SDI CFD MODELING ANALYSIS

PDF Version Also Available for Download.

Description

The Savannah River Remediation (SRR) Organization requested that Savannah River National Laboratory (SRNL) develop a Computational Fluid Dynamics (CFD) method to mix and blend the miscible contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank; such as, Tank 50H, to the Salt Waste Processing Facility (SWPF) feed tank. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The transient CFD governing equations consisting of three momentum ... continued below

Creation Information

Lee, S. May 5, 2011.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Savannah River Remediation (SRR) Organization requested that Savannah River National Laboratory (SRNL) develop a Computational Fluid Dynamics (CFD) method to mix and blend the miscible contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank; such as, Tank 50H, to the Salt Waste Processing Facility (SWPF) feed tank. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The transient CFD governing equations consisting of three momentum equations, one mass balance, two turbulence transport equations for kinetic energy and dissipation rate, and one species transport were solved by an iterative technique until the species concentrations of tank fluid were in equilibrium. The steady-state flow solutions for the entire tank fluid were used for flow pattern analysis, for velocity scaling analysis, and the initial conditions for transient blending calculations. A series of the modeling calculations were performed to estimate the blending times for various jet flow conditions, and to investigate the impact of the cooling coils on the blending time of the tank contents. The modeling results were benchmarked against the pilot scale test results. All of the flow and mixing models were performed with the nozzles installed at the mid-elevation, and parallel to the tank wall. From the CFD modeling calculations, the main results are summarized as follows: (1) The benchmark analyses for the CFD flow velocity and blending models demonstrate their consistency with Engineering Development Laboratory (EDL) and literature test results in terms of local velocity measurements and experimental observations. Thus, an application of the established criterion to SRS full scale tank will provide a better, physically-based estimate of the required mixing time, and elevation of transfer pump for minimum sludge disturbance. (2) An empirical equation for a tank with no cooling coils agrees reasonably with the current modeling results for the dual jet. (3) From the sensitivity study of the cooling coils, it was found that the tank mixing time for the coiled tank was about two times longer than that of the tank fluid with no coils under the 1/10th scale, while the coiled tank required only 50% longer than the one without coils under the full scale Tank 50H. In addition, the time difference is reduced when the pumping U{sub o}d{sub o} value is increased for a given tank. (4) The blending time for T-shape dual jet pump is about 20% longer than that of 15{sup o} upward V-shape pump under the 1/10th pilot-scale tank, while the time difference between the two pumps is about 12% for the full-scale Tank 50H. These results are consistent with the literature information. (5) A transfer pump with a solid-plate suction screen operating at 130 gpm can be located 9.5 inches above settled sludge for 2 in screen height in a 85 ft waste tank without disturbing any sludge. Detailed results are summarized in Table 13. Final pump performance calculations were made by using the established CW pump design, and operating conditions to satisfy the two requirements of minimum sludge disturbance, and adequate blending of tank contents. The final calculation results show that the blending times for the coiled and uncoiled tanks coupled with the CW pump design are 159 and 83 minutes, respectively. All the results are provided in Table 16.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SRNL-STI-2011-00025
  • Grant Number: DE-AC09-08SR22470
  • DOI: 10.2172/1014152 | External Link
  • Office of Scientific & Technical Information Report Number: 1014152
  • Archival Resource Key: ark:/67531/metadc843530

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 5, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 12, 2016, 6:16 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lee, S. SDI CFD MODELING ANALYSIS, report, May 5, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc843530/: accessed July 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.