
the unique words that occur in less than 10% of the records in
each category were removed. This step removes words that are
less generalized and reduced the number of unique words
further.
 The reduction of the size of the feature vector after each
step of the text mining process can be seen in Table V. The
resulting feature vector contains words that are most
generalized to the bug database. Due to the small ratio
between the number of bugs that are hidden impact
vulnerabilities and the number of normal bugs, textual
information from each category was extracted separately and
finally combined to obtain the feature vector.
 As illustrated in Table V, the initial number of unique
words is very large, thus, making the feature vector too large.
However, by utilizing Wordnet and Porter stemming the
number of unique words were reduced, and after removing the
keywords that occur in less than 10% of the bugs, the length of
the feature vector was reduced to 633.
 By utilizing the feature vector, the term-document matrix is
generated. However, this matrix is extremely sparse. Thus, for
this application, techniques such as TF-IDF for matrix
enhancing will be used to improve the term-document matrix.

B. The Base-Rate fallacy problem
 In [32] Axelsson performed a base-rate fallacy test for
intrusion detection systems (IDS) and illustrated the problems
in classifying intrusions. Axelsson pointed out the small ratio
between the number of intrusions and normal traffic affect the
outcome in such a way that the user will be overwhelmed by
the number of false positives. Since the ratio between hidden
impact vulnerabilities and normal bugs in bug databases is
very low (129/167,390 = 7.71 X 10-4), a similar base-rate
fallacy evaluation was performed. However, it has to be noted
that the number of hidden impact vulnerabilities used for this

Fig. 8.The proposed vulnerability discovery methodology

7

calculation is a conservative estimate since 1) although all the
bugs reported for 2004 and 2005 were included in the normal
bug set, hidden impact vulnerabilities discovered for that time
period were not included, and 2) the normal bug set may
include bugs that will eventually be discovered as
vulnerabilities in the future.
 For the base-rate fallacy analysis, the following
nomenclature will be used:

YgivenXofyprobabilitYXP
XofyprobabilitXP

XnotX
nerabilityvulaasbugatectsdeclassifiertheeitectiondeD

nerabilityvulimpacthiddenV

�
�

��
�
�

)|(
)(

)..(

Thus, by using the above naming convention, true positive rate
can be denoted as)|(VDP and the false positive rate can be
denoted as)|(VDP � .
 For classification of vulnerabilities the Bayesian detection
rate is the probability that a bug is a vulnerability given that
the classifier detects the bug as a vulnerability, i.e.)|(DVP .
In order to increase the Bayesian detection rate the number of
false positives must be reduced. By means of Bayes' theorem
the Bayesian detection rate can be expressed as:

)|()()|()(
)|()()|(

VDPVPVDPVP
VDPVPDVP

�����
�

� (1)

 The following probabilities are known:

41071.7

167390
129)(����VP (2)

 99923.01071.71)(1)(4 ������� �VPVP (3)

 By using equations (2) and (3), equation (1) can be
rewritten as:

)|(99923.0)|(1071.7
)|(1071.7)|(4

4

VDPVDP
VDPDVP

�����
��

�
�

�

 (4)

The Bayesian detection rate expressed in equation (4) is
dominated by the factor 0.99954, i.e. the high probability that
a bug is not a vulnerability. Thus in order to achieve a
Bayesian detection rate that is sufficient, the false positive rate
must be low. Fig. 9 plots the false positive rate against the
Bayesian detection rate, for different values of true positive
rates ()|(VDP). Fig. 9 shows that as the false positive rate
increases, the Bayesian detection rate decreases.

 The Bayesian detection rate is vital when dealing with
human users: if the Bayesian detection rate is too low, the
users will be overwhelmed by the number of false positives
and thus reducing the effectiveness of the classifier. It is not
possible to guess what the sufficient level of Bayesian
detection rate will be for the classifier. However, by using the
upper bound in Fig. 9. it is possible to gain an understanding
of the maximum false positive rate which is acceptable from
the classifier. For example, if a Bayesian detection rate of 0.01
can be tolerated by the development team, which means that
only one out of 100 detections is an actual vulnerability,
according to Fig. 9, a maximum false positive rate of 0.076 is
acceptable. This means that on average for any given day in
2011, where 139 bugs were reported per day (see Table III),
around 11 (0.076 * 139) bugs will be falsely identified as a
vulnerability by the classifier. Similarly, if one out of 10
detections needs to be an actual vulnerability, which means a
Bayesian detection rate of 0.1, to achieve this, the maximum
acceptable false positive rate is 0.0069. This translates to
falsely identifying around one bug per day (0.0069 * 139) for
any given day in 2011. Thus, the lower boundary of false
positive rate that the proposed classifier must obtain can be
determined using Fig. 9.

VI. CONCLUSION
More effective vulnerability discovery and identification is

an important factor in the software life cycle as it will reduce
the security exposure of vital systems. The earlier a reported
bug is identified as a vulnerability the more effective
developers can be in identifying which bugs have higher
priority for patch creation (vulnerabilities have a high
priority), and the more effective system owners can be in
choosing which patches should be applied quickly.

