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The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ
laser

We have an unprecedented opportunity to perform
extraordinary basic HED science.
In particular, highly-compressed material science.
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NIF Ramp-Compression Experiments have already made the
relevant exo-planet pressure range from 1 to 50 Mbar accessible.

We measured stress-density up 187 transiting exoplanets as of
to 5 TPa on NIF. December 29, 2011, hitp://exoplanet.eu/
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Our NIF experiments have demonstrated that we can access the relevant
pressure composition region for exo-planet interiors. UL—
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Diffraction on NIF

We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF

Carbon Phase Space

—— Correa et al 2006
= \Wang et al 2005
= = Grumbach and Martin 1996
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Just a few years ago, ultra-high pressure phase diagrams for
materials were very “simple”

Melt curves followed a Lindeman law, structures were Phvsi
: AT : ySICS
simple, and conductivities increased at high pressure
900 Gets
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New experiments and theories point out surprising and decidedly
complex behavior at the highest pressures considered.

Traditional view: All materials become simple at high pressure appears to be incorrect!

“. .. what the present results most assuredly demonstrate is the importance of pressure in
revealing the limitations of previously hallowed models of solids”

—Neil Ashcroft (2009).
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High pressures phases of aluminum are also predicted to be

complex

Pickard and Needs, Nature Materials (2010). I
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Diffraction on NIF

Recent metadynamics survey of carbon proposed a dynamic

pathway among multiple phases

Carbon Phase Space

Sun, Klug, and Martonak, JCP 2009
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Metastable
Phases?
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Possible path to a new high-
strength material,
Metastable BC8 carbon!

FCC

10000 i

T T T

)

~

8000

6000

4000

Temperature (K)

2000

1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1

1
I
1
|
¢
|
‘
|
bC8 sc sh fcc
|
N S i
10 20
Preskure (TPa)
Canales, Pickard, Needs, Phys. Rev. Lett. 108, 045704 (2012)

=

Ll T T T | T T T | T T T | T T T ‘1

=t

NIF USER GROUP, 2/15/2012

L

9



A new paradigm. Really?

_ The Structure of
Are we really about to withess a true Scientific Revolutions

paradigm shift in extreme compressed- Second Edition, Enlarged
matter physics? Thomas S. Kuhn

“Only as experiment and tentative theory
are together articulated to a match does
the discovery emerge and the theory
become a paradigm”

—p 61

“Further development ordinarily calls for
the construction of elaborate equipment,
the development of an esoteric
vocabulary and skills, and a refinement
of concepts. . ..”

—p 64
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We need to develop diagnostics and techniques to

explore this new regime of highly compressed-
matter science.

X-Ray Diffraction:

Understand the phase diagram / EOS /
strength / texture of materials to 10’s of Mbar

Strategy and physics goals:
Powder diffraction
Begin with diamond
Continue with metals etc.
Explore phase diagrams
Develop liquid diffraction

Reduce background / improve resolution

L
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Powder x-ray diffraction
of rolled foils on the
Omega laser

NIF USER GROUP, 2/15/2012

L

43



We performed high-pressure x-ray diffraction on tantalum at the
Omega laser

B T e e REran :‘ T =

561261

4.3 Mbar

Drive

Diamond

Diffraction data quality is
roughly where DAC diffraction
was in the ‘80s. We need to
make similar strides.




We determine stress by backward integration of diamond free-
surface velocity
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Tantalum diffraction on the Omega laser

| e (110)
PY ® new peaks
0 O (110) static measurements (Cynn et al.)
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Results:

* High-quality data at moderate pressure
« Extension of the bcc equation of state
 Indication of possible Hi

bcc Ta at 100 GPa

Further work:
Solve technical difficulties

associated with diffraction t@e
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Lessons learned on the Omega laser:

- Samples are cool enough to do crystalline diffraction up to near
1 Tpa, far above Hugoniot melt pressure

« Small number of reflections available is a major limitation in
structure determination

- X-ray background is a primary concern

* Above ~300 GPa texturing is ubiquitous (for both single- and
poly-crystalline materials)

L
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Texture and the Ewald Sphere Construction
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Texture and the Ewald Sphere Construction
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Texture and the Ewald Sphere Construction
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White light x-ray diffraction
of single crystals on the
Omega laser

Experiments performed by Andrew
Comiley, Brian Maddox, Jim Hawreliak,
Hye-Sook Park, and Bruce Remington

L
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We probe shocked Ta (100) crystals in-situ using white-light Laue
x-ray diffraction at the OMEGA laser facility

Imploding capsule
white-light source
up to ~25keV

10um nano-HDC
5um Ta (100)

40um micro-HDC

Heavimet pinhole
(250um ID)

