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Abstract

This report describes an Early Career Laboratory Directed Research and Development
(LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many
fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. micro-
fluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and
purification of biodiesel fuel. Precise control over droplets is crucial to these applications.
However, electric fields can induce complex and unpredictable fluid dynamics. Recent exper-
iments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce
rather than coalesce in the presence of strong electric fields. A transient aqueous bridge
forms between approaching drops prior to pinch-off. This observation applies to many types
of fluids, but neither theory nor experiments have been able to offer a satisfactory explana-
tion. Analytic hydrodynamic approximations for interfaces become invalid near coalescence,
and therefore detailed numerical simulations are necessary. This is a computationally chal-
lenging problem that involves tracking a moving interface and solving complex multi-physics
and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simu-
lations. An interface-tracking model for electro-coalescence can provide a new perspective
to a variety of applications in which interfacial physics are coupled with electrodynamics,
including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration,
nuclear waste reprocessing and solution separation for chemical detectors. We present a
conformal decomposition finite element (CDFEM) interface-tracking method for the electro-
hydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp
interface method that decomposes elements along fluid-fluid boundaries and uses a level set
function to represent the interface.
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Chapter 1

Introduction

1.1 Applications and inspiration

Electric field induced droplet motion has developed quite a diverse range of applications
including petroleum and vegetable oil dehydration [11], electrowetting (using electric fields
to modify surface tension effects) [38], lab on a chip technology [10, 12], cloud formation [27],
ink-jet printing [5], microfluidic devices for high-speed sorting [22], as well as electrospray
dynamics and fuel atomization [1]. Precise control over droplets is crucial to many of these
applications, however for most the physics are only partially understood. In addition, there
are applications of interest to Sandia that may in the near future benefit from the use of
electric fields to manipulate fluids and enhance or deter droplet coalescence, including nuclear
waste reprocessing, purifying bio-diesel fuel, and solution separation for chemical detectors.

Recently, it has been demonstrated that high speed transport and separation of small
particles against fluid flow in microfluidic devices can be accomplished using ratcheted elec-
trophoresis [10]. State of the art in vitro designs for ultra-high throughput microfluidic
devices for protein engineering and directed evolution have been developed using electric
fields [12]. In fact, using electric fields to manipulate droplets in microfluidic channels has
proven to be quite successful [40]. Precise manipulation of fluid droplets has aided in en-
abling new technologies for high-throughput reactors. Reactions for such devices only require
minute amounts of reactants and are at high risk for contamination. Combining very small
droplets can be hindered by surface tension and surfactant, however using electric fields to
move droplets has the ability to overcome these obstacles by making coalescence more more
favorable since the conical tips are easily able to penetrate the lubrication layer. Contain-
ing reactants in charged droplets and using electric fields to manipulate their motion (and
coalescence) can create highly efficient microfluidic reactors [22].

Electric fields can induce complex and unpredictable fluid dynamics. Oppositely charged
water drops immersed in silicon oil experience attractive forces that would favor their coales-
cence. However, recent experiments with high speed cameras [34] demonstrate the counter-
intuitive behavior that these oppositely charged droplets “bounce” rather than coalesce in
the presence of strong electric fields (see Figure 1.1). High speed cameras show that a tran-
sient aqueous bridge forms between approaching drops prior to the non-coalescence repulsion
event.
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Figure 1.1. A water droplet is placed into a column of
immiscible silicon oil on top of salt water in the experimen-
tal apparatus shown on the left. An external electric field
is applied. Due to electrophoresis, the drop initially moves
upward toward the electrode, gains charge and then proceed
downward toward the lower water surface. The magnitude of
the applied electric field dictates whether the droplet merges
or “bounces.” Past a critical electric field strength, the cone
angle is sharp enough that, after initial contact and charge
transfer, the droplet pinches off from the reservoir. Figure
Courtesy of William Ristenpart [34].

When exposed to an electric field, molecules in a water droplet will polarize and result
in a net force on the droplet. There are also intermediate regimes in which the droplets
partially coalesce and also regimes in which daughter droplets form (see Figure 1.2) [16].
The experiments in which this bouncing phenomenon is observed suggest that the electric
field drives the formation of a meniscus bridge between approaching drops. This transient
bridge may provide a small amount of charge transfer before destabilizing and could result in
the observed bounce/pinch-off event. It is not well understood why this bifurcation between
coalescence and pinch off occurs. This behavior does not appear to be due to inertial,
Marangoni flow or Maxwell stresses. The observation of this non-coalescence event extends
to many types of fluids, including vinegar in olive oil, ethanol in mineral oil and deionized
water in air [34]. This indicates that the phenomenon is universal in nature and can occur
for any liquid-liquid or liquid-gas system exposed to a strong electric field.

In a following paper [2] the explanation for non-coalescence is proposed as follows: the
electric field primarily defines the shape of conical tips at contact, and upon contact capillary
forces (which force fluid in or out of the neck region) determine whether or not the drops
coalesce. Therefore shape - specifically curvature around the neck - is the determining factor
to merging/pinch-off. The authors propose a theoretical model based on shape of bridge
and capillary pressure. The experimental data contained in [2] agree reasonably well with
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Figure 1.2. Formation of daughter droplets. Figure Cour-
tesy of William Ristenpart [16].

theory, although the theoretical angle (31◦) slightly over-predicts coalescence (28◦ ± 2◦)
provided in [34] and [2].

Another recent explanation contradicts the idea that instability due to surface tension
and capillary pressure causes the aqueous bridge to pinch off [17]. They state that after
charge transfer occurs (and the force pulling the droplets together disperses), the theory of
mean curvature flow (minimizing the surface area) alone is enough to argue for the bouncing
effect and suggest that the critical cone angle is slightly smaller. Therefore, they argue
that geometry alone is enough to cause droplets to recoil and inertial effects should not
be relevant. The critical cone angle in this work (24◦) slightly under-predicts experimental
observation.

The shape of the cone at which merging occurs in is somewhat universal in nature. For
example, membrane junction assembly forms an adhesive cone with a surface deformation
due to repulsion of the form u−3, where u is displacement [4]. This form is due to the
bending moment, but this u−3 power can also be derived from the surface tension effects [20].
Detailed analysis of surface tension driven merging of two identical wedged-shaped fluid
regions has been performed where the wetting angle and shape of merging structures are
found numerically for self-similar structures [19].

