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Abstract— Identifying software vulnerabilities is becoming 

more important as critical and sensitive systems increasingly rely 
on complex software systems. It has been suggested in previous 
work that some bugs are only identified as vulnerabilities long 
after the bug has been made public. These vulnerabilities are 
known as hidden impact vulnerabilities. This paper discusses 
existing bug data mining classifiers and present an analysis of 
vulnerability databases showing the necessity to mine common 
publicly available bug databases for hidden impact 
vulnerabilities.  

We present a vulnerability analysis from January 2006 to 
April 2011 for two well known software packages: Linux kernel 
and MySQL. We show that 32% (Linux) and 62% (MySQL) of 
vulnerabilities discovered in this time period were hidden impact 
vulnerabilities. We also show that the percentage of hidden 
impact vulnerabilities in the last two years has increased by 53% 
for Linux and 10% for MySQL.  

We then propose a hidden impact vulnerability identification 
methodology based on text mining classifier for bug databases. 
Finally, we discuss potential challenges faced by a development 
team when using such a classifier. 
 

Index Terms— Hidden impact vulnerabilities, Bug database 
mining, Vulnerability discovery, Classifier 
 

I. INTRODUCTION 
 Software vulnerabilities are an increasing security focus as 
critical and sensitive systems which operate critical 
infrastructure become increasingly dependent on complex 
software systems. Discovering these software vulnerabilities 
as early as possible, at every stage of the software lifecycle, is 
therefore of extreme importance in order to minimize the time 
in which the vulnerabilities expose the systems to attack. This 
includes the quicker and more effective identification of which 
bugs may also be vulnerabilities.  
 In [1], Arnold et al. defined hidden impact vulnerabilities as 
those vulnerabilities identified as such only after the related 
bug had been disclosed to the public. These software bugs are 
disclosed to the public via bug databases and bug fixes, before 

being identified as having a high security impact and being 
labeled as vulnerabilities. Thus, even though a bug is known 
to the community it may not be as quickly fixed by 
developers,  and a fix may not be applied in an appropriately 
timely fashion by end-users, because the security implication 
of the bug has not been correctly identified.  
 Publicly available bug databases store and track information 
about software bugs. Information contained in bug reports is 
highly noisy and not in standard form [2], [3]. However, this 
information has been successfully used for some classification 
purposes [2], [3], [4]. 
 This paper first extends the work of Arnold [1] and clearly 
demonstrates, empirically, that there is a need for improved 
identification of which bugs are also vulnerabilities. Then we 
address the feasibility and elaborate on the difficulties of 
mining bug databases for discovery of potential hidden impact 
vulnerabilities.  The Linux kernel and MySQL bug databases 
were chosen for analysis because they have  been deployed for 
many years, have extensive bug and vulnerability databases, 
and their source code is available for future use in our 
classification efforts. 

Linux kernel vulnerabilities that were reported in the 
MITRE CVE [5] database, during the time period from 
January 2006 to April 2011 were analyzed. This analysis 
showed a large portion of the most significant vulnerabilities 
were hidden impact vulnerabilities and this number has 
increased in the last two years.  

A similar analysis of MySQL vulnerabilities reported in the 
MITRE CVE database was conducted for the time period 
January 2006 to April 2011. Similar to the Linux kernel, the 
proportion of hidden impact vulnerabilities was significant and 
the proportion has increased in the last two years for MySQL 
as well.  

After the empirical analysis of hidden impact 
vulnerabilities, the practical difficulties of mining bug 
databases are evaluated in a case study using the Redhat 
Bugzilla bug database [6]. A vulnerability identification 
methodology that utilizes text mining techniques to extract 
information from bug databases and uses machine learning 
techniques to identify vulnerabilities from this extracted 
information is then described.  
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The rest of the paper is organized as follows. Related work 
on bug database mining and vulnerability discovery is 
discussed in section II. Section III provides an analysis of 
hidden impact vulnerabilities in the Linux kernel and the 
MySQL application. Section IV analyzes a publicly available 
bug database for use in data mining hidden impact 
vulnerabilities. Section V proposes a hidden impact 
vulnerability discovery tool and problems associated with such 
a system. Section VI summarizes the conclusions and provides 
a brief discussion of our future research. 

