X-Ray Diffraction on NIF#

J. H. Eggert, J. Wark

March 7, 2012

NIF Users Group Meeting 2012
Livermore, CA, United States
February 12, 2012 through February 15, 2012
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.
X-Ray Diffraction on NIF
NIF Users Group Meeting
LLNL, 2/15/2012

Jon Eggert (LLNL)
Justin Wark (Univ. Oxford)
Team

- **Lawrence Livermore Laboratory**

- **University of Oxford**
 - J. Wark, A. Higginbotham, M. Suggit, G. Mogni

- **National Research Council of Canada**
 - D. Klug, Y. Yao

- **Washington State University**
 - C.S. Yoo

- **AWE Aldermaston**
 - N. Park

- **Osaka University**
 - K. Shigemori, K. Shimizu

- **University of Rochester**
 - Tom Boehly

- **Additional Collaborators / Consultants**
 - A. Lazicki, F. Coppari, D. Hicks, Y. Ping, D. Swift
 - Andrew Comley, Brian Maddox, Hye-Sook Park, and Bruce Remington
 - M. McMahon, T. Duffy
The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser.

We have an unprecedented opportunity to perform extraordinary basic HED science.

In particular, highly-compressed material science.
NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible.

We measured stress-density up to 5 TPa on NIF.

Our NIF experiments have demonstrated that we can access the relevant pressure composition region for exo-planet interiors.
We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF

Diffraction on NIF

Possible path to a new high-strength material, *Metastable BC8 carbon*!
Just a few years ago, ultra-high pressure phase diagrams for materials were very “simple”
New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered.

Traditional view: All materials become simple at high pressure appears to be incorrect!

“... what the present results most assuredly demonstrate is the importance of pressure in revealing the limitations of previously hallowed models of solids”

FCC, 65 GPa
cI16, 108 GPa
oP8, 119 GPa
tI19, 147 GPa

Incommensurate

hP4, 190 GPa
Insulating, Transparent Electride

Increasing Structural Complexity

Transparent at the highest pressures!

Ma, Nature (2009)
Gatti, PRL (2010)
High pressures phases of aluminum are also predicted to be complex.

No predictions yet for melt line of aluminum.

V is 5.6% < bcc @ 10 TPa

V is 2.8% < bcc @ 5 TPa
Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases.

Possible path to a new high-strength material, *Metastable BC8 carbon*!
A new paradigm. Really?

Are we really about to witness a true paradigm shift in extreme compressed-matter physics?

“Only as experiment and tentative theory are together articulated to a match does the discovery emerge and the theory become a paradigm”

–p 61

“Further development ordinarily calls for the construction of elaborate equipment, the development of an esoteric vocabulary and skills, and a refinement of concepts. . ..”

–p 64
Facilitating new Paradigms in Extreme Compression and High Energy Density Science
We need to develop diagnostics and techniques to explore this new regime of highly compressed-matter science.

X-Ray Diffraction:

Understand the phase diagram / EOS / strength / texture of materials to 10’s of Mbar

Strategy and physics goals:
- Powder diffraction
- Begin with diamond
- Continue with metals etc.
- Explore phase diagrams
- Develop liquid diffraction

Reduce background / improve resolution
Powder x-ray diffraction of rolled foils on the Omega laser
We performed high-pressure x-ray diffraction on tantalum at the Omega laser.

Diffraction data quality is roughly where DAC diffraction was in the ‘80s. We need to make similar strides.
We determine stress by backward integration of diamond free-surface velocity

Shot 61261, OMEGA 2011-0223

Ramp drive: 246 J ($t_{BL} = 4.6$ ns)
P = 4.34±0.09 Mbar
Tantalum diffraction on the Omega laser

Results:
- High-quality data at moderate pressure
- Extension of the bcc equation of state
- Indication of possible phase transition above 300 GPa

Further work:
- Solve technical difficulties associated with diffraction above 300 GPa
Lessons learned on the Omega laser:

- Samples are cool enough to do crystalline diffraction up to near 1 Tpa, far above Hugoniot melt pressure

- Small number of reflections available is a major limitation in structure determination