There are cases where naturally accumulated electric charge has been observed to cause
Taylor cone droplet coalescence even without an externally applied electrical field [39]. The
formation of cone-jets (a sub-set of Taylor cones) in charged liquids is well understood
analytically for certain fluid regimes and assumptions [13]. Taylor cones form under the
influence of strong electric fields that pull charged (and neutral) droplets to opposite poles,
and can cause the formation of tiny daughter droplets at the tips (as in electro-sprays). These
Taylor cones result from a balance between charge induced pressure from an electric field and
capillary pressure. The electrocapillary number ξc = εε0rE2

γ
, where εε0 is the permittivity, r

is the drop radius, E is the electric field, and γ is the surface tension provides a measure
for this balance. Other types of Taylor cones, including the regime that is the focus of
this manuscript, remain poorly understood. Unlike traditional Taylor cones, the conical
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tips observed in these experiments have cone angles that are dependent on electrocapillary
number [2].

1.2 Overview of numerical approaches

Accurately modeling moving interfaces is a challenging problem within itself, and an area
currently under active investigation. There is a wide body of work for numerical methods
of two-phase flows where the influence of an electric field is taken into account. In gen-
eral, interface behavior is modeled by either interface-tracking (boundary integral, surface
marker particles) or interface-capturing methods (volume-of-fluid, level set methods), each
of which has its own set of advantages and disadvantages. The main distinction between
these techniques is that interface-tracking methods track discrete points on the interface
surface explicitly and interface-capturing methods evolve indicator functions that implicitly
define the boundary. Interface-capturing methods have the advantage that the curvature
and surface tension of the boundary can be easily calculated. However, these methods can
suffer from unphysical mass loss or gain. Interface-tracking methods are able to accurately
capture the interface without unphysical mass fluctuations, however one needs to add or
remove surface-marker points in order to obtain sufficient interface resolution when stretch-
ing, coalescence and pinching occur. Interface-tracking methods are also subject to mesh
tangling at high Reynolds number, but may be better suited for accurately defining coales-
cence without the fine spatial resolution necessary for an interface-capturing method near
coalescence.

The volume of fluid (VOF) method has been successfully used to simulate deformation of
two-phase flows exposed to electric fields [37]. One group presents a VOF charge conservation
scheme that can handle a variety of electrohydrodynamic problems [23]. However, this
method is not used to model coalescence or pinch-off, since one weakness of VOF is that it
can not distinguish topological changes precisely. The current literature also includes a front-
tracking finite volume method that can model electric charge on the droplet surface [18].
In addition, mesoscopic methods such as Lattice Boltzmann methods have been used for
simulating drop deformation using electric fields [41, 14].

Recent work in the area of computational multi-phase flow modeling include hybrid
Lagrangian-Eulerian particle-level set methods [21, 7] (to better handle the mass conserva-
tion problems inherent to level set methods) and moving mesh interface tracking method
with local mesh adaptation [32, 31]. Robust adaptive re-meshing algorithms are necessary
to handle topological changes for moving mesh methods [6]. Li et al. [21] used this hybrid
method to model two-phase turbulent flow and were able to handle complex surface topolo-
gies. However, this method is used with finite difference schemes for structured meshes and
we would like to take advantage of unstructured grids because they allow for more accurate
interface representation. Quan et al. [31] were able to handle large deformations as well as
interfacial breakup using mesh adaptation and separation, but had to balance unphysical
mass loss or gain with computation time.
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The Arbitrary Lagragian-Eulerian (ALE) method [9] can be used in conjunction with a
level set method to capture the interface [29]. This approach has been used for simulating
droplet collisions. It has also been applied to electrically-induced deformations of water/oil
interfaces [33]. Mesh distortion without degradation can be aided by the use of edge swap-
ping and mesh smoothing for three-dimensional elements for large deformation problems [8].
However, topological changes have to be handled in an ad hoc careful fashion and get increas-
ingly more complex in 3D. However, ways to handle topological changes in an automatic way
using shape skeletons and distance functions to decide in the fly when topological changes
occur are also in development [25].

The ghost fluid level set method is also a promising direction for modeling electrohydro-
dynamic multi-phase flows. This technique can handle droplet break-up and coalescence in
a more natural way than moving mesh methods [3, 30]. However, charge transfer dynamics
are neglected in both of these works: Bjørklund et al. [3] neglect charge completely and Van
Poppel et al. [30] assume constant volumetric charge. This group most recently models two-
phase electro-hydrodynamic flow for liquid fuel injection assuming a high electric Reynolds
number. They use a ghost fluid-level set method for a multiphase fluid that handles discon-
tinuities with generalized Taylor series expansions. This method is able to capture jumps
in scalar values well, yet is lower order for capturing the correct fluid stress balance. For
our purposes, we cannot make the same assumptions; viscous and Coulomb forces dominate
during pinch off, but inertia is important for regimes where partial coalescence occurs, and
dielectric forces are necessary during the formation of the meniscus bridge.

Accurate and stable interface-tracking methods capable of capturing and predicting co-
alescence and break-up of interfaces are currently a major challenge in the computational
science community. Including electric forces and charge pose further challenges due to the
complexity of electrostatic and hydrodynamic interactions involved in coalescence. There-
fore, we require a novel modeling approach to understand this phenomenon. This project
entails the creation of an interface-tracking model using the advantages of the Conformal
Decomposition Finite Element Method (CDFEM) [24] with the capability to reproduce ex-
periments, make predictions for future experiments and answer questions about the physics
of this phenomenon that are not experimentally accessible. CDFEM treats interfacial dy-
namics by cutting elements along the boundary such that the interface is exactly aligned with
element surfaces. This approach has many advantages including straightforward implemen-
tation of interfacial Dirichlet boundary conditions, zero interfacial thickness, the ability to
handle complex topologies using unstructured meshes, and good convergence for stationary
problems.
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Chapter 2

Governing Equations

To describe the dynamics of a charged water drop immersed in silicon oil and exposed to an
applied electric field, we need to solve the fluid equations of motion for mass and momentum,
the electric field, and the charge density distribution. In this chapter we present our governing
equations, boundary conditions and the assumptions made based on the physical scales of
the problem apparatus.

