DESIGN AND ANALYSIS OF RTGs FOR CRAFT AND CASSINI MISSIONS

Alfred Schock, Heros Noravian, Chuen Or, and Kumar Sankaranakandath
Fairchild Space
20301 Century Blvd.
Germantown, MD 20874
(301) 428-6272

MANUSCRIPT prepared for:

Eighth Symposium
on Space Nuclear Power Systems
Albuquerque, New Mexico
7-10 January 1991

Address all correspondence to: Mr. Alfred Schock

The work summarized in this paper was supported by the U.S. Department of Energy, Office of Special Applications.
DESIGN AND ANALYSIS OF RTGs FOR CRAF AND CASSINI MISSIONS

A. Schock (Author and Principal Investigator)
H. Noravian, T. Or, V. Sankaranakkandath (Contributors)

Fairchild Space
Germantown, Maryland 20874 U.S.A.

ABSTRACT

The design and analysis of Radioisotope Thermoelectric Generators integrated with JPL's CRAF and Cassini spacecraft are described. The principal purposes of the CRAF mission are the study of asteroids and comets, and the principal purposes of the Cassini mission are the study of asteroids, Saturn, and its moons (particularly Titan). Both missions will employ the Mariner/Mark-2 spacecraft, and each will be powered by two GPHS-RTGs. JPL's spacecraft designers wish to locate the two RTGs in close proximity to each other, resulting in mutual and unsymmetrical obstruction of their heat rejection paths. To support JPL's design studies, the U.S. Department of Energy asked Fairchild to determine the effect of the RTGs' proximity on their power output. This required the development of novel analysis methods and computer codes, described in this paper for the coupled thermal and electrical analysis of obstructed RTGs with axial and circumferential temperature, voltage, and current variations. The code was validated against measured data of unobstructed RTG tests, and was used for the detailed analysis of the obstructed CRAF/Cassini RTGs. Also described is a new method for predicting the combined effect of fuel decay and thermoelectric degradation on the output of obstructed RTGs, which accounts for the effect of diminishing temperatures on degradation rates. The computed results indicate that for the 24-degree separation angle of JPL's baseline design, the mutually obstructed standard GPHS/RTGs show adequate power margins for the CRAF mission, but slightly negative margins for the Cassini mission.

Both missions will be launched by unmanned Titan-4/Centaur-G' boosters, and both are part of the Mariner/Mark-2 series of missions, which will use a new generation of cost-effective modular spacecraft that can easily be modified to accomplish a variety of missions to comets and asteroids and to the outer solar system.

Because of their great distance from the sun, both missions will be powered by RTGs (Radioisotope Thermoelectric Generators). Since the planned schedules do not allow sufficient time for development and flight qualification of new RTG designs, both missions will use generators that are essentially identical to the GPHS-RTGs flown on the recently launched Galileo mission. Two such RTGs will be used for each mission. Their construction will be under the direction of the U.S. Department of Energy's Office of Special Applications (DOE/OSA), which commissioned Fairchild Space Company to conduct RTG studies in support of JPL's design efforts.

The location and orientation of the two RTGs on the spacecraft are functions of numerous, often conflicting, design constraints. The CRAF/Cassini baseline design that JPL asked Fairchild to study is depicted in Figure 1.

Figure 1. CRAF/CASSINI Spacecraft, Baseline Design

INTRODUCTION

The Jet Propulsion Laboratory (JPL) is in the process of designing spacecraft for NASA's upcoming CRAF and Cassini missions [1]. The CRAF (Comet Rendezvous and Asteroid Flyby) spacecraft, which is scheduled for a 1995 launch, will fly by at least one asteroid, orbit a comet, and launch an Instrumented penetrator/lander into the comet's nucleus. The Cassini spacecraft, scheduled for a 1996 launch, will also fly by at least one asteroid, fly by Jupiter, orbit the planet Saturn, repeatedly fly by a number of Saturn's moons, and send an instrumented probe, called the Huygens probe, into the atmosphere of Saturn's moon Titan.
Figure 1 shows the two RTGs cantilevered from the cylindrical spacecraft like radial spokes, with a separation angle of 24 degrees between them. Such proximity leads to mutual obstruction of the two RTGs' heat rejection paths. This obstruction can result in significant axial and circumferential variation of each RTG's cold-junction temperatures and its couples' electrical performance.

To assess the effect of mutual obstructions on the RTGs' output power, Fairchild personnel were asked to analyze the baseline configuration shown in Figure 1, as well as some alternative configurations. Because of the unconventional problem, this required the development of novel analysis methods and computer codes, which are described in this paper. The analytical results reported here will serve as a guide for JPL's spacecraft design decisions.

