Recent Progress on Design Studies of High-Luminosity Ring-Ring Electron-Ion Collider at CEBAF

PDF Version Also Available for Download.

Description

The conceptual design of a ring-ring electron-ion collider based on CEBAF has been continuously optimized to cover a wide center-of-mass energy region and to achieve high luminosity and polarization to support next generation nuclear science programs. Here, we summarize the recent design improvements and R&D progress on interaction region optics with chromatic aberration compensation, matching and tracking of electron polarization in the Figure-8 ring, beam-beam simulations and ion beam cooling studies.

Creation Information

Zhang, Y.; Bruell, A.; Chevtsov, P.; Derbenev, Y. S.; Ent, R.; Krafft, G. A. et al. May 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The conceptual design of a ring-ring electron-ion collider based on CEBAF has been continuously optimized to cover a wide center-of-mass energy region and to achieve high luminosity and polarization to support next generation nuclear science programs. Here, we summarize the recent design improvements and R&D progress on interaction region optics with chromatic aberration compensation, matching and tracking of electron polarization in the Figure-8 ring, beam-beam simulations and ion beam cooling studies.

Source

  • PAC09, 4-8 May 2009, Vancouver, BC, Canada

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-ACP-09-1085
  • Report No.: DOE/OR/23177-1701
  • Grant Number: AC05-06OR23177
  • Office of Scientific & Technical Information Report Number: 1021863
  • Archival Resource Key: ark:/67531/metadc843607

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2009

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 3, 2016, 6:42 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Zhang, Y.; Bruell, A.; Chevtsov, P.; Derbenev, Y. S.; Ent, R.; Krafft, G. A. et al. Recent Progress on Design Studies of High-Luminosity Ring-Ring Electron-Ion Collider at CEBAF, article, May 1, 2009; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc843607/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.