TABLE V. NUMBER OF KEYWORDS IN EACH CLASS OF THE DATASET

Type of bug
Total number of

unique words after
tokenization

After
removing stop

words

After combining
synonyms and

hyponyms

After Porter
stemming

After removing words
that occur in less than

10% of bugs
Non hidden impact
vulnerabilities

Short description 335 308 272 268 8
Long description 2595 2468 1848 1794 159

Hidden impact
vulnerabilities

Short description 325 297 264 260 8
Long description 2144 2026 1564 1525 210

Normal bugs Short description 6161 6039 4536 4349 90
Long description 9981 9843 8067 7825 158

Total 21541 20981 16551 16021 633

Fig. 9. Bayesian detection rate for classifying vulnerabilities.

8

An analysis of the most significant Linux kernel
vulnerabilities and MySQL vulnerabilities showed a
significant number of vulnerabilities that affected the Linux
kernel (39.4%) and the MySQL database server (62.23%)
were hidden impact vulnerabilities and it was shown that the
percentage of hidden impact vulnerabilities has increased in
the last two years. Thus there is a necessity to use bug
databases to identify hidden impact vulnerabilities in software.

A further analysis of the Redhat Bugzilla Linux bug
database showed the difficulties of data mining such
databases. However an analysis of previous research into bug
triaging and classification showed that the information
contained in bug reports can be used for classification
purposes. This paper also proposed a system that utilizes bug
reports to identify hidden impact vulnerabilities. Potential
problems faced by a development team when using the
proposed classifier were also addressed in the paper.

As future work the proposed system will be implemented
for discovering vulnerabilities in the Linux kernel, MySQL
and other third party software. The system will use advanced
text mining techniques and machine learning algorithms to
classify bugs and vulnerabilities. In order to further enhance
the classification accuracy, attributes of the source code itself
and other aspects of the software development process will be
incorporated into the classifier.

REFERENCES
[1] J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage, G. Thomas, A.

Kaseorg, “Security Impact Ratings Considered Harmful,” in Proc. of the
12th Conf. on Hot Topics in Operating Systems , USENIX, May 2009.

[2] A. Lamkanfi, S. Demeyer, E. Giger, B. Goethals, “Predicting the
severity of a reported bug,” in Proc. of the 7th IEEE Working Conf. on
Mining Software Repositories (MSR 2010), May 2010, pp.1–10.

[3] A. Lamkanfi, S. Demeyer, Q. D. Soetens, T. Verdonck, “Comparing
Mining Algorithms for Predicting the Severity of a Reported Bug,” in
Proc. of the 15th European Conf. on Software Maintenance and
Reengineering (CSMR), Mar. 2011, pp.249–258 .

[4] A. J. Ko, B. A. Myers, D. H. Chau, "A Linguistic Analysis of How
People Describe Software Problems,” in Proc. of the 2006 IEEE Symp.
on Visual Languages and Human-Centric Computing (VL/HCC 2006),
Sep. 2006, pp. 127–134.

[5] The MITRE Corporation (1 Nov. 2011), Common Vulnerabilities and
Exposures (CVE) [Online]. Available: http://cve.mitre.org/.

[6] Redhat, Inc. (1 Nov. 2011), Redhat Bugzilla Main Page [Online].
Available: https://bugzilla.redhat.com/.

[7] F. Yamaguchi, F. 'FX' Lindner, K. Rieck, “Vulnerability Extrapolation:
Assisted Discovery of Vulnerabilities using Machine Learning,” in Proc.
of the 5th USENIX Workshop on Offensive Technologies (WOOT),
USENIX, Aug. 2011.

[8] L. Li, H. Leung, “Mining Static Code Metrics for a Robust Prediction of
Software Defect-Proneness,” in Proc of the 2011 Int. Symp. on
Empirical Software Engineering and Measurement (ESEM ‘11), Sep.
2011, pp. 207–214.

[9] P. Li, B. Cui, “A comparative study on software vulnerability static
analysis techniques and tools,” in Proc. of the IEEE Int. Conf. on
Information Theory and Information Security (ICITIS), Dec. 2010,
pp.521–524.

[10] A. Austin, L. Williams “One Technique is Not Enough: A Comparison
of Vulnerability Discovery Techniques,” in Proc. of the 2011 Int. Symp.
on Empirical Software Engineering and Measurement (ESEM '11), Sep.
2011, pp. 97–106.

[11] D. Kester, M. Mwebesa, J. S. Bradbury, “How Good is Static Analysis
at Finding Concurrency Bugs?” in Proc of the 10th IEEE Int. Working
Conf. on Source Code Analysis and Manipulation (SCAM ’10), Sep.
2010, pp. 115–124.

[12] W. M. Khoo, S. Aloteibi, R. Anderson, M. Meeks, “Hunting for
vulnerabilities in large software: the OpenOffice suite,” Cambridge
University press, Jun. 2010.