RTG DESIGN DESCRIPTION

Figure 2 shows a cutaway view of the GPHS-RTG's that will be used on the CRAF and Cassini missions. Each 1.15 m-long RTG contains an axial stack of 18 General Purpose Heat Source modules [5], which radiate their heat to a surrounding cylindrical array of 576 thermoelectric unicouples arranged in 36 layers of 16 couples.

As shown in Figure 3, each unicouple contains a thermoelectric n- and p-leg. These are electrically connected at their hot ends by a hot-shoe, which serves to collect the heat radiated by the centrally located heat source stack and concentrate it at the thermoelectric legs. The cold end of each leg is series- and parallel-connected to adjoining couples to form the RTG's electrical network. The couples' cold ends are bolted to the RTG housing, to which they reject their waste heat. The RTG's waste heat is dissipated by radiation from its housing and its eight equispaced radiator fins, as shown in Figure 2.

The series-parallel network of the GPHS-RTG is shown in Figure 4, which depicts a rolled-out schematic of the cylindrical array. The electrical network consists of two parallel branches. Each branch contains 144 series-connected groups of two parallel couples. The rather tortuous current path shown is designed to minimize the RTG's self-induced magnetic field.
ANALYSIS

The close proximity of the two RTGs on the CRAFT/Cassini spacecraft, as illustrated by the baseline design shown in Figure 1, can result in significant mutual blockage of their heat rejection paths. Such blockage would result in circumferential variation of the RTG's housing and cold-junction temperatures. Determining the effect of that temperature variation on the RTGs' power output requires a very detailed and careful analysis, because we are looking for relatively small differences between large numbers, and because even small differences can be quite significant if the mission is power-constrained (as are the CRAFT and Cassini missions).

Previous RTG analyses usually made the simplifying assumption that all of the thermoelectric couples in a generator's series-parallel network operate at the same hot- and cold-junction temperatures and at the same current and voltage. For unobstructed RTGs, such a simplified analysis is a useful initial design tool, since it permits closed-form solutions for the optimum area ratio A_n/A_p of the thermoelectric n- and p-legs and for the optimum output voltage. For these optimized parameters, it yields simple expressions for the maximum material efficiency of the thermoelectric couples, and for the required RTG design parameters [6, 7, 8].

But the above simplifying assumptions can introduce significant errors even for unobstructed RTGs, because all RTGs have appreciable axial temperature variations due to unavoidable end losses by radiation and by conduction through the heat source support structure. A more exact analysis, which accounted for the axial temperature variations in a Martian RTG, was reported last year [7, 9]. But that analysis still assumed that the RTG has an axisymmetric view of space and the Martian ground, and therefore no circumferential temperature variation.

The present paper develops a Fairchild-generated methodology and generalized computer code for analyzing the performance of arbitrarily obstructed RTGs with both axial and circumferential temperature, voltage, and current variations, and applies that methodology to the specific example of the CRAFT/Cassini baseline design depicted in Figure 1.

COUPLED THERMAL AND ELECTRICAL ANALYSIS

Figure 5 presents the energy balance for a thermoelectric unicouple of leg length L, leg areas A_n and A_p, operating between cold- and hot-junction temperatures T_1 and T_2. It gives the couple's thermal conductance K, electric resistance R, and open-circuit voltage V in terms of the temperature-averaged thermal conductivity k, electrical resistivity \(\rho \), and Seebeck coefficient S of the thermoelectric n- and p-materials. As shown, the heat input rate \(Q_h \) at the couple's hot end and the heat rejection rate \(Q_c \) at its cold end each consists of four terms: normal heat conduction, Peltier effect, Ohmic dissipation, and Thomson effect. As can be seen, three of those four terms are current-dependent. Therefore, the thermal and electrical analyses cannot be performed separately, but must be conducted simultaneously and interactively.

![Figure 5. Unicouple Energy Balance](image)

- Open-Circuit Voltage: \(V_o = \int (S_n + S_p) \Delta T \)
- Couple Conductance: \(K = \frac{1}{L} \frac{A_n + A_p}{A_n} \)
- Couple Resistance: \(R = \frac{1}{L} \frac{A_n + A_p}{A_n} \)

To analyze an RTG of a given design with an unsymmetrically obstructed heat rejection path, a detailed three-dimensional thermal model of the RTG and its environment must be constructed. The hot junction and cold junction of each thermoelectric element in the RTG are represented as discrete nodes. The model cannot be analyzed by means of a standard thermal analysis code, because the connectors between the couple's hot and cold junctions are not simple thermal conductors but include the current-dependent Peltier, Ohmic, and Thomson effects. The rate at which heat enters the connector's hot-end and leaves its cold-end are not equal, since part of the heat entering each couple is converted to electrical energy. That part must in effect be represented as a heat sink for each couple.