2.1 Fluid equations

2.1.1 Navier-Stokes equations

We utilize the incompressible Navier-Stokes equations for mass and momentum to govern
both fluid phases:

∇ · u = 0, (2.1.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (Tµ + M), (2.1.2)

where ρ is the fluid density, u is the velocity vector and p is the pressure. The viscous stress
tensor, Tµ, is given by

Tµ = µ(∇u +∇uT ), (2.1.3)

where µ is the fluid viscosity. M represents the Maxwell stress tensor, the divergence of
which is the force on the fluid due to an electric field. In order to compute this term, we
need to consider the electromagnetic equations.

2.1.2 Electric force in the momentum equation

The Maxwell stress tensor [15] is given by

M = ε

(
EET − 1

2
(E · E)I

)
(2.1.4)
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where ε is the electrical permittivity, E is the electric field, and I represents the identity
tensor. The force on a fluid due to an electric field is given by the divergence of the Maxwell
stress tensor:

Fe = ∇ ·M = ∇ ·
(
εEET

)
− 1

2
∇(εE · E). (2.1.5)

Using the identity
∇ · (εEET ) = (∇ · εE)E + (εE · ∇)E, (2.1.6)

we can rewrite equation 2.1.5 as

∇ ·M = (∇ · εE)E + (εE · ∇)E− 1

2
∇(εE · E). (2.1.7)

If the time scale for magnetic effects is sufficiently small, 1 then we can assume that E is
irrotational. Since the electric field is irrotational, it is also true that E×(∇×E) = 0, which
implies that

1

2
∇(E · E) = E× (∇×E) + (E · ∇)E = (E · ∇)E (2.1.8)

from a vector product rule identity. Also note that we can re-write the first term on the
left-hand-side of equation 2.1.7 using the voltage equation (equation 2.2.1),

∇ · εE = ρv. (2.1.9)

Thus, using equations 2.1.8 and 2.1.9, we can further simplify equation 2.1.7 to be

Fe = ∇ ·M = ρV E +
ε

2
∇(E · E)− 1

2
∇(εE · E) (2.1.10)

Fe = ∇ ·M = ρV E +
ε

2
∇(E · E)− ε

2
∇(E · E)− 1

2
(E · E)∇ε (2.1.11)

Fe = ∇ ·M = ρV E− 1

2
(E · E)∇ε. (2.1.12)

This clearly shows that the electric forcing term in the Navier-Stokes equation, Fe, is non-zero
if there is an electric field and a charge in the bulk or spatially varying electric permittivity.
For the purpose of the electro-coalescence problem, the second term will only apply at an
interface since ε is assumed to be constant within a given medium (water or silicon oil).

2.1.3 Magnetic versus electric time scales

The characteristic time scale for magnetic phenomena is tm = µmσL
2, where µm is the

magnetic permeability, σ is the conductivity and L is a length scale. We can safely assume
that magnetic effects are small enough to be ignored if this time scale is considerably smaller
than the electric time-scale, te = ε/σ [36].

1Magnetic effects can be ignored for most electrohydrodynamic flows. For a more detailed analysis see
Section 2.1.3
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We consider a system involving salt water in poorly conducting silicon oil. As such the
electric time scale, τe will be determined by the water, which has as relative permittivity of
ε̃ ≈ 80. Using the permittivity of free space ε0 = 8.85×10−12 F/m, the effective permittivity
of water is ε = ε̃ε0 = 7 × 10−10 F/m. In experiments conducted by Ristenpart et al. [34],
the conductivity of water is varied by adding salt (KCl), and is bounded as 4× 10−4S/m ≤
σ ≤ 2× 10−2S/m. Thus the electric time scale is bounded by

4× 10−8s ≤ τe ≤ 2× 10−6s.

With a magnetic permeability of µm = 10−6 H/m [23], the characteristic timescale of mag-
netic forces is given by

τm = µµ0σR
2
0, (2.1.13)

where the drop radius, R0 ≈ 1 mm, is used as a characteristic length scale. Therefore,
applying these parameters, we can conclude that

τm ≤ 2× 10−14s � τe

and safely neglect magnetic forces.

2.2 The voltage equation

The voltage equation (shown here in terms of the electric field E = −∇φ since we assume
E is irrotational),

−∇ · (ε∇φ) = ∇ · (εE) = ρV , (2.2.1)

describes how the electric field is affected by the bulk charge density ρV . If we allow for
charge to accumulate at the interface, the jump in the electric field across the interface can
be written in terms of the charge per unit area, q:

‖εE‖ · n = q, (2.2.2)

where n is the unit vector normal to the surface, q represents the surface charge, and ‖·‖
represents the jump across an interface.

2.3 Charge distribution

2.3.1 Charged species

In general, the electric charge density, ρV , is the sum of ionic species concentrations. In
particular, the relation

ρV =
∑

k

ezknk (2.3.1)
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where e is an elementary unit of charge of a proton, nk is the density of a particular species,
zk and is the valence of the kth species. Let ωk be the migration velocity associated with
species k. The species conservation equation can be written as

∂nk

∂t
+ u · ∇nk = ∇ ·

(
− ωkezknkE + ωkkBT∇nk

)
+ rk (2.3.2)

where kB is the Boltzmann constant and T is the temperature [36]. The term −ωkezknkE
represents migration due to electric forces, the term ωkkBT∇nk accounts for species diffusion,
and rk is a source term based on chemical reactions between species.

For the case of a strong electrolyte such as potassium chloride (KCl) dissolved in water,
we can neglect a neutral species, and ignore chemical reactions. We account for two species:
a positive species, K+, and a negative species, Cl−. Thus in terms of ionic concentrations,
the voltage equation becomes

∇ · (εε0E) = e(n+ − n−) (2.3.3)

and the two species conservation equations are

∂nk

∂t
+ u · ∇nk = ∇ ·

(
− ωkezknkE + ωkkBT∇nk

)
(2.3.4)

for k = +,−. We can write an advection equation for the electric charge density by summing
up the species conservation equations multiplied by their valences and elementary unit charge
(using the definition of ρV in equation 2.3.1),

∂ρV

∂t
+ u · ∇ρV = ∇ ·

(∑
k

(−ωke2nkE) + ωkkBT∇ρV

)
. (2.3.5)

To solve this equation for charge density, we still need information about each species. We
would like a form of this equation in which we only need to track charge density and the
electric field. In order to do so, we first perform a scaling analysis.