II. RELATED WORK 
This section highlights previous studies into different 

methods of vulnerability discovery and mining bug databases. 

A. Vulnerability discovery 
Yamaguchi et al. used machine leaning and text mining 

techniques to discover vulnerabilities in source code [7]. 
However, the classification results were below expectations 
[7]. Similarly, Li and Leung also used machine learning 
techniques to identify software defects in source code [8].  

Many previous studies on vulnerability discovery focused 
on static code analysis and static code analysis tools. 
However, it has been shown that there are no universal static 
analysis tools and static analysis by itself does not provide 
satisfactory results for vulnerability discovery [9], [10], [11]. 
The existing tools are also very difficult to use because of the 
large size of software distributions [12]. Schumacher et al. 
showed the value of gathering information from vulnerability 
databases to aid the discovery of vulnerabilities in software 
[13]. In [14] Torri et al. evaluated 10 free and open source 
static analysis tools on embedded C programs. Torri et al. 
found that while the results were very poor, even the best 
performing tool needed to be tweaked extensively to produce 
good results, and therefore, this approach was impractical for 
use in software development and vulnerability discovery [14]. 
Similar results were shown in [11] and [15]. 

Zitser et al. tested five static analysis tools on three open 
source programs [16]. Low detection rates were reported for 
most of the tools while the best performing tools reported very 
high false positive rates (false alarm for every 12 to 46 lines of 
source code) [16].   

In [8], Li and Cui compared 7 free and open source static 
analysis tools and concluded that each by itself did not provide 
a satisfactory discovery of all vulnerabilities. Thus, it was 
proposed that a variety of tools be used to compensate for the 
deficiencies of each tool [8]. 

Austin and Williams showed that no single technique was 
able to discover every type vulnerability by itself and 
therefore, a combination of methods may be the optimal 
means of vulnerability discovery [10].  

B. Bug database mining 
Previous studies have shown that the textual data contained 

in bug reports may carry important information that can help 
developers in the bug triaging process. Previous work on bug 
database mining focuses on three main problems: 1) assigning 

the correct person to fix a bug, 2) finding duplicate bug reports 
and 3) assigning the correct severity to a reported bug. 

In [17], [18] and [19], the authors used text mining to assign 
the correct person to fix a bug. The correct person can be a 
developer whose expertise is in that area, or a developer who 
is responsible for the affected code. In [17] Cubranic and 
Murphy used Naive Bayes to classify bugs contained in the 
Eclipse bug database. Anvik et al. used a number of 
classification techniques to classify bugs in the Eclipse and 
Firefox databases [18]. In [19], Jeong et al. used a Markov 
model for the same bug databases and showed better 
classification accuracy. 

Detection of duplicate bug reports is explored in [20], [21], 
[22] and [23]. Runeson et al. used vector space and cosine 
similarity measures to find redundant bugs in a Sony Ericsson 
mobile bug database [20]. In [21], Wang et al. used similarity 
measures to detect potential duplicate bugs for Eclipse and 
Firefox bug databases. Wu et al. [23] also proposed a tool for 
detection of duplicate bugs in Apache, Eclipse and Linux bug 
databases.  

In [2] and [3] Lamkanfi et al. used the textual description of 
bug reports to classify severity of bugs. In [2] Lamkanfi et al. 
classified Eclipse, GNOME and Mozilla bugs into three 
classes of severity using Naive Bayes classifier. In [3] 
Lamkanfi et al. compared classification algorithms for 
classifying Eclipse and GNOME bug severity. 

However, neither previous studies in vulnerability discovery 
nor bug database mining focused on discovery of hidden 
impact vulnerabilities. 

III. HIDDEN IMPACT VULNERABILITY ANALYSIS 
In this section an analyses of hidden impact vulnerabilities 

for the Linux kernel and the MySQL database server are 
presented. It is shown that a significant portion of 
vulnerabilities are hidden impact vulnerabilities and the 
number of hidden impact vulnerabilities has, if anything, 
increased in recent years.  