The electrical analysis is further complicated by the constraint that each RTG's thermoelectric couples are in general interconnected in a complex series-parallel network, and that all couples grouped in parallel must operate at the same output voltage, and that all couple groups in series must produce the same current.

The RTG analysis methodology developed by Fairchild is generic, not just for the GPHS-RTG network shown in Figure 4. In general, the equivalent
circuit of an RTG network consists of B parallel branches, with each branch containing G series-connected groups of C parallel couples. Each thermoelectric element in the RTG is designated by a branch number b, group number g, and couple number c, where:

1 \leq b \leq B,
1 \leq g \leq G,
1 \leq c \leq C.

For the case of the GPHS-RTG, B=2, G=144, C=2, and the equivalent circuit of the generator is shown in Figure 6.

Figure 6. Equivalent Circuit of GPHS RTG

ELECTRICAL ANALYSIS

For each couple in the RTG, the difference between its open-circuit voltage \(V_o(b,g,c) \) and its internal voltage drop \(l(b,g,c) \) \(R(b,g,c) \) equals its output voltage \(V(b,g,c) \). Since the couples in each group b,g are connected in parallel, their output voltage must equal the group voltage \(V(b,g) \).

\[
V_d(b,g,c) - l(b,g,c) \cdot R(b,g,c) = V(b,g,c) = V(b,g)
\]

Therefore, the current through couple b,g,c is:

\[
l(b,g,c) = \frac{V(b,g,c)}{R(b,g,c)}
\]

The sum of each group’s C couple currents equals the group current \(I(b,g) \). Since all groups in each branch b are connected in series, this must equal the branch current \(I(b) \):

\[
\sum_{c=1}^{C} \left(\frac{V_d(b,g,c)}{R(b,g,c)} \right) - V(b,g) \cdot \sum_{c=1}^{C} \left(\frac{1}{R(b,g,c)} \right) = I(b) = I(b)
\]

Therefore, the voltage produced by group b,g, is:

\[
V(b,g) = \left(\sum_{c=1}^{C} \left(\frac{V_d(b,g,c)}{R(b,g,c)} \right) - V(b,g) \right) \cdot \sum_{c=1}^{C} \left(\frac{1}{R(b,g,c)} \right)
\]

The sum of the G group voltages in each branch equals the branch voltage \(V(b) \). Since the B branches are connected in parallel, this also equals the RTG’s output voltage \(V_{RTG} \):

\[
\sum_{b=1}^{B} \left(\sum_{g=1}^{G} \left(\sum_{c=1}^{C} \left(\frac{V_d(b,g,c)}{R(b,g,c)} \right) \right) \right) - l(b) \cdot \sum_{g=1}^{G} \left(\sum_{c=1}^{C} \left(\frac{1}{R(b,g,c)} \right) \right) = V(b) = V_{RTG}
\]

Solving for the branch current \(I(b) \) for each branch and summing the currents for the B parallel branches gives the RTG output current:

\[
I_{RTG} = \sum_{b=1}^{B} \left[\left(\sum_{g=1}^{G} \left(\sum_{c=1}^{C} \left(\frac{V_d(b,g,c)}{R(b,g,c)} \right) \right) \right) \right] - V_{RTG} \cdot \sum_{g=1}^{G} \left(\sum_{c=1}^{C} \left(\frac{1}{R(b,g,c)} \right) \right)
\]

The above equation represents the current-voltage characteristic of the RTG network. It can be expressed in the condensed form

\[
I_{RTG} = I_{SC} - V_{RTG}/R_{RTG}
\]

where \(I_{SC} \) is the RTG’s short-circuit current, defined by

\[
I_{SC} = \sum_{b=1}^{B} \left(\sum_{g=1}^{G} \left(\sum_{c=1}^{C} \left(\frac{V_d(b,g,c)}{R(b,g,c)} \right) \right) \right) \cdot \sum_{g=1}^{G} \left(\sum_{c=1}^{C} \left(\frac{1}{R(b,g,c)} \right) \right),
\]

and \(R_{RTG} \) is the RTG’s internal resistance, defined by

\[
R_{RTG} = 1/ \sum_{b=1}^{B} \left(1/ \sum_{g=1}^{G} \left(1/ \sum_{c=1}^{C} \left(1/R(b,g,c) \right) \right) \right).
\]
ITERATIVE COMPUTATIONS