2.3.2 Dimensionless equations for charge and electric field

Given that the experiments we are attempting to simulate [34] use an applied electric field
magnitude within the range 105V/m ≤ E0 ≤ 106V/m, this gives us a natural scale for
the electric field: E −→ E/E0. We assume oil is a dielectric containing no mobile ions.
Then charge need only be tracked in the water phase. As stated previously, the relative
permittivity of water is εw ≈ 80. We scale the Maxwell stress tensor by an electric pressure:
Te −→ Te/E2

0εwε0 where

εwε0E
2
0 = (80)(8.854× 10−12F/m)(3× 105V/m)2 ≈ 63.74Pa. (2.3.6)

At room temperature (T = 300 K), the ion diffusivities of potassium and chloride are
ω(K+)kBT ≈ 2.65 × 10−9m2/s and ω(Cl−)kB ≈ 1.70 × 10−9m2/s; respectively, where kB ≈
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1.38 × 10−23J/K is the Boltzmann constant. Their respective ion mobilities are eω(K+) ≈
7.15×10−8m2/V s and eω(Cl−) ≈ 6.85×10−8m2/V s, where e ≈ 1.6×10−19C is an elementary
charge. This gives a natural scale for the ion mobility of ω0 = ω(K+) + ω(Cl−). If a total of
0.2mM KCl= 0.2mol/m3 KCl is injected into the drop, this gives rise to a charge density of
approximately

en0 ≈ (1.6× 10−19C)(0.2mol/m3KCl)(6× 1023/mol) ≈ 2× 104C/m3.

With these values, we can estimate the conductivity of the solution to be

σ ≈ e2n0ω0 ≈ 32× 10−4S/m.

In their experiments, Ristenpart et al. [34] controlled the conductivity by varying the con-
centration of KCl in the water droplet, obtaining a range of

4× 10−4S/m ≤ σ ≤ 164× 10−4S/m.

Using this range of values, we rescale the ion density n± −→ n±/n0, the ion mobility ω± −→
ω±/ω0, and the charge density ρV −→ ρV /en0.

Assuming constant permittivity, the voltage equation,

∇ · E = ChiρV , (2.3.7)

can be written in dimensionless form using an ion charge number

Chi =
en0R0

εwε0E0

∼ (2× 104C/m3)(10−3m)

(80)(8.854× 10−12F/m)(3× 105V/m)
≈ 105. (2.3.8)

The species conservation equations can now be written in terms of dimensionless variables
(denoted as a = a0ã) as

n0

τ

∂ñk

∂t̃
+ ũ · ∇̃ñk = ∇̃ ·

(
−
(eω0n0E0

R0

)
w̃kzkñkẼ +

(ω0kBTn0

R2
0

)
w̃k∇̃ñk

)
, (2.3.9)

where τ is a process timescale. We can divide this equation by the coefficient eω0n0E0/R0

from the electric forcing term to obtain a dimensionless bulk species conservation equation
(and remove ã on dimensionless variables for simplicity):

τi
τ

∂nk

∂t
+ IoPeiu · ∇nk = ∇ ·

(
−ωkzknkE + Io ωk∇nk

)
for k = +,−. (2.3.10)

We define the ion drift number to be

Io =
kBT

eR0E0

≈ 4.14× 10−21J

(1.6× 10−19C)(10−3m)(3× 105V/m)
≈ 8.625× 10−5, (2.3.11)

the ion Peclet number as

Pei =
R2

0

ω0kBTτ
, (2.3.12)
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and the ion drift time scale

τi =
R0

eE0ω0

≈ 10−3m

(7.15× 10−8m2/V s)(3× 105V/m)
≈ 5× 10−2s. (2.3.13)

The corresponding charge density equation (by summation) is

τi
τ

∂ρV

∂t
+ IoPeiu · ∇ρV = ∇ ·

(∑
k

−ωknkE + Io ωk∇ρV

)
. (2.3.14)

2.3.3 Reduction to an Ohmic regime

For this problem two scales are important: (1) The scale which is suitable for the dynamics
before and after merging and (2) the scale of formation for an aqueous bridge. We choose the
drop radius, R0 ≈ 1 mm as a representative length scale and use a timescale, τ , which will
be determined later. Let t −→ t/τ , ∇ −→ R0∇, κ −→ R0κ, and u −→ τu/R0. Important
dynamics occur on the smaller timescale of τb = 10−5s and length scale of Rb = 10−2mm.
Define η = τb/τ and ζ = Rb/R0 = 10−2. Then the velocity, time, stress, curvature, and
differential operators rescale to values relevant during merging, with a subscript of b denoting
terms associated to the aqueous bridge:

t = ηtb ∇ =
∇b

ζ
κ =

κb

ζ
u =

ζ

η
ub

We can neglect ionic mobility since the ionic drift number is small Io � 1 and therefore,
equation 2.3.14 reduces to the charge density equation

τi
τ

∂ρV

∂t
+ IoPeiu · ∇ρV = −∇ · (σE) (2.3.15)

where we have defined a dimensionless ohmic conductivity

σ =
∑

k

ωknk. (2.3.16)

We define a conduction time, τe = τi/Chi = εwε0/σ0, to obtain a reduced dimensionless
equation for charge density,

DρV

Dt
= − τ

τe
ρV (2.3.17)

Since all timescales we consider are much larger than τe ≈ 10−7s, the charge decay process
will be relatively rapid, and we can assume there is no bulk charge in the water droplet, only
charge at the surface. By neglecting ion mobility we can write the surface charge equation:

τi
τ

∂q

∂t
+ IoPei

(
u · ∇sq + u · n(n · ∇)q

)
= −‖σE‖ · n. (2.3.18)
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2.3.4 Charge equation: Ohm’s law approximation

The charge density equation

∂ρV

∂t
= ∇ · J = ∇ · (−σE + ρV u) (2.3.19)

is a conservation equation for the bulk free charge, where J as the flux of electric charge.
Here we choose Ohm’s law −σE, with σ as the conductivity of the medium, to govern how
the charged ‘particles’ are affected by the electric field. More detailed models exist, such as
Nerst-Planck, in which individual ionic species get tracked via advection-diffusion-reaction
equations with additional terms involving the influence of the electrical field on charged
particles (see equations 8-22 of [36] for further detail).