Crystal package drive
beam
1ns square pulse, SG8 DPP

Diffraction spots

Diffracted x-rays from Ta recorded on

image plate
Image plate
detectors X
y
Heavimet VISAR beam Shl K
enclosure oc
Thanks to Andrew Comley, Brian Maddox, Hye-Sook Park, and Bruce Remington LL
L 22
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FCIWY UIC UllirdCUuoIl pdieril yieius Uie sidiil daliivouopy
(difference in strains in shocked and transverse directions) of the

compressed unit cell

Example of Laue x-ray diffraction data Strain vs. Pressure

Driven spots shift with

increasing strain ' ' ' '
Spots from ® Dita
amPlent 0307 1D Compression i
lattice = 0.25
o e Plastic relaxation i
)
\ o 8 0.20- '_'Fi_‘_
- c
<Cf 0.15- —3— -
£ 0.10- —= -
Spots from n
compressed 0.05- ]
lattice ‘
0.00- I ! ! -
0 50 100 150 200

Ablation Pressure (GPa)

* Von Mises Stress (Strength) = 2C’ x strain anisotropy
« C =(Cy;—-C,,)/2where C,; and C,, are elastic constants

Thanks to Andrew Comley, Brian Maddox, Hye-Sook Park, and Bruce Remington UL_
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Guiding principles for fielding x-ray diffraction on NIF:
1

» Design and field a diagnostic useful to a wide range

of experiments
« Powder diffraction
« White-light single crystal Laue
« EXAFS

 Employ successful designs from Omega

- Enable both direct and indirect drive configurations

* Explore advanced concept possibilities

« Concentrate on reducing background, increasing
resolution, and increasing the number of reflections
observed

L
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Pathway to the NIF

= Diagnostic development

— Responsible Scientist: Ray Smith
— Responsible Individual: John Dzenitis
— Qualify diagnostic for

- Debris
- Survivability

— Determine

- Optimum shielding for hohlraum drive
- Optimum backlighter energy

— CDR planned in 2 months
= Shot Plan

1.

a bk o

Diagnostic Damage assessment (2= Energy — 500 GPa)
Noise Level measurement of Image plates

Low (1 -1.2 TPa)

Middle (1.7 — 2.0 TPa)

High (2.5 - 3.0 Tpa)

L
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We will combine the XRD capability from Omega and
the successful drive already used on the NIF

Target Geometry

Backlighter

Image Plate
Detector

Diffracted
X-rays

VISRAD Model

NIF USER GROUP, 2/15/2012
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The NIF targets will draw on Omega design and

experience

Diffraction Target Pressure Profile

-

s61261_A1
Pressure = 43419 GPa

Using target components which will not contribute to the
diffraction signal we ensure we probe a limited temporal

and spatial region at the peak pressure LIL—
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Diagnostic configuration

Primary XRD diagnostic
on TARPOS

X-ray Backlighter
Foil

90-110 FFLEX

Experiment Layout - Target

Chamber (Top View)
18-123 SXI
16T
90-147 . 467 (1B
TASPOS “ies 188 W
13T
0 )
SY2 P 1 SY1
36B // \ 21]
36T ' 13
318 | 26¥\<\
34T / : \\ 238
2 : 23T\s 161-326 SXI
FABS & NBI o> q‘ss
R 0368 DIM(90-315) primary
VISAR/SOP
90-239
TARPOS 143-274 DANTE1
Diagnostic Port Priority
VISAR/SOP 90-315 1
DANTE-1 143-274,64-350 1
SXI-1,2 161-126, 18-123 3
FABS/NBI Q31B, Q36B 3
FFLEX 90-110 3

NIF USER GROUP, 2/15/2012
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Advanced Designs: Soller Slits.

X-ray
Source

Stack layers with slightly larger

patterns to assemble 2D array of slits lll

NIF USER GROUP, 2/15/2012
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Advanced Designs: Energy / Angle Dispersive Diffraction

Using a broadband x-ray source and a fixed location energy dispersive detector we can
resolve different lattice planes at different energies ( | = 2d sinqg where q is fixed and |
varies as d)

The example geometry shown below is similar to a pinhole camera which images the
sample material onto a CCD. By filtering and use of small pinhole apertures the single

all )C =10 =10 )¢ ACUES DINOLOT] U ] 1(] 1CVE VARSI AS als [ J all DI U1

spectral resolution Broadband X

Plastic/Al shielding from \\

. . (Imp hn or shor
High-Z pinhole camera housing high energy particles \'
EEe
Broadband X-ray Source  [louresence

I/

ccb (Implosion or shortpulse on foil)

4

1 mm thick,

Diffracted X-rays and
Sample flouresence

ar u‘n;g Illy;.l cllciyy paraces

Brog

1 mm thick A\ -
; Implosi
1 mm thick, 0.5 mm diameter B VISAR \ (Imp
1 mm diameter High-Z aperature :
High-Z aperature Diffracted X-rays and
aperature flourscence Sample flouresence .

from first aperature.

A

This design would allow coincident EXAFS measurements
) L
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