For each iteration in the analysis, the code uses each couple's cold- and hot-junction temperatures T_1 and T_2 (from the preceding iteration) to compute its temperature-averaged properties \bar{K} and $\bar{\rho}$, open-circuit voltage V_0, thermal conductance K and electrical resistance R:

$$
\bar{k}_d(b, g, c) = \int_{T_{1(b, g, c)}}^{T_{2(b, g, c)}} \frac{k_d(T)}{T_2(b, g, c) - T_1(b, g, c)} dT
$$

$$
\bar{k}_p(b, g, c) = \int_{T_{1(b, g, c)}}^{T_{2(b, g, c)}} \frac{k_p(T)}{T_2(b, g, c) - T_1(b, g, c)} dT
$$

$$
\bar{\rho}_d(b, g, c) = \int_{T_{1(b, g, c)}}^{T_{2(b, g, c)}} \frac{\rho_d(T) k_d(T)}{\bar{k}_d(b, g, c)} \left[T_2(b, g, c) - T_1(b, g, c) \right] dT
$$

$$
\bar{\rho}_p(b, g, c) = \int_{T_{1(b, g, c)}}^{T_{2(b, g, c)}} \frac{\rho_p(T) k_p(T)}{\bar{k}_p(b, g, c)} \left[T_2(b, g, c) - T_1(b, g, c) \right] dT
$$

$$
V_0(b, g, c) = \left[\frac{1}{T_2(b, g, c) - T_1(b, g, c)} \left[S_d(T) + S_p(T) \right] dT \right] / L
$$

$$
K(b, g, c) = \left[\bar{k}_d(b, g, c) A_n + \bar{k}_p(b, g, c) A_p \right] / L
$$

$$
R(b, g, c) = \left[\bar{\rho}_d(b, g, c) / A_n + \bar{\rho}_p(b, g, c) / A_p \right] L
$$

Using these values of V_0, K, and R for each couple and the prescribed RTG voltage V_{RTG}, the code computes the branch current $I(b)$ for each of the B branches,

$$
I(b) = \left[\sum_{g=1}^{G} \left\{ \sum_{c=1}^{C} \left[V_d(b, g, c) / R(b, g, c) \right] / \sum_{c=1}^{C} \left[1 / R(b, g, c) \right] \right\} - V_{RTG} \right] / \sum_{g=1}^{G} \left\{ \sum_{c=1}^{C} \left[1 / R(b, g, c) \right] \right\} ,
$$

the group voltage $V(b, g)$ for each of the G groups in each branch,

$$
V(b, g) = \left\{ \sum_{c=1}^{C} \left[V_d(b, g, c) / R(b, g, c) \right] / \sum_{c=1}^{C} \left[1 / R(b, g, c) \right] \right\} - I(b) / \sum_{g=1}^{G} \left\{ \sum_{c=1}^{C} \left[1 / R(b, g, c) \right] \right\} ,
$$

and the couple current $I(b, g, c)$ for each couple in the RTG,

$$
I(b, g, c) = \left[V_d(b, g, c) - V(b, g) \right] / R(b, g, c) .
$$

The individual couple currents are then used to compute the hot-end heat input rate $Q_H(b, g, c)$ and the cold-end heat rejection rate $Q_C(b, g, c)$ for each couple:

$$
Q_H(b, g, c) = K(b, g, c) \left[T_2(b, g, c) - T_1(b, g, c) \right] - I^2(b, g, c) R(b, g, c) / 2
+ I(b, g, c) \left[S_d(b, g, c) T_2(b, g, c) + S_p(b, g, c) T_1(b, g, c) + V_d(b, g, c) \right] / 2 ,
$$

$$
Q_C(b, g, c) = K(b, g, c) \left[T_2(b, g, c) - T_1(b, g, c) \right] + I^2(b, g, c) R(b, g, c) / 2
+ I(b, g, c) \left[S_d(b, g, c) T_2(b, g, c) + S_p(b, g, c) T_1(b, g, c) - V_d(b, g, c) \right] / 2 ,
$$

where S_d and S_p denote the Seebeck coefficients at the cold- and hot-junction of the couple.

The code inserts these heat flow rates for each couple in the RTG into the detailed thermal analysis model for the next iteration; and repeats the procedure until convergence is achieved.
CODE VALIDATION

The code was first tested in the analyses of an unobstructed generator, with axial temperature variation but no circumferential variation. It was validated by using it to analyze the performance of the electrically heated thermoelectric generator (ETG) that had been employed as the engineering test unit [10], a prototype of the GPHS-RTGs used for the Galileo mission. The reason for using the ETG instead of the RTG as a validation check for the code is that the ETG test measurements include the thermocouples' hot-shoe temperatures, but - because of practical difficulties - the RTG measurements do not.