In [1], Arnold et al. defined hidden impact vulnerabilities as 
those vulnerabilities identified some time after the related bug 
has been disclosed to the public. This bug disclosure can be 
via a patch which has been made available to the public or a 
publicly accessible bug report. The importance of these 
vulnerabilities, as elaborated in [1] is twofold. First, it is easier 
for an attacker to use this disclosed information to discover a 
potentially high impact exploit. Second, even though a patch is 
available, systems may be at risk, because system 
administrators tend not to apply lower severity patches that are 
released for a system. This study focuses on the feasibility of 
using the disclosed information, in the form of a bug report, to 
discover a vulnerability before an attacker can take advantage 
of it. 

Hidden impact vulnerabilities for Linux kernel and MySQL 
database server are analyzed in this section. For each software 
package, vulnerabilities were divided into two groups 
depending on when they were first reported: time period from 
the 1st of January 2006 to the 31st of December 2008, which 
will be called the first time period and the time period from 
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the 1st of January 2009 to the 30th of April 2011 which will 
be called the second time period. 

A. Linux Kernel Vulnerability Analysis 
In their study Arnold et al. used a database of Linux kernel 

vulnerabilities for the first time period (i.e. from the 1st of 
January 2006 to the 31st of December 2008). For this time 
period the Linux kernel had 218 vulnerabilities reported out of 
which 56 (25.69%) had an impact delay of at least 2 weeks. 
Impact delay was defined as the time from the public 
disclosure of the bug in the form of a patch to the time a CVE 
was assigned to the bug because it had now been identified as 
a vulnerability. It was also shown that for any given day in the 
time period there was an average of 8.5 hidden impact 
vulnerabilities present that affected the Linux kernel. 

The number of reported vulnerabilities in software has been 
increasing over the past few years [5], [24]. In order to 
evaluate whether the number of hidden impact vulnerabilities 
has also increased over time, a similar analysis was performed 
for Linux kernel vulnerabilities for the second time period (i.e. 
from the 1st of January 2009 to the 30th of  April 2011). For 
this analysis specific rules were applied to the vulnerability 
database downloaded from [5]. Vulnerabilities that affected 1) 
multiple processors, 2) multiple distributions and 3) Linux 
kernel 2.6 and above, were selected for the vulnerability 
database for the time period. Vulnerabilities that affected only 
a single processor were excluded because these vulnerabilities 
affected only a small subset of users and it is difficult to 
identify whether they were caused by a kernel issue. Similarly, 
vulnerabilities that affected only one distribution were 
excluded because there is no way of clarifying if the 
vulnerability was due to a kernel issue. Vulnerabilities that 
affected Linux kernel 2.6 and above were selected because it 
was the latest version available in 2006. These rules also seem 

to match the rules applied in [1]. Thus the vulnerability 
database contained 185 vulnerabilities for the second time 
period, which is a 15% reduction from the first time period. 
However, the number of vulnerabilities with at least 2 weeks 
of impact delay increased to 73 (39.46%). Fig. 1 shows the 
number of hidden impact vulnerabilities with different impact 
delays. Table I shows the number of vulnerabilities with at 
least 2, 4 and 8 weeks of impact delay for the two time 
periods. 

Further, on any given day, there were 9.8 hidden impact 
vulnerabilities in existence on average during the second time 
period. Fig. 2 shows the number of hidden impact 
vulnerabilities that existed on each day for the second time 
period.  

Thus, the number of hidden impact vulnerabilities in the 
Linux kernel has increased in both percentage and magnitude 
for the 2009 to 2011 time period. Furthermore, the average 
number of hidden impact vulnerabilities in existence per each 
day has also increased for the same time period.  

B. MySQL Vulnerability Analysis 
To expand on the knowledge gained from examining a 

single product (the Linux kernel), the MySQL database server 
was analyzed. Like Linux, MySQL has a public database of 
bugs and a significant number of vulnerabilities in the MITRE 
CVE database. 