In the absence of fluid motion (fluid velocity is zero: u = 0), the voltage equation can be
used to simplify the charge density equation, written only in terms of the charge density,

∂ρV

∂t
= −σ

ε
ρV (2.3.20)

This relation implies that charge decays in the bulk media. The greater the conductivity,
the faster this decay occurs. In fact, in a perfect conductor, the electric field is zero.

Charge density equation

∂ρe

t
= ∇ · J = ∇ · (−σE + ρeu)) (2.3.21)

In the absence of fluid motion we can use the voltage equation to simplify this relation to
be only in terms of ρe

∂ρe

∂t
= −σ

ε
(2.3.22)

since ε∇ · E = ρe. Charge decays in the bulk media in an conductor and for longer times
scales only exists on the surface. The charge density equation for the bulk is different for
slow conduction, in which the typical assumption is that charge only exists on the surface
or interface.

Although the Ohmic regime applies to the drop length scale, it is unclear whether it
applies to the smaller scale associated with merging. Rescaling our dimensionless equations,
we get

∇b · E = ζChiρV (2.3.23)

ζ2

η

(
τ

τi

∂nk

∂tb
+ IoPeiub · ∇bn

k

)
= ∇b ·

(
−ζωkzknkE + Ioωk∇bn

k
)

(2.3.24)

This leads to a charge conservation equation of

ζ2

η

τ

τi

dρV

dtb
= −ζ∇bσ · E− ζ2ChiσρV + Io∇2

b(ω+n+ − ω−n−)

Here, the term involving the conductivity gradient is scaled by ζ ∼ 10−2; the Ohmic term
is scaled by a factor of ζ2Chi ∼ 101; and the ion mobility is scaled by the ion drift number:
Io ∼ 10−4. The Ohmic term is dominant by about three orders of magnitude, so we conclude
that the other two terms can be neglected, and we again find ourselves in the Ohmic regime.

21



2.4 Boundary conditions

The boundary conditions for this model include how velocity and pressure are handled at
the interface as well as the voltage and the electric charge.

2.4.1 Electric stress

The electric field can be decomposed into normal and tangential components, to find

E · E = E2
n + E2

t1
+ E2

t2
.

We can also compute the Maxwell stress acting normal to the interface:

M · n = εε0

(
EnE−

1

2
E2n

)
.

which gives the jump in stress as

‖M · n‖ = ‖εε0EnE‖ −
1

2

∥∥εε0E
2n
∥∥ .

The tangential stress jump across the interface is

‖M · n‖ · ti = ‖εε0EnEti‖ .

The tangential electric field is continuous across the interface, so Eti can be removed from
the above equation, to get

‖M · n‖ · ti = ‖εε0En‖E · ti = qE · ti.

In contrast, the normal jump across the interface is given by

‖M · n‖ · n =
∥∥εε0E

2
n

∥∥− 1

2

∥∥εε0E
2
∥∥

=
∥∥εε0E

2
n

∥∥− 1

2

∥∥εε0E
2
n

∥∥− 1

2

∥∥εε0E
2
t1

∥∥− 1

2

∥∥εε0E
2
t2

∥∥
=

1

2

∥∥εε0(E
2
n − E2

t1
− E2

t2
)
∥∥ .

2.4.2 Boundary conditions on the fluid

In the absence of electric forces and fluid motion, the Young-Laplace equation gives the
interfacial pressure jump:

‖p‖ = γκ, (2.4.1)
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where γ is the surface tension, and κ is twice the mean curvature. Assuming a uniform
surface tension, there is no change in the tangential stress across the interface:

‖Tµ · n‖ · ti = 0 (2.4.2)

ρ
Du

Dt
= −∇P +∇ · (Tµ + M)− g (ρ− ρu) k + δsγκn (2.4.3)

Now integrate across the interface normally from a point xi to a point xe which are an
infinitesimal distance δ` from one another, recalling that the velocity is continuous across
the interface:

‖ρ‖ Du

Dt
· nδ` = −‖p‖+

∫ e

i

∇ · (Tµ + M) · nd`− g ‖ρ‖k · nδ`+

∫ e

i

δsγκn · nd`. (2.4.4)

The surface tension term is evaluated using the delta function:∫ e

i

δsγκn · nd` = γ

∫ e

i

δsκd` = γκ. (2.4.5)

The influence of the viscous and Maxwell stresses can be integrated using the Divergence
Theorem: ∫ e

i

∇ · (Tµ + M) · nd` = ‖(Tµ + M) · n‖ · n. (2.4.6)

Evaluate the jump in viscous stress using continuity of velocity across the interface:

‖Tµ · n‖ · n =
∥∥µ(∇u +∇uT ) · n

∥∥ · n = 2 ‖µ‖ ∂un

∂`

∣∣∣∣
s

. (2.4.7)

Putting everything together and taking the limit as δ` −→ 0, we get the jump condition for
momentum

‖p‖ = γκ+ 2 ‖µ‖ ∂un

∂`

∣∣∣∣
s

+
1

2

∥∥εε0(E
2
n − E2

t1
− E2

t2
)
∥∥ . (2.4.8)

2.4.3 Surface charge equation

Integrating the voltage equation 2.2.1 along an interface gives rise to the following boundary
condition on voltage:

‖εε0E‖ · n = q (2.4.9)

where q is defined as the surface charge. To obtain charge conservation at the interface, we
integrate the charge density equation across the surface to get a surface charge equation [36],
a PDE for q,

∂q

∂t
+ u · ∇sq − qn · (n · ∇) · u = −‖σE · n‖ (2.4.10)

where∇s = (δ−nn)·∇ is the tangential gradient at the surface. The surface charge equations
allows charge to accumulate at the interface and advect with the tangential velocity along
the interface. The diffusion term is neglected here, as consistent with the bulk charge density
equation.
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Chapter 3

Computational Methods

The method described in this report has been implemented in the Aria module within
Sierra [26]. The Conformal Decomposition Finite Element Method (CDFEM) [24] is used
to capture the interfacial dynamics using the Krino module of Sierra for the level set and
conformal mesh functionality. This work is the first to use CDFEM to model multi-phase
electrohydrodynamic flows (see Figure 3.1).