The analysis of the ETG's performance was based on thermoelectric properties of SiGe aged for one year to account for pre-test outgassing and processing. The temperature-dependent values of resistivity, conductivity, and Seebeck coefficient of the n- and p-material used in the analysis are summarized in Table 1.

<table>
<thead>
<tr>
<th>Temp °C</th>
<th>Seebeck μV/K</th>
<th>Resistivity Ω·m</th>
<th>Conductivity W/m·K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90</td>
<td>0.79</td>
<td>51.4</td>
</tr>
<tr>
<td>50</td>
<td>113</td>
<td>0.87</td>
<td>55.0</td>
</tr>
<tr>
<td>100</td>
<td>135</td>
<td>0.91</td>
<td>60.2</td>
</tr>
<tr>
<td>150</td>
<td>153</td>
<td>1.04</td>
<td>64.8</td>
</tr>
<tr>
<td>200</td>
<td>166</td>
<td>1.13</td>
<td>68.8</td>
</tr>
<tr>
<td>250</td>
<td>185</td>
<td>1.28</td>
<td>72.9</td>
</tr>
<tr>
<td>300</td>
<td>215</td>
<td>1.32</td>
<td>76.5</td>
</tr>
<tr>
<td>350</td>
<td>265</td>
<td>1.77</td>
<td>83.9</td>
</tr>
<tr>
<td>400</td>
<td>304</td>
<td>2.13</td>
<td>91.0</td>
</tr>
<tr>
<td>450</td>
<td>344</td>
<td>2.45</td>
<td>98.9</td>
</tr>
<tr>
<td>500</td>
<td>374</td>
<td>2.77</td>
<td>102.0</td>
</tr>
<tr>
<td>550</td>
<td>405</td>
<td>3.09</td>
<td>105.0</td>
</tr>
<tr>
<td>600</td>
<td>435</td>
<td>3.41</td>
<td>108.0</td>
</tr>
<tr>
<td>650</td>
<td>465</td>
<td>3.73</td>
<td>111.0</td>
</tr>
<tr>
<td>700</td>
<td>495</td>
<td>4.05</td>
<td>114.0</td>
</tr>
<tr>
<td>750</td>
<td>525</td>
<td>4.37</td>
<td>117.0</td>
</tr>
<tr>
<td>800</td>
<td>555</td>
<td>4.69</td>
<td>120.0</td>
</tr>
<tr>
<td>850</td>
<td>585</td>
<td>5.01</td>
<td>123.0</td>
</tr>
<tr>
<td>900</td>
<td>615</td>
<td>5.33</td>
<td>126.0</td>
</tr>
<tr>
<td>950</td>
<td>645</td>
<td>5.65</td>
<td>129.0</td>
</tr>
<tr>
<td>1000</td>
<td>675</td>
<td>5.97</td>
<td>132.0</td>
</tr>
<tr>
<td>1050</td>
<td>705</td>
<td>6.29</td>
<td>135.0</td>
</tr>
<tr>
<td>1100</td>
<td>735</td>
<td>6.61</td>
<td>138.0</td>
</tr>
</tbody>
</table>

The analytical results were compared with the ETG test measurements. For the same RTG thermal power and the same average cold-junction temperature, the experimental measurements and the analytical results produced by the code were in very good agreement. The average hot-junction temperatures agreed within 5°C (986 versus 981), and the electrical power outputs agreed within 1 watt (296 versus 297).

As a further check on the validity of the analytical model, it was used to compute the BOM performance of one of the Galileo flight RTGs (F4). For the same thermal power, it yielded an electrical output of 285.6 watts, compared to the measured output power of 287.7 watts in Earth orbit. This agreement is better than the estimated 1.2% telemetry error.

The good agreement between the analytical and experimental results for both the ETG and the RTG lends confidence to our use of the same model and assumptions for subsequent analyses of the initial RTG output at various thermal powers and external environments.

ANALYSIS OF OBLICTURED CRAF/CASSINI RTGs

The application of the code to the analysis of the obstructed CRAF/Cassini RTGs started with the construction of a 1912-node radiation-interchange analysis model. The model represented the housing and fins of the GPHS-RTG pictured in Figure 2 and the spacecraft shown in Figure 1. The ITAS (Integrated Thermal Analysis System) code [11], which accounts for the effect of mutual reflections, was used to compute over 102,000 radiation interchange factors between all surface nodes that are within each other's view. The computed radiation interchange factors were then inserted into a detailed thermal and electrical analysis model consisting of ~2600 node points.