Using the same criteria as discussed in Section III.A for the 
first time period, there were 37 vulnerabilities in the MITRE 
CVE database out of which 22 (59.5%) had an impact delay of 

 
 

Fig. 1. Number of hidden impact vulnerabilities by impact delay for Linux 
kernel (January 2009 to April 2011) 

 
 

Fig. 2. Number of hidden impact vulnerabilities that existed per day for the 
Linux kernel (January 2009 to April 2011) 

TABLE I. HIDDEN IMPACT VULNERABILITIES (LINUX KERNEL) 

 2006 Jan. 
 - 2008 Dec. 
(First time 

period) 

2009 Jan. 
 - 2011 Apr. 
(Second time 

period) 

Total 

Total 218 185 403 
At least 2 weeks 
of impact delay 56 (25.69%) 73 (39.46%) 129 (32.01%) 

At least 4 weeks 
of impact delay 38 (17.43%) 55 (29.73%) 93 (23.08%) 

At least 8 weeks 
of impact delay 31 (14.22%) 29 (15.68%) 60 (14.99%) 

 
 

Fig. 3. Number of hidden impact vulnerabilities by impact delay for MySQL 
(December 2003 to April 2011) 
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at least 2 weeks (see Table II). An average of 3.45 hidden 
impact vulnerabilities affected the MySQL database server per 
day for the same time period. 

For the second time period, 29 vulnerabilities were reported 
and 19 (65.5%) of these were hidden impact vulnerabilities 
that had an impact delay of at least 2 weeks. Although the 
number of hidden impact vulnerabilities has not increased in 
absolute terms, it has increased percentagewise in the 2009 to 
2011 time period. 

Fig. 3 shows the number of vulnerabilities by impact delay 
for the MySQL database server. Comparing Fig. 1 and Fig. 3 
shows that the median impact delay time for MySQL is much 
higher (11 weeks for Linux and 20 weeks for MySQL). Also, 
the distribution is of a different shape which may reflect the 
different priorities of the developers of the two projects. 

Finally, Fig. 4 shows the number of hidden impact 
vulnerabilities on a given day for MySQL for the time period 
from January 2009 to April 2011. At any given day during the 
second time period, on average there existed 3.75 hidden 
impact vulnerabilities for the MySQL database server.  

Thus, similar to Linux, MySQL hidden impact 
vulnerabilities account for a significant portion of the total 
number of vulnerabilities and the percentage of hidden impact 
vulnerabilities has increased in the second time period. 

IV. EVALUATION OF BUG DATABASES FOR USE IN DATA 
MINING FOR VULNERABILITIES  

 Bug databases for software are kept in order to keep track of 
the bugs existing in the software. Publicly available bug 
databases benefit from information provided by users with a 
diverse set of technical backgrounds as well as programmers 
and developers [25]. These bug databases allow developers to 
identify previously unforeseen bugs in the software and at the 

same time users can track the resolution process of each bug. 
It has been shown that these databases are extremely useful in 
increasing the quality and reliability of the software as well as 
containing vital information that can be used for various 
purposes such as improving future design requirements [4], 
gathering vital feedback from users [25], and improving 
software reliability [26], [27]. 
 In this section bug reports from Redhat Bugzilla database 
are analyzed. The Redhat Bugzilla database was selected 
because 1) it is one of the most extensive bug databases 
available, 2) all other Bugzilla bug databases generally follow 
the same format, 3) most of the Linux vulnerabilities 
examined in this paper are associated with bugs in the Redhat 
Bugzilla database, 4) at the time of writing the paper, Linux 
Kernel Bugzilla database [28] was restricted from public 
access due to a security breach. Although the Redhat Bugzilla 
database "is not an avenue for technical assistance or support, 
but simply a bug tracking system" [6], it has been shown that 
certain details in the bug reports can be used for various forms 
of classification as mentioned in Section II.A [2], [3], [4].  

