Cloud/Aerosol Parameterizations: Application and Improvement of General Circulation Models

PDF Version Also Available for Download.

Description

One of the biggest uncertainties associated with climate models and climate forcing is the treatment of aerosols and their effects on clouds. The effect of aerosols on clouds can be divided into two components: The first indirect effect is the forcing associated with increases in droplet concentrations; the second indirect effect is the forcing associated with changes in liquid water path, cloud morphology, and cloud lifetime. Both are highly uncertain. This project applied a cloud-resolving model to understand the response of clouds under a variety of conditions to changes in aerosols. These responses are categorized according to the large-scale meteorological ... continued below

Creation Information

Penner, Joyce June 30, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

One of the biggest uncertainties associated with climate models and climate forcing is the treatment of aerosols and their effects on clouds. The effect of aerosols on clouds can be divided into two components: The first indirect effect is the forcing associated with increases in droplet concentrations; the second indirect effect is the forcing associated with changes in liquid water path, cloud morphology, and cloud lifetime. Both are highly uncertain. This project applied a cloud-resolving model to understand the response of clouds under a variety of conditions to changes in aerosols. These responses are categorized according to the large-scale meteorological conditions that lead to the response. Meteorological conditions were sampled from various fields, which, together with a global aerosol model determination of the change in aerosols from present day to pre-industrial conditions, was used to determine a first order estimate of the response of global cloud fields to changes in aerosols. The response of the clouds in the NCAR CAM3 GCM coupled to our global aerosol model were tested by examining whether the response is similar to that of the cloud resolving model and methods for improving the representation of clouds and cloud/aerosol interactions were examined.

Subjects

STI Subject Categories

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE-UM-06-3662
  • Grant Number: FG02-97ER62370
  • DOI: 10.2172/1093816 | External Link
  • Office of Scientific & Technical Information Report Number: 1093816
  • Archival Resource Key: ark:/67531/metadc843846

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 30, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • Nov. 22, 2016, 10:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Penner, Joyce. Cloud/Aerosol Parameterizations: Application and Improvement of General Circulation Models, report, June 30, 2012; United States. (digital.library.unt.edu/ark:/67531/metadc843846/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.