The coupled thermal and electrical analysis was carried out by means of the previously discussed computer code. The code was based on the SINDA thermal analysis program [12], modified by us to incorporate the current-dependent Palier, Ohmic, and Thomson effects on thermocouple conductance and to represent the electrical power generation in each couple as an effective heat sink. In each iteration, the modified code computed each couple's heat input rate and heat rejection rate and inserted them into the thermal analysis for the next iteration. After the solution had homed in to prescribed convergence criteria, it was used to calculate the RTG's electrical output and efficiency.

To illustrate typical results, the converged BOM solution for the baseline configuration and a thermal power of 245 watts from each of the 18 heat source modules is summarized in Tables 2 through 5. The tables display the results for the flattened-out cylindrical array of 576 thermocouples in the RTG.
Table 2 shows the axial and circumferential variation of the RTG's cold-junction temperatures. As can be seen, these vary from 276°C for the least obstructed couple to 302°C for the most obstructed couple. The last column and last line of the table show the variation of the averaged cold-junction temperatures in the axial and circumferential directions, respectively. As shown, the average temperature is lowest near the ends of the RTG, and highest near the RTG's midplane. Circumferentially, the average temperature is lowest in Column 6, the outward-facing side of the RTG, and highest in Column 14, the RTG side facing the neighboring RTG.

Table 3 similarly shows the axial and circumferential variations of the baseline RTG's hot-junction temperatures. As can be seen, the couples' average hot-junction temperatures vary by 35°C in the axial direction, and show almost no variation in the circumferential direction. Thus, the obstruction by the neighboring RTG and by the spacecraft affects only the cold-junction temperatures, and produces only a negligible circumferential variation of the hot-junction temperatures. In addition to the hot-junction temperatures, the table shows the axial variation of the heat source surface temperatures. As shown by the table's left column, these vary from 1008°C at the upper outboard end of the heat source stack to 1042°C near the middle of the stack.

The consequent variation in the thermocouples' temperature-spans affects their electrical performance. The axial and circumferential variations of the couple voltages is displayed in Table 4, and those of the couple currents in Table 5. The sixteen columns in these tables represent eight column pairs of parallel couples. Table 4 shows that all parallel couples have the same output voltage, ranging from 0.197 volt to 0.215 volt, and Table 5 shows that all couple pairs in each branch have the same combined output current, as demanded by the RTG's series-parallel network.

As can be seen, the network's two branches have respective output currents 5.14 and 5.16 amp, for a total output of 10.30 amps per RTG. The 144 series-connected couple groups in each branch produce 30.0 volts. Subtracting 0.34 volts for ohmic losses in the RTG's series leads leaves a net output of 29.66 volts and 306 watts per RTG. The average material efficiency of the couples is 7.90%; the average couple efficiency (including the effect of contact resistances and electrode losses) is 7.55%; and the net system efficiency (including the effect of heat losses through the thermal insulation and through the heat source support structure) is 7.01%.

The 7-watt performance penalty at a 24-degree separation does not seem large. But both missions are severely power-constrained, and the JPL designers are reluctant to give up 14 watts from the two RTGs. Design modifications for reducing or even eliminating that performance penalty are possible and should be investigated.
Equally detailed coupled thermal and electrical analyses were performed for thermal power levels ranging from 225 to 250 watts per heat source module, for both obstructed and unobstructed RTGs. The unobstructed units had axial temperature variations but no circumferential variation. The principal results for the mutually obstructed RTGs in the CRAF/Cassini baseline configuration (Figure 1) and the comparative results for an unobstructed RTG are displayed in Figures 7, 8, and 9.

Figures 7 and 8 respectively show the effect of the thermal power \(Q \) per heat source module on the RTG power output and on the average hot-junction temperature. As can be seen, both relationships are essentially linear, and the figures present least-square curve fits for the respective curves. These curve fits are useful design tools, and will be used in predicting the effect of fuel decay on RTG power and temperature.

Figure 7. Effect of Thermal Power on BOM Electrical Power

The two figures show that, for a given thermal power, the obstruction by the neighboring RTG has very little effect on the RTG's power output, but has a significant effect on its hot-junction temperature, which affects the degradation rate. Figure 9 presents cross-plots showing the relationship between maximum hot-junction temperatures and BOM power outputs for unobstructed RTGs and for mutually obstructed RTGs with a 24-degree separation angle.