A. Bug Reports and Bug Life Cycle 
 After a bug is reported, it is reviewed and the reported bug 
is assigned a bug ID, which is a unique identifier and enters 
the bug resolution process. Fig. 5, shows the typical life cycle 
of a bug after it is reported.  
 When a bug is reported, the reporter can assign as many 
parameters to the bug report as he or she sees fit. These 
parameters include terms such as severity, priority, product, 
component and keywords. During the life cycle of the bug, 
these parameters may be changed according to its nature and 
severity. Apart from these set parameters, the person who 
reports the bug must provide a title for the bug which is a short 
description of the bug, and a comment which is a longer 
description of the bug and should describe the bug in more 
detail. The long description may include code snippets, how to 
recreate the bug, the specifications of the hardware setup etc., 
which are meant to allow the developer to more easily identify 
and rectify the bug. 
 The status of the bug changes according to the position of 
the bug in the life cycle, thus allowing users to be informed on 
the progress of the bug. Further, comments can be added by 

 
 

Fig. 4. Number of hidden impact vulnerabilities that existed per day for the 
MySQL database (January 2009 to April 2011) 

TABLE III. HIDDEN IMPACT VULNERABILITIES (MYSQL)  

 2006 Jan. 
 - 2008 Dec. 
(First time 

period) 

2009 Jan. 
 - 2011 Apr. 
(Second time 

period) 

Total 

Total 37 29 66 
At least 2 weeks 
of impact delay 22 (59.46%) 19 (65.52%) 41 (62.12%) 

At least 4 weeks 
of impact delay 21 (56.76%) 19 (65.52%) 40 (60.62%) 

At least 8 weeks 
of impact delay 17 (45.95%) 16 (55.17%) 33 (50%) 

 

 
 

Fig. 5. Typical life cycle of a Bugzilla bug. 
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users and administrators to convey the progress and 
development of the bug fix or other relevant facts. 
 As of 2011-4-18 the Redhat Bugzilla database contained 
202,896 entries. The first bug which is a test bug report was 
added to the database on 1998-11-1. Table III shows the 
distribution of bugs per year and the mean number of bugs per 
day in the Redhat Bugzilla [6] database. The number of bugs 
reported has been increasing (see Fig. 6 and 7), which might 
be due to the surprising fact that mature releases of the same 
software tend to have more bugs reported [27].  
 The main problem with such bug reports is that most of the 
parameters of the bug are set by the person who reports the 
bug, thus leading to inconsistencies within the bug database 
[23]. For example, the severity and priority of a bug may 
change according to person and environment [23]. Also it has 
been shown that Bugzilla typically uses too many severity 
levels [29]. Similarly the bug may be reported by a normal 
user, an expert, or automatically, thus, each entity will report 
the bug according to their own level of expertise and 
preference.  
 Due to these factors previous studies on bug database 
mining have focused on using the short and long descriptions 
of the bugs, as they contain the most generalized information 
about the bug [2], [3].  

B. Bug Reports associated with Linux Vulnerabilities 
 As this study investigates the possibility of using bug 
reports in order to identify software vulnerabilities, it is 
necessary to discover bug reports that are associated with 
vulnerabilities. Since some bug reports do not state the 

specific vulnerability it is associated with, the bug ID 
associated with each vulnerability in the MITRE CVE [5] 
database was used to identify these bugs. 
 The vulnerability database contained vulnerabilities for the 
Linux kernel from January 2006 to April 2011. By applying 
the rules stated in Section III.A, the number of vulnerabilities 
was reduced to 403. However, 72 vulnerabilities did not have 
associated bug reports. As mentioned above, most of the 
remaining vulnerabilities were associated with bug reports 
from the Redhat Bugzilla [6] database. Only 15 vulnerabilities 
were associated with bug reports from the Linux Kernel 
Bugzilla database [28]. Out of these 15 bugs only 5 were 
associated exclusively with bug reports from Linux Kernel 
Bugzilla database [28]. Therefore out of the original 388 
MITRE CVE listed vulnerabilities, 326 were associated with 
bugs from the Redhat Bugzilla database [6].  
 From the remaining 326 vulnerabilities, 197 were non 
hidden impact vulnerabilities while 129 were hidden impact 
vulnerabilities. 
 Although all the remaining 326 vulnerabilities had a bug ID 
associated with them, 152 of the bug IDs either did not match 
a bug ID in the Redhat Bugzilla [6] database or the bug reports 
were not accessible. Therefore, only 76 hidden impact 
vulnerabilities and 98 non-hidden impact vulnerabilities were 
matched with a bug report (see Table IV). 