- X-ray background is a primary concern

- Above ~300 GPa texturing is ubiquitous (for both single- and poly-crystalline materials)
Texture and the Ewald Sphere Construction
Texture and the Ewald Sphere Construction
Texture and the Ewald Sphere Construction

\[\alpha \]

\[hkl_0 \]

\[hkl_1 \]

\[hkl_2 \]

\[hkl_3 \]

\[\text{Incident Beam} \]
White light x-ray diffraction of single crystals on the Omega laser

Experiments performed by Andrew Comley, Brian Maddox, Jim Hawreliak, Hye-Sook Park, and Bruce Remington
We probe shocked Ta (100) crystals in-situ using white-light Laue x-ray diffraction at the OMEGA laser facility.

Thanks to Andrew Comley, Brian Maddox, Hye-Sook Park, and Bruce Remington.
Fitting the diffraction pattern yields the strain anisotropy (difference in strains in shocked and transverse directions) of the compressed unit cell.

Example of Laue x-ray diffraction data

Driven spots shift with increasing strain

- Von Mises Stress (Strength) = 2C’ x strain anisotropy
- C’ = (C_{11} – C_{12}) / 2 where C_{11} and C_{12} are elastic constants

Thanks to Andrew Comley, Brian Maddox, Hye-Sook Park, and Bruce Remington
Guiding principles for fielding x-ray diffraction on NIF:

- Design and field a diagnostic useful to a wide range of experiments
 - Powder diffraction
 - White-light single crystal Laue
 - EXAFS
- Employ successful designs from Omega
- Enable both direct and indirect drive configurations
- Explore advanced concept possibilities
- Concentrate on reducing background, increasing resolution, and increasing the number of reflections observed
Pathway to the NIF

- Diagnostic development
 - Responsible Scientist: Ray Smith
 - Responsible Individual: John Dzenitis
 - Qualify diagnostic for
 - Debris
 - Survivability
 - Determine
 - Optimum shielding for hohlraum drive
 - Optimum backlighter energy
 - CDR planned in 2 months

- Shot Plan
 1. Diagnostic Damage assessment (½ Energy – 500 GPa)
 2. Noise Level measurement of Image plates
 3. Low (1 - 1.2 TPa)
 4. Middle (1.7 – 2.0 TPa)
 5. High (2.5 – 3.0 TPa)
We will combine the XRD capability from Omega and the successful drive already used on the NIF.

Using 176 beams to drive the holhraum leaves 4 quads for the backlighter.
The NIF targets will draw on Omega design and experience

Using target components which will not contribute to the diffraction signal we ensure we probe a limited temporal and spatial region at the peak pressure

Using the free surface velocity to back integrate the pressure profile through the diamond
Diagnostic configuration

Primary XRD diagnostic on TARPOS

X-ray Backlighter Foil

TARPOS

Diagnostics required:
- TARPOS
- VISAR/SOP
- DANTE-1
- SXI-1,2
- FABS/NBI
- FFLEX

Primary XRD diagnostic on TARPOS

Experiment Layout - Target Chamber (Top View)

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Port</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISAR/SOP</td>
<td>90-315</td>
<td>1</td>
</tr>
<tr>
<td>DANTE-1</td>
<td>143-274, 64-350</td>
<td>1</td>
</tr>
<tr>
<td>SXI-1,2</td>
<td>161-126, 18-123</td>
<td>3</td>
</tr>
<tr>
<td>FABS/NBI</td>
<td>Q31B, Q36B</td>
<td>3</td>
</tr>
<tr>
<td>FFLEX</td>
<td>90-110</td>
<td>3</td>
</tr>
</tbody>
</table>
Advanced Designs: Soller Slits.

Stack layers with slightly larger patterns to assemble 2D array of slits.
Using a broadband x-ray source and a fixed location energy dispersive detector we can resolve different lattice planes at different energies ($| = 2d \sin \theta$ where θ is fixed and $|$ varies as d).

The example geometry shown below is similar to a pinhole camera which images the sample material onto a CCD. By filtering and use of small pinhole apertures the single level can be reduced to a single photon counting level where the CCD can provide spectral resolution.

This design would allow coincident EXAFS measurements.
Thanks