Figure 3.1. Illustration of CDFEM in action for oppositely
charged droplets merging under the influence of an electric
field.

3.1 Implementation in Aria

The force on the fluid due to the electric field gets added to the momentum equation with
this line:

Momentum Stress = Maxwell

is included in the material block of the input file. In Aria, the Maxwell momentum stress
tensor gets added to the total stress tensor (including typically a form of the viscous stress
tensor) and requires the charge density to be defined.
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The voltage equation gets solved in Aria using the following input file syntax:

EQ Voltage for Voltage ON block_1 USING Q1 WITH DIFF SRC

Source For Voltage On block_1=Polynomial variable=CHARGE_DENSITY order=1 c0=0 c1=1

The term ‘DIFF’ activates the diffusion term (∇ · (ε∇φ)) and the ‘SRC’ term activates the
source term, which is given explicitly in the second line as the charge density, c0+c1ρV =SRC.
The Galerkin FEM residual for the voltage equation 2.2.1 in SIERRA/Aria is

Ri =

∫
V

(∇ · (εE)− ρV )φidV (3.1.1)

Ri = −
∫

V

[
(εE) · ∇φi + ρV φ

i
]
dV +

∫
S

φi (εE) · ndS. (3.1.2)

(3.1.3)

The charge density equation gets solved in Aria using the following input file syntax:

EQ Charge_Density for Charge_Density ON block_1 USING Q1 WITH MASS DIFF ADV SUPG

where the ‘MASS,’ ‘DIFF’ and ’ADV’ terms are for the time derivative, Ohm’s law, and ad-
vection terms respectively. The ‘SUPG’ term activates an SUPG stabilization for advection
dominated problems.

The Galerkin FEM residual for the charge density equation is

Ri =

∫
V

(
∂ρV

∂t
+∇ · (σE− ρV u)

)
φidV (3.1.4)

Ri =

∫
V

[(
∂ρV

∂t
+ uρV

)
φi − (σE) · ∇φi

]
dV +

∫
S

φi (σE) · ndS. (3.1.5)

(3.1.6)

Note that the natural boundary condition that falls out of the residual equation for charge
density is ‖σE · n‖ = 0. Note that this equation could be written only in terms of ρV by
substituting in the voltage equation to remove the electric field dependence and resulting in
a advection-decay equation for the charge density. This form is avoided here due to the fact
that one loses the coupling between these equations and it is no longer possible to put in
a no-flux charge boundary condition in the ODE form. For this reason, the charge density
equation is implemented with the original form in terms of the electric field. However, since
it is ρV and not E that is being solved for in this equation, the surface contribution of
equation 3.1.6 needs to be explicitly included into the Aria input file in order to include the
boundary term into the residual form for the charge density equation. This is done with the
input file line:
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BC Flux for Charge_Density on oil_BC = Nat_E

Because of the integration by parts in equation 3.1.3, the natural boundary condition (also
the default in Aria) is a no-flux boundary condition for ‖εE ·n‖ = 0 where ‖.‖ represents the
jump across the interface. Taking into account the fact that for our two-fluid problem there
may be discontinuities in both material parameters ε and σ across the interface, this natural
boundary condition is not equivalent to (and is in fact inconsistent with) no-flux of charge
across the interface, ‖J ·n‖ = ‖(−σE + ρV u) ·n‖ 6= 0. A no-flux charge boundary condition
across an interface between two immiscible fluids (one being conductive ionized water and the
other being insulating silicon oil) makes the more sense as an interfacial boundary condition
than the default boundary condition in this context.

For many relevant fluid time scales, charge only exists at the surface between conductors
and insulators (where a no-flux boundary condition might be imposed at the interface J·n = 0
between a conductor and an insulator).

In order to impose a no-flux boundary condition at the interface, we can applying the
corresponding flux to the voltage equation, such that ‖ (−σE + ρV u) · n‖ = 0. This is
implemented as a user subroutine with the equation∫

S

φi (εE) · ndS = ε1E1,n − ε2E2,n, (3.1.7)

where

E2,n =
1

σ2

(σ1E1,n + ρV,1un) . (3.1.8)

Here we make the assumption that charge density is only non-zero in the conductor, so that
the ρV,2u term drops out of one side of the equation. It is assumed that the velocity is
continuous across the interface and therefore has no sub-index. This boundary condition
can be invoked with the input deck syntax:

BC Flux for Voltage on surface_1=Surface_Charge e_1=1.0e-11 s_1=1.0e-12

Alternatively, we could instead allow charge to build up at the interface and have a
governing equation of interfacial charge on shell elements between volume blocks of the
mesh. A shell method for the lubrication equation has been successfully implemented in
GOMA and Aria [35]. We track a surface charge equation at the interface that conserves
charge and provides the boundary condition for the voltage equation at an interface [36]

q = ‖εE · n‖ (3.1.9)

∂q

∂t
= u · ∇sq − qn · (n · ∇) · u + ‖σE · n‖ (3.1.10)

where ∇s = (I − nnT ) · ∇ is the surface gradient. Note that when there is no fluid flow
(u = 0), the surface accrues charge due to an inward flux from the bulk medium. The input
file syntax for the surface charge equation is:
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EQ SurfaceCharge for Surface_Charge ON shell_block USING Q1P0 WTIH Mass Adv Src

Note that the surface charge equation is only applicable on shell elements and is still a
research code and is not yet available in the master branch of Aria.