V. CLASSIFICATION FOR VULNERABILITY IDENTIFICATION VIA 
BUG DATABASES 

 Bug reports in publicly available bug databases are 
extremely varied due to the fact that the bug reporting systems 
are not standardized and the expertise and requirements of the 
bug reporters vary. However, previous work on bug triaging 
and classification successfully makes use of the short and long 
descriptions of bug reports.  
 Thus, we propose a bug classification methodology that 

TABLE III. NUMBER OF REPORTED BUGS PER YEAR IN THE REDHAT 
BUGZILLA [6] DATABASE  

Year Number of bug 
reports 

Number of bugs 
per day 

From Nov.1998 336 5.5 
1999 3,788 10.4 
2000 5,846 16 
2001 7,839 21.5 
2002 9,200 25.3 
2003 8,497 23.3 
2004 11,951 32.7 
2005 12,428 34 
2006 15,283 41.9 
2007 17,263 47.3 
2008 20,916 57.3 
2009 27,052 74.1 
2010 43,301 118.6 

to April 2011 19,185 139 
Unknown 11  

Total 202.896 44.5 
 

 

 
 

Fig. 6. Number of bugs reported in the Redhat Bugzilla database [6] 

 

 
 

Fig. 7. Average number of bugs per day reported in the Redhat Bugzilla 
database [6] 

TABLE IV. LINUX KERNEL VULNERABILITIES ASSOCIATED WITH BUG 
REPORTS 

Description Number 
Number of hidden impact vulnerabilities with bug 
reports in Redhat Bugzilla 76 

Number of non-hidden impact vulnerabilities with bug 
reports in Redhat Bugzilla 98 

Number of vulnerabilities with bug reports that are not 
accessible 152 

Number of vulnerabilities with bug reports exclusively 
from Linux Kernel Bugzilla 5 

Number of vulnerabilities with no bug reports 
associated with them 72 

Total 403 
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uses the short and long descriptions of bug reports in publicly 
available bug databases, and advanced text mining techniques 
coupled with machine learning algorithms to aid discovery of 
hidden impact vulnerabilities. The proposed methodology, 
illustrated in Fig. 8, will extract the short and long descriptions 
from a reported bug and generate a feature vector via text 
mining. The text mining will involve: tokenizing, removal of 
stop-words, combining synonyms and hyponyms, stemming 
and matrix enhancing. Furthermore a static code analysis of 
the location or module the bug was reported in will add to the 
feature vector. The classifier will then classify the reported 
bug as a normal bug or a vulnerability using the feature vector. 
 The implementation of the proposed classifier was initiated 
for the Linux kernel vulnerabilities by using the Redhat 
Bugzilla bug database as the source of bug descriptions.  The 
bug reports in the database were divided into three classes: 
normal bugs (~200,000), bugs that are vulnerabilities (98), and 
bugs that are hidden impact vulnerabilities (76). The set of 
vulnerabilities considered were vulnerabilities reported from 
2006 to 2011, and the earliest bug report that was associated 
with a vulnerability was from 2004. Therefore, the set of 
normal bugs considered for the classifier contained bugs 
reported from 2004 to 2011. Thus according to Table III, the 
normal set contained 167,390 bugs.  
 This general classifier faces two main problems: first the 
large dimensionality of the feature vector and second the base-
rate fallacy problem. The following Sub-Sections illustrates 
these two problems. 

A. Generation of the feature vector 
 Because of the large number of unique words contained in 
the textual descriptions of bugs and the large number of bugs 
considered, the dimensionality of the feature vector will be 
large. Such a high dimensionality will increase the training 
time of the classifier as well as the memory and processor 
requirement. Thus, in order to reduce the dimensionality of the 
feature vector without losing the most significant information 