The performance of the obstructed and unobstructed RTGs should be compared for the same maximum hot-junction temperature, since that is what limits the RTG's degradation rate and lifetime. Previous SiGe flight units (LES 8/9, Voyager, Galileo) were designed for a maximum hot-junction temperature of 1000°C. For that temperature, Figure 9 shows that the CRAF/Cassini RTG's power output is reduced by 7.0 watts (2.5%) for the 24-degree separation angle of the baseline configuration. Similar analyses showed a reduction of 13 watts (4.3%) for a 16-degree separation angle. This demonstrates the sensitivity of power output to separation angle.
LONG-TERM PERFORMANCE DEGRADATION

In addition to BOM power, the system designer is of course interested in the RTGs' EOM power. The principal factors that diminish an RTG's power output with time are fuel decay and thermoelectric degradation. The thermal power \(Q\) at mission time \(t\) is given by

\[
\frac{Q}{Q_i} = 0.5^{\frac{t}{T_{\text{RTG}}}},
\]

where \(Q_i\) is the thermal power at the beginning of the mission and \(t\) is the isotope's half-life (87 years). The corresponding undegraded electrical power \(P_{\text{U}}\) is given by

\[
P_u = a_p + b_p \frac{Q}{Q_i} (0.5)^{\frac{t}{T_{\text{RTG}}}},
\]

where \(a_p\) and \(b_p\) are curve-fit coefficients obtained from Figure 7.

Predicting the thermoelectric performance degradation with time is generally a complex problem, since many different degradation mechanisms are at play. A detailed method for making such predictions is the DEGRA code developed by V. Raag in the early 70's [13], but that code does not account for the detailed effects of mutual obstruction between neighboring RTGs. In the same time period, A. Mowery [14] performed statistical analyses of test results which showed that the degradation of electrically heated thermoelectric converters employing SiGe unicouples at constant temperature can be quite accurately predicted by the simple empirical equation

\[
P/P_1 = 1 - a(T),
\]

where \(a\) is a proportionality factor whose dependence on the hot junction's absolute temperature \(T\) is given by the Arrhenius function

\[
a = a_u \exp(-b_u / T),
\]

where \(a_u = 6973 \text{ yr}^{-1/2}\) and \(b_u = 15,480^\circ\text{K}\).

These empirical expressions were found to give excellent agreement with the experimental data from the electrically heated tests at various constant thermal powers and temperatures. However, Mowery's equations cannot be directly applied to predict the performance degradation of RTGs because an RTG operates at a given fuel loading at a diminishing thermal power and temperature, and therefore at diminishing degradation rates. What is needed is an equation that corrects for the diminishing value of \(a\) as the temperature decreases with time. To account for that effect, the present author developed the following simple modification of Mowery's original equation:

\[
P/P_1 = 1 - \left(\int_0^t a^2 dt \right)^{1/2}.
\]

This modification appears quite plausible, but its validity must be confirmed by comparing its results to long-term tests with variable \(Q\) and \(T\). (Note that for the special case of constant \(T\) and therefore constant \(a\), the modified equation reduces to Mowery's validated equation.)

To apply the above equations, we require an expression for hot-junction temperature \(T\) as a function of mission time \(t\):

\[
T = a_T + b_T Q_i (0.5)^{\frac{t}{T_{\text{RTG}}}},
\]

where \(a_T\) and \(b_T\) are the curve-fit coefficients obtained from Figure 8, but with \(a_T\) adjusted to express \(T\) in Kelvin.

The above equations can be combined to yield an expression giving the combined effect of fuel decay and thermoelectric degradation on the RTG's output power \(P\) as a function of mission time:

\[
P = (a_p + b_p Q_i (0.5)^{\frac{t}{T_{\text{RTG}}}}) \left\{ 1 - a_0 \left[\int_0^t \exp\left(-\frac{2b_u}{a_T + b_T Q_i (0.5)^{\frac{t}{T_{\text{RTG}}}}} \right) \right]^{1/2} \right\}
\]

VALIDATION OF DEGRADATION MODEL

The above equations were applied to the Q-1 RTG, which was the qualification unit for the GPHS-RTGs used on the Galileo mission. The computed results are shown in Figure 10. The curve labeled \(Q/1\) shows the thermal power decay, and the curve labeled \(P/1\) shows the resultant decrease in average hot-junction temperature. The curve labeled \(P_1/P_1\) shows the power loss due to fuel decay for undegraded thermoelectric performance, and the curve labeled \(P/P_1\) shows the power loss due to thermoelectric degradation. The combined effect of fuel decay and thermoelectric degradation is shown by the curve labeled \(P/P_1\). As can be seen, the combined effect is predicted to result in a 23.6% power loss in 12 years.
Figure 11 shows a comparison of these predictions with the measured results of a five-year test of the Q-1 RTG. As can be seen, for the range of times and temperatures tested, the rather simple prediction model used showed surprisingly good agreement with the experimental results.