3.2 CDFEM

The conformal decomposition finite element method (CDFEM) [24] is a sharp interface
method that decomposes elements along fluid-fluid boundaries and uses a level set function
to represent the interface. By dynamically inserting nodes and edges as the interface evolves,
weak and strong discontinuities can be described using standard finite element shape func-
tions. This method is a generalization of the finite element method that adds nodes to
unstructured meshes of triangles (in 2D, see Figure 3.2) and tetrahedra (in 3D). CDFEM

Figure 3.2. Illustration of CDFEM mesh cutting algorithm

allows the level set surface to arbitrarily cut through the original mesh, and therefore the
quality of the resulting conformal elements could be in jeopardy since it can produce sliver
elements. In [24], the method’s accuracy is quantified and determined that optimal con-
vergence rates for piecewise linear elements can be obtained both on the volumes and the
surfaces containing the discontinuities. One can also compare CDFEM to the eXtended
finite element method (XFEM) with Heaviside enrichment, since the XFEM space can be
recovered by adding constraints on the nodes added in the conformal decomposition. In
fact Noble et al. [24] found that CDFEM is no less accurate than XFEM with Heaviside
enrichment.

A level set field is used to decompose the mesh, thus enriching the finite element de-
scription. This decomposition produces a standard set of elements which are then assembled
using standard finite element shape functions and quadrature. This is in contrast to XFEM
where interpolation and quadrature must be significantly modified to accommodate the en-
richment. In CDFEM, element enrichment occurs by decomposing finite elements that span
the zero level set into elements that conform to the original element as well as the zero
level set surface. The level set field consists of a piecewise linear field on triangular (or in
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3D, tetrahedral) elements. For dynamic meshes, elements are both added and removed as
the interface evolves. Parent elements get subdivided into new sub-elements and nodes get
added at interface intersection locations, but no Steiner points are created, and hence only
the minimum number of new elements are formed. The decomposition algorithm and its
associated degeneracies and treatment of the threshold at which the level set is close enough
to the parent edge to “snap to the grid” are described in full detail in [24].

3.3 Level set equations

An interface capturing method, specifically a level set method, is used to represent the
interface. In this approach a scalar level set field is used to approximate the signed distance
to the interfaces. A signed distance function is an implicit function defined in N -space (in
our case a 2 or 3D domain) such that its magnitude is equal to the distance from the interface
in N − 1 space (a line or surface) [28]. The sign of this signed distance function determines
whether a point is interior or exterior to the level set surface. We will assume that interfaces
move with the surrounding fluid, and therefore the level set distance function evolves with
a simple advection equation,

∂ψ

∂t
+ u · ∇ψ = 0. (3.3.1)

The zero level set of the level set field, ψ, represents the location of the interface.

Although the level set field gets initialized as a signed distance function, depending on
the fluid flow characteristics, ψ will eventually get distorted away from a true signed distance
function. This equation correctly evolves the zero level set, but does not preserve the signed-
distance property. Consequently, the level set field must be periodically reinitialized. In this
work, this is accomplished by recomputing the distance to the reconstructed piecewise linear
interface. In practice, we see degradation of the solution when reinitialization is performed
too frequently. This is possibly due to the fact that the zero level set gets reinitialized as a
piecewise linear function instead of remaining a smooth, higher order function.
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Chapter 4

Results

In this chapter we compare CDFEM to ALE methods and traditional diffuse level set meth-
ods, perform V&V for the code implementation for electrohydrodynamic flows and demon-
strate the code capabilities for more realistic problems in 3D.

4.1 Interfacial method comparison

We present a simulation comparison between an Arbitrary Lagrangian-Eulerian (ALE) method,
a diffuse level set method and CDFEM in Figure 4.1. We choose to model a droplet falling
due to gravity, which impacts the surface of an identical liquid below it and eventually
merges with the fluid below. Note that this is a difficult problem to solve because it is hard
to resolve the lubrication layer that develops between the droplet and the impact surface
without special treatment of the lubrication layer. Note that no such special treatment is
performed here. All of the simulations presented in Figure 4.1 are computed in Aria. As we
demonstrate here, the ALE method will produce poor quality elements as the mesh deforms
in time. Even with edge swapping algorithms and dynamic mesh refinement on large ele-
ments (simulations not shown), element inversion will occur prior to any topological change.
For such a method to capture the merging process, it would require adaptively inserting and
deleting elements. In this case, element deletion is the largest obstacle, as dynamic mesh
refinement and edge flipping can greatly aid in correcting for the large, stretched elements
that form at the top of the drop as it begins to fall. The thin region of oil between the water
droplet and the water reservoir prior to impact is where elements require removal in order
for merging to take place.

Both the diffuse level set method and CDFEM are able to handle the topological change
of droplet merging. However, both methods will tend to over predict coalescence due to the
nature of the level set algorithm, which is only as sensitive as the mesh width provided that
the width of the lubrication layer is wider than one mesh width, these methods can resolve
it, but beyond that the droplet are assumed to be in contact and merge. For a diffuse level
set method the effective mesh width is that of the parent geometry, and for CDFEM (a
sharp interface method) the mesh width prior to merging can be considerably smaller due to
mesh cutting along the interface as it evolves closer to the impact surface. For this reason,
CDFEM has the potential to perform better than a traditional level set method, provided
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that the upper and lower interfaces are not attempting the cut the same element. The diffuse
level set method requires mesh refinement in order to resolve the lubrication layer. CDFEM
handles this test problem better than a diffuse level set method without adaptation since
it is able to track the interface along element edges. In addition, The Krino library can
handle CDFEM adaptive mesh refinement near the interface, and this tool can greatly aid
in accurately predicting coalescence.

Figure 4.1. Simulations of a droplet falling due to gravity.
Left Panel: ALE method, Center Panel: Diffuse level set
method, Right Panel: CDFEM.

4.2 Verification

Code verification is of vital importance to ensure proper implementation and verify conver-
gence rates. The code changes to the SIERRA/Aria framework that have been made in order
to simulate the dynamics of charged droplets include adding the Maxwell stress tensor to
the Navier-Stokes momentum equation, a charge density equation in both the bulk and on
the surface, as well as new boundary conditions for the voltage equation and charge density
equation.