[13] M. Schumacher, C. Haul, M. Hurler, A. Buchmann, “Data Mining in
Vulnerability Databases,” in Proc of 7th Workshop ”Sicherheit in
vernetzten Systemen", Mar. 2000.

[14] L. Torri, G. Fachini, L. Steinfeld, V. Camara, L. Carro, É. Cota, “An
Evaluation of Free/Open Source Static Analysis Tools Applied to
Embedded Software,” in Proc of the 11th Latin American Test
Workshop (LATW ’10), Mar. 2010, pp. 1–6.

[15] K. Kratkiewicz, R. Lippmann, “Using a Diagnostic Corpus of C
Programs to Evaluate Buffer Overflow Detection by Static Analysis
Tools,” in Proc of Workshop on the Evaluation of Software Defect
Detection Tools, Jun. 2005, pp. 62–71.

[16] M. Zitser, R. Lippmann, T. Leek “Testing Static Analysis Tools Using
Exploitable Buffer Overflows From Open Source Code,” in Proc. of the
12th Int. Symp. on Foundations of Software Engineering (FSE ’04),
ACM SIGSOFT, Nov. 2004, pp. 97–106.

[17] D. Cubranic, G. C. Murphy, “Automatic bug triage using text
categorization,” in Proc. of the 16th Int. Conf. on Software Engineering
and Knowledge Engineering, KSI Press, Jun. 2004, pp. 92-97.

[18] J. Anvik, L. Hiew, G. C. Murphy, “Who Should Fix This Bug?” in Proc.
of the 28th Int. Conf. on Software Engineering (ICSE ’06), May 2006,
pp. 361–370.

[19] G. Jeong, S. Kim, T. Zimmermann, “Improving bug triage with bug
tossing graphs,” in Proc. of the 7th Joint Meeting of the European
Software Engineering Conf. and the ACM SIGSOFT (ESEC/FSE ’09),
Aug. 2009, pp. 111–120.

[20] P. Runeson, M. Alexandersson, O. Nyholm, O, “Detection of Duplicate
Defect Reports Using Natural Language Processing,” in Proc. of the
29th Int. Conf. on Software Engineering (ICSE 2007), 20-26 May 2007,
pp.499–510.

[21] X. Wang, L. Zhang, T. Xie, J. Anvik, J. Sun, “An Approach to Detecting
Duplicate Bug Reports using Natural Language and Execution
Information,” in Proc. of the 30th Int. Conf. on Software Engineering
(ICSE '08), May 2008, pp. 461–470.

[22] T. Prifti, S. Banerjee, B. Cukic, “Detecting Bug Duplicate Reports
through Local References,” in Proc of the 7th Int. Conf. on Predictive
Models in Software Engineering (PROMISE ’11), Sep. 2011, pp. 8:1–
8:9.

[23] L. Wu, B. Xie, G. Kaiser, R. Passonneau, “BugMiner: Software
Reliability Analysis Via Data Mining of Bug Reports,” in Proc. of the
23rd Int. Conf. on Software Engineering and Knowledge Engineering
(SEKE), Jul. 2011, pp. 95–100.

[24] H. Shahriar, M. Zulkernine, “Classification of Static Analysis-based
Buffer Overflow Detectors,” in Proc of the 4th Int. Conf. on Secure
Software Integration and Reliability Improvement Companion, Jun.
2010, pp. 94–101.

[25] J. Noll, S. Beecham, D. Seichter, “A Qualitative Study of Open Source
Software Development: the OpenEMR Project,” in Proc of the Int.
Symp. on Empirical Software Engineering and Measurement (ESEM
’11), Sep. 2011, pp. 30–39.

[26] M. F. Ahmed, S. S. Gokhale, “Linux Bugs: Life Cycle and Resolution
Analysis,” in Proc of The 8th Int. Conf. on Quality Software (QSIC ’08),
Aug. 2008, pp.396–401.

[27] M. F. Ahmed, S. S. Gokhale, “Linux Bugs: Life Cycle, Resolution and
Architectural Analysis,” in Information Software Technology, vol. 5,
no. 11, pp. 1618–1627, Nov. 2009.

[28] Linux Kernel Organization (1 Nov. 2011), The Linux Kernel Archives
[Online]. Available: http://www.kernel.org/.

[29] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, G. Robles,
“Towards a simplification of the bug report form in Eclipse,” in Proc. of
the Int. Working Conf. on Mining Software Repositories (MSR '08),
May 2008, pp. 145–148.

[30] C. Fellbaum, WordNet: An Electronic Lexical Database, Cambridge,
MA: MIT Press, 1998.

[31] M. F. Porter, “An algorithm for suffix stripping,” in Program, vol. 14,
no. 3, pp. 130−137, 1980.

[32] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion
detection,” in ACM Transactions on Information and System Security
(TISSEC), vol. 3, no. 3, pp. 186–205, Aug. 2000.

[33] T. Menzies, A. Marcus, “Automated Severity Assessment of Software
Defect Reports,” in Proc of the IEEE Int. Conf. on Software
Maintenance, Sep. 2008, pp. 346-355.

