Superconducting Magnet Technology for Future Hadron Colliders

PDF Version Also Available for Download.

Description

The application of superconducting magnets to large-scale particle accelerators was successfully demonstrated with the completion of the Tevatron at Fermilab in 1983. This machine, utilizing dipole magnets operating at 4.5 T, has been operating successfully for the past 12 years. This success was followed a few years later by HERA, an electron-proton collider that uses superconducting quadrupoles and dipoles of a design similar to those in the Tevatron. The next major project was the ill-fated SSC, which was cancelled in 1993. However, the SSC R&D effort did succeed in demonstrating the reliable operation of dipole magnets up to 6.6 T. ... continued below

Physical Description

21

Creation Information

Scanlan, R.M.; Barletta, W.A.; Dell'Orco, D.; McInturff, A.D.; Asner, A.; Collings, E.W. et al. October 1, 1994.

Context

This book is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this book can be viewed below.

Who

People and organizations associated with either the creation of this book or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this book. Follow the links below to find similar items on the Digital Library.

Description

The application of superconducting magnets to large-scale particle accelerators was successfully demonstrated with the completion of the Tevatron at Fermilab in 1983. This machine, utilizing dipole magnets operating at 4.5 T, has been operating successfully for the past 12 years. This success was followed a few years later by HERA, an electron-proton collider that uses superconducting quadrupoles and dipoles of a design similar to those in the Tevatron. The next major project was the ill-fated SSC, which was cancelled in 1993. However, the SSC R&D effort did succeed in demonstrating the reliable operation of dipole magnets up to 6.6 T. The LHC, now under construction, pushes the ductile superconductor, NbTi, to its limit in dipoles designed to operate at fields of 8.6 T at 1.8 K. Several recent studies have addressed the issues involved in taking the next step beyond the LHC. The Division of Particles and Fields Workshop on Future Hadron Facilities in the U.S., held at Indiana U. in 1994, examined two possible facilities--a 2-TeV on 2-TeV collider and a 30-Tev on 30-Tev collider. The participants arrived at the following conclusions with regard to superconducting magnets: (1) Superconducting magnets are the enabling technology for high energy colliders. As such, the highest priority for the future of hadron facilities in the U.S. is the reassembly of a U.S. superconducting magnet R&D program. (2) emphasis on conductor development and new magnet designs; and (3) goals of such a program might be (a) the development of a 9-10 Tesla magnet based on NbTi technology; (b) the development of high quality quadrupoles with gradients in the range 250-300 T/m; and (c) initiation of R&D activities aimed at moving beyond the existing technology as appears to be required for the development of a magnet operating at 12-15 Tesla. In order to reach fields above 10 T, magnet designers must turn to new materials with higher critical fields than that of NbTi. Several candidate conductors exist; unfortunately, all of these new materials are brittle, and thus pose new challenges to the magnet designers. At the same time that the forces on the magnet windings are increasing due to the higher Lorentz force associated with the higher magnetic fields, the conductor tensile strain must be limited to less than about 0.5% to prevent damage to the brittle superconducting material. Also, coil fabrication methods must be changed. If the superconductor is in the reacted, or brittle, state, the coil winding procedure must be modified to prevent overstraining. If the alternative wind and react approach is used, new insulating materials must be used that can survive the high temperature reactions (650 to 800 C) necessary to form the superconducting compounds. The issues associated with high-field dipole magnets have been discussed at a number of workshops, including those at DESY in 1991 and LBL in 1992. These workshops were extremely useful in defining the problems and focusing the attention of both materials and magnet experts on high-field dipole magnets; however, since neither set of proceedings was published, the information is not readily available. More recently, a workshop was held in Erice, Italy, under the sponsorship of the Ettore Maiorana Center for Scientific Culture. This international workshop was attended by 20 scientists from Europe, Japan, and the U.S., and the summary of that work, which represents the most recent and thorough assessment of the status of high-field magnets for accelerator magnets, is presented.

Physical Description

21

Language

Item Type

Identifier

Unique identifying numbers for this book in the Digital Library or other systems.

  • Report No.: LBNL-39932
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1011361
  • Archival Resource Key: ark:/67531/metadc843403

Collections

This book is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this book?

When

Dates and time periods associated with this book.

Creation Date

  • October 1, 1994

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 16, 2016, 5:07 p.m.

Usage Statistics

When was this book last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Book

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Scanlan, R.M.; Barletta, W.A.; Dell'Orco, D.; McInturff, A.D.; Asner, A.; Collings, E.W. et al. Superconducting Magnet Technology for Future Hadron Colliders, book, October 1, 1994; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc843403/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.