Finally, the analytical methodology described above was used to predict the long-term power degradation of the spacecraft-integrated CRAF and Cassini RTGs, positioned as depicted in the baseline design of Figure 1. The analytical results are shown in Figure 12. For various initial thermal power levels, the figure shows the variation of RTG power and average hot-junction temperature with time. Thus, the figure can be employed as a useful design tool by the CRAF and Cassini mission planners.

Figure 12 shows that increasing the BOM thermal power (by increasing the fuel loading) leads to a substantial increase of the RTG's electrical power at the beginning of mission, but that this benefit diminishes towards the end of mission, particularly for long mission times. This comes about because higher thermal powers result in higher temperatures and therefore higher degradation rates. In fact, at unrealistically high hot-junction temperatures (>1100°C) increasing the thermal power can actually decrease the EOM electrical power.

Figure 12 can be used directly to predict the power history of the two RTGs for the Cassini mission, since those will both be new units. However, for the CRAF mission only one RTG will be new, and the other will be a left-over spare unit from the Galileo program. The fuel of that unit was encapsulated in 1982, and will have decayed for 13 years by the time the CRAF spacecraft's scheduled launch in 1995. As a result, by the beginning of the mission its thermal power will have dropped from 252 watts to 227 watts per heat source module.

RESULTS AND CONCLUSIONS

If JPL were ready to issue power requirement profiles for the CRAF and Cassini missions, these could be superimposed on Figure 12 to identify what BOM thermal power the new RTGs must have to
satisfy those missions. JPL has not yet issued such requirement profiles, but they have specified specific power requirements at two critical times in each of the two missions [15]. These are shown at the top of Table 6. We can therefore use Figure 12 to determine whether the maximum available fuel loadings are sufficient to satisfy the power requirements at those four points in the missions. This determination is summarized in the rest of the table.

Table 6. Power Margins in CRAFT/CASSINI RTGs

<table>
<thead>
<tr>
<th>Event</th>
<th>CRAFT</th>
<th>CASSINI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years After Launch</td>
<td>5.01</td>
<td>7.61</td>
</tr>
<tr>
<td>Mission Power Requirement (watts)</td>
<td>456</td>
<td>432</td>
</tr>
<tr>
<td>RTG #</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Age of Fuel at Launch (years)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Thermal Power per H.S. Module (watts)</td>
<td>305</td>
<td>305</td>
</tr>
<tr>
<td>At Fuel Encapsulation</td>
<td>252</td>
<td>252</td>
</tr>
<tr>
<td>At Launch (BOM)</td>
<td>227</td>
<td>227</td>
</tr>
<tr>
<td>Hot-Junction Temperature (°C)</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>At Launch</td>
<td>673</td>
<td>626</td>
</tr>
<tr>
<td>At Event</td>
<td>327</td>
<td>325</td>
</tr>
<tr>
<td>Electrical Power (watts)</td>
<td>502</td>
<td>479</td>
</tr>
<tr>
<td>Total at Event</td>
<td>516</td>
<td>482</td>
</tr>
<tr>
<td>Power Margin</td>
<td>44</td>
<td>47</td>
</tr>
</tbody>
</table>

The General Purpose Heat Source modules [5] have a nominal thermal power of 250 watts at the time of fuel encapsulation. Specifically, their power is a function of achievable fuel density and enrichment. In fact, a typical Galileo flight generator (F1) had an actual beginning-of-life thermal power of 252 watts per heat source module. Assuming a three-year interval between fuel encapsulation and launch, this would yield a BOM thermal power of 254 watts per module for the three new RTGs. The resultant hot-junction temperatures and power outputs of each RTG at launch and at the time of the four JPL-specified events were obtained from Figure 12 and are listed in Table 6. For each event, the predicted power output of the two RTGs is summed, and compared to JPL's specified power requirement to determine the available power margin.

As shown in Table 6, at the 24-degree separation angle of JPL's baseline design, the mutually obstructed standard GPHS/RTGs (with the same fuel loading as was used in the Galileo mission) show adequate power margins for the CRAFT mission, but slightly negative margins for the Cassini mission. These Cassini power margins could be raised to acceptable levels by modifying either the payload power demand, or the RTG location on the spacecraft, or the RTG design (if the program schedule permits).

Acknowledgement

The author is pleased to acknowledge the support and encouragement of the Department of Energy's Office of Special Application (J. Turi, Director) and the problem definition furnished by JPL's CRAFT/Cassini Project Team.

REFERENCES