in the bug report, the following methodology was used to 
extract the feature vector. 
 First, the long and short descriptions of the bugs were 
extracted. Tokenization was used to extract the unique words 
in the descriptions. In the tokenization process special 
characters and numbers were removed, and capitalization and 
other text formatting was also removed from the text. Because 
of the large number of normal bugs, a random sample of 4000 
bugs were used for the extraction of unique words. Table V 
shows the number of unique words in each category of bug.  
 Second, stop words were removed from the extracted 
unique word lists. Stop words are words that are commonly 
used in the English language and do not carry any information. 
By removing stop words, the number of unique words was 
reduced without loss to the information contained in the text.  
 Third, Wordnet [30] was used to identify synonyms and 
hyponyms and combine these. Synonyms and hyponyms are 
words that carry the same information in a different form. This 
step combines words that carry similar information and further 
reduced the number of unique words. 
 Porter stemming [31] was performed as the fourth step. In 
this step words are stemmed into their most basic form. 
Similar to combining synonyms and hyponyms this step 
combined words that carry similar information, and further 
reduced the number of unique words.  
 As the final step for generating the term document matrix 
the unique words that occur in less than 10% of the records in 
each category were removed. This step removes words that are 
less generalized and reduced the number of unique words 
further. 
 The reduction of the size of the feature vector after each 
step of the text mining process can be seen in Table V. The 
resulting feature vector contains words that are most 
generalized to the bug database. Due to the small ratio 
between the number of bugs that are hidden impact 
vulnerabilities and the number of normal bugs, textual 
information from each category was extracted separately and 
finally combined to obtain the feature vector. 
 As illustrated in Table V, the initial number of unique 
words is very large, thus, making the feature vector too large. 
However, by utilizing Wordnet and Porter stemming the 
number of unique words were reduced, and after removing the 
keywords that occur in less than 10% of the bugs, the length of 
the feature vector was reduced to 633. 
 By utilizing the feature vector, the term-document matrix is 
generated. However, this matrix is extremely sparse. Thus, for 
this application, techniques such as TF-IDF for matrix 
enhancing will be used to improve the term-document matrix. 

B. The Base-Rate fallacy problem 
 In [32] Axelsson performed a base-rate fallacy test for 
intrusion detection systems (IDS) and illustrated the problems 
in classifying intrusions. Axelsson pointed out the small ratio 
between the number of intrusions and normal traffic affect the 
outcome in such a way that the user will be overwhelmed by 
the number of false positives. Since the ratio between hidden 
impact vulnerabilities and normal bugs in bug databases is 
very low (129/167,390 = 7.71 X 10-4), a similar base-rate 
fallacy evaluation was performed. However, it has to be noted 
that the number of hidden impact vulnerabilities used for this 

 
 

Fig. 8.The proposed vulnerability discovery methodology 
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calculation is a conservative estimate since 1) although all the 
bugs reported for 2004 and 2005 were included in the normal 
bug set, hidden impact vulnerabilities discovered for that time 
period were not included, and 2) the normal bug set may 
include bugs that will eventually be discovered as 
vulnerabilities in the future. 
 For the base-rate fallacy analysis, the following 
nomenclature will be used: 

YgivenXofyprobabilitYXP
XofyprobabilitXP

XnotX
nerabilityvulaasbugatectsdeclassifiertheeitectiondeD

nerabilityvulimpacthiddenV

�
�

��
�
�

)|(
)(

)..(
 

Thus, by using the above naming convention, true positive rate 
can be denoted as )|( VDP  and the false positive rate can be 
denoted as )|( VDP � .    
 For classification of vulnerabilities the Bayesian detection 
rate is the probability that a bug is a vulnerability given that 
the classifier detects the bug as a vulnerability, i.e. )|( DVP . 
In order to increase the Bayesian detection rate the number of 
false positives must be reduced. By means of Bayes' theorem 
the Bayesian detection rate can be expressed as: 

 

 )|()()|()(
)|()()|(

VDPVPVDPVP
VDPVPDVP

�����
�

�   (1) 

 
 The following probabilities are known: 

 

 
41071.7

167390
129)( ����VP   (2) 

 

 99923.01071.71)(1)( 4 ������� �VPVP   (3) 
 
 By using equations (2) and (3), equation (1) can be 
rewritten as: 

 

 )|(99923.0)|(1071.7
)|(1071.7)|( 4

4
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VDPDVP

�����
��

�
�
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 (4) 

 
The Bayesian detection rate expressed in equation (4) is 
dominated by the factor 0.99954, i.e. the high probability that 
a bug is not a vulnerability. Thus in order to achieve a 
Bayesian detection rate that is sufficient, the false positive rate 
must be low. Fig. 9 plots the false positive rate against the 
Bayesian detection rate, for different values of true positive 
rates ( )|( VDP ). Fig. 9 shows that as the false positive rate 
increases, the Bayesian detection rate decreases. 

 The Bayesian detection rate is vital when dealing with 
human users: if the Bayesian detection rate is too low, the 
users will be overwhelmed by the number of false positives 
and thus reducing the effectiveness of the classifier. It is not 
possible to guess what the sufficient level of Bayesian 
detection rate will be for the classifier. However, by using the 
upper bound in Fig. 9. it is possible to gain an understanding 
of the maximum false positive rate which is acceptable from 
the classifier. For example, if a Bayesian detection rate of 0.01 
can be tolerated by the development team, which means that 
only one out of 100 detections is an actual vulnerability, 
according to Fig. 9, a maximum false positive rate of 0.076 is 
acceptable. This means that on average for any given day in 
2011, where 139 bugs were reported per day (see Table III), 
around 11 (0.076 * 139) bugs will be falsely identified as a 
vulnerability by the classifier. Similarly, if one out of 10 
detections needs to be an actual vulnerability, which means a 
Bayesian detection rate of 0.1, to achieve this, the maximum 
acceptable false positive rate is 0.0069. This translates to 
falsely identifying around one bug per day (0.0069 * 139) for 
any given day in 2011. Thus, the lower boundary of false 
positive rate that the proposed classifier must obtain can be 
determined using Fig. 9. 

VI. CONCLUSION 
More effective vulnerability discovery and identification is 

an important factor in the software life cycle as it will reduce 
the security exposure of vital systems.  The earlier a reported 
bug is identified as a vulnerability the more effective 
developers can be in identifying which bugs have higher 
priority for patch creation (vulnerabilities have a high 
priority), and the more effective system owners can be in 
choosing which patches should be applied quickly.  

TABLE V. NUMBER OF KEYWORDS IN EACH CLASS OF THE DATASET 

Type of bug 
Total number of 

unique words after 
tokenization 

After 
removing stop 

words 

After combining 
synonyms and 

hyponyms 

After Porter 
stemming 

After removing words 
that occur in less than 

10% of bugs 
Non hidden impact 
vulnerabilities 

Short description 335 308 272 268 8 
Long description 2595 2468 1848 1794 159 

Hidden impact 
vulnerabilities 

Short description 325 297 264 260 8 
Long description 2144 2026 1564 1525 210 

Normal bugs Short description 6161 6039 4536 4349 90 
Long description 9981 9843 8067 7825 158 

Total 21541 20981 16551 16021 633 

 
 

Fig. 9. Bayesian detection rate for classifying vulnerabilities. 
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An analysis of the most significant Linux kernel 
vulnerabilities and MySQL vulnerabilities showed a 
significant number of vulnerabilities that affected the Linux 
kernel (39.4%) and the MySQL database server (62.23%) 
were hidden impact vulnerabilities and it was shown that the 
percentage of hidden impact vulnerabilities has increased in 
the last two years. Thus there is a necessity to use bug 
databases to identify hidden impact vulnerabilities in software.  

A further analysis of the Redhat Bugzilla Linux bug 
database showed the difficulties of data mining such 
databases. However an analysis of previous research into bug 
triaging and classification showed that the information 
contained in bug reports can be used for classification 
purposes. This paper also proposed a system that utilizes bug 
reports to identify hidden impact vulnerabilities. Potential 
problems faced by a development team when using the 
proposed classifier were also addressed in the paper. 

As future work the proposed system will be implemented 
for discovering vulnerabilities in the Linux kernel, MySQL 
and other third party software. The system will use advanced 
text mining techniques and machine learning algorithms to 
classify bugs and vulnerabilities. In order to further enhance 
the classification accuracy, attributes of the  source code itself 
and other aspects of the software development process will be 
incorporated into the classifier. 
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