4.2.1 Maxwell stress tensor verification: viscous flow due to charge

We choose an analytic solution to the voltage and momentum equations on a [0, 1] × [0, 1]
domain and use the corresponding boundary conditions to solve our system of equations for
the fluid velocity given the presence of an electric force due to the Maxwell stress tensor.
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For simplicity, we choose a constant bulk charge, ρV = 0.2, a constant permittivity, ε = 0.1,
a constant viscosity, µ = 0.1, as well as neglecting inertial forces and pressure. This set of
assumptions provides us with a straightforward check for the Maxwell stress tensor imple-
mentation, since we avoid solving the continuity equation and the charge density equation.
Our system of equations is

∇ · (ε∇φ(x, y)) = −ρV (4.2.1)

2µ∇2u(x, y) = −ρV∇φ(x,y) (4.2.2)

We require a velocity solution that varies in both x and y. The corresponding analytic
solution of these equations is chosen as

φ(x, y) =
1

2

(
x2 + y2

)
(4.2.3)

u(x, y) = −1

2
xy2 (4.2.4)

v(x, y) =
1

2
x2y (4.2.5)

and thus Ex = −x and Ey = −y. The analytic solution is used to apply boundary conditions
for both voltage and velocities at x = 0, 1 and y = 0, 1. We simulate this steady-state problem
in Aria and perform a mesh refinement study, which demonstrates that our implementation
is correct and is second order accurate for velocity (see Figure 4.2).

4.2.2 Charge density verification: Relaxation on a spherical drop

Consider a charged drop of radius R0 in an isotropic fluid (see Figure 4.3), insulated from
external electric forces by a spherical insulator of radius R1 concentric with the drop. Because
of symmetry and incompressibility, the fluid remains at rest, even though the charge will
not. Assuming magnetic effects can be neglected, the electric field can be written as the
gradient of voltage, ϕ,

∇ · (ε∇φ) = −∇ · (εE) = −ρV (4.2.6)

Bulk charge

We assume the charge outside the drop is negligible, that ion mobility is negligible and we can
make Ohm’s law assumption, and conductivity and permittivity are uniform and constant.
Then interior to the drop the charge moves according to the equation

∂ρV

∂t
= −∇ · σE = σ∇ · E = −σ

ε
ρV . (4.2.7)
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Figure 4.2. Verification study for Maxwell stress tensor:
(Left) Velocity profile on [0, 1] × [0, 1] domain for u(x, y) =
0.5xy2. (Center) Slice through domain for all variable at
x = 0.75. (Right) Demonstrating second order accuracy of
velocity profile with applied electrical force. Four meshes are
analyzed (represented by solid squares).

We apply an initial condition for charge on the drop to be ρ0
V (R) to be only a function of R

(or constant). With this initial condition, equation 4.2.7 can be easily solved, obtaining

ρe(R, t) = ρ0
V (R)e−σt/ε. (4.2.8)

Surface charge

Next we compute the surface charge, q(t), as a function of time given some uniform initial
charge q0. The governing equation for the surface charge is obtained from conservation of
total charge, Q (i.e. charge that decays in the bulk remains at the surface of the drop)

4πR2
0q0 + 4π

∫ R0

0

ρ0
V (R)R2dR = Q = 4πR2

0q(t) + 4π

∫ R0

0

ρV (R, t)R2dR. (4.2.9)

The expression on the left represents the total charge at time t = 0, while the expression on
the right represents the total charge at time t ≥ 0. The two integral expressions represent
the total bulk charge in the interior of the drop. We apply equation 4.2.8 for the bulk charge
and solve for the surface charge

q(t) = q0 + qd(1− e−σt/ε) (4.2.10)

where we have defined

qd =
1

R2
0

∫ R0

0

ρ0
V (R)R2dR. (4.2.11)
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Figure 4.3. Geometry for verification problem: two con-
centric spheres. The interior sphere is conductive and carries
a charge. The outer sphere is an insulator.

Here, q0 represents the initial bulk charge per unit surface area, and qd is the total amount
of surface charge that can be obtained from the bulk.

Voltage

By symmetry, voltage is a function only of time and the distance, R, to the center of the
drop: ϕ = ϕ(R, t). Thus, written in spherical coordinates equation 4.2.6 becomes

1

R2

∂

∂R

(
R2 ∂ϕ

∂R

)
= −ρV

ε
= −1

ε
ρ0

V (R)e−σt/ε. (4.2.12)

We can decompose the potential homogeneous and particular solutions,

ϕ = ϕh + ϕp,

where the homogeneous solution, ϕh, satisfies the Laplace equation with nonzero boundary
conditions and the particular solution, ϕp, is due only to the bulk charge, and is zero outside
the interior sphere.

The voltage, ϕp, due to the bulk charge in the drop can be found by integrating equation
4.2.12 directly and imposing zero boundary conditions everywhere.

ϕp(R, t) = ϕ0(R)e−σt/εd for R < R0 (4.2.13)

where

ϕ0(R) =
1

εd

∫ R0

R

1

ζ2

∫ ζ

0

ξ2ρe
0(ξ)dξdζ (4.2.14)

The electric field due to the bulk charge can be computed by differentiating:

Ep(R, t) = −∂ϕp

∂R
=
e−σt/εd

εdR2

∫ R

0

ξ2ρe
0(ξ)dξ for R < R0 (4.2.15)
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For example, when the charge distribution is initially uniform,

εdϕp(R) =
1

6
(R2

0 −R2)ρe
0e
−σt/εd and εdEp =

R

3
ρe

0e
−σt/εd for R < R0

Comparing Equations 4.2.11 and 4.2.15, we see that the electric field at the boundary is
given by

εdE(R−0 ) = − lim
R→R−0

ε
∂ϕp

∂R
= qde

−σt/εd = εxEp(R+
0 ) (4.2.16)

where the last equality follows from the boundary condition on the electric field when q(t) =
0, and εx is the permittivity on the exterior of the drop.

The homogeneous solution, ϕh, satisfies a radial Laplace equation which can be directly
integrated to obtain

ϕh(R) =

{
a1 + a2/R R < R0

b1 + b2/R R > R0

With the condition of finite voltage at the center, get a2 = 0. Grounding the voltage at the
outside boundary, get b2 = −R1b1. Imposing continuity on the surface of the drop, we get
a1 = b1 +b2/R0 = b1(1−R1/R0). Now, supply the jump condition for the electric field based
on the charge density, q, on the surface of the drop: ‖εE‖ · n = q. Because ϕh is constant
inside the drop, there is no contribution to the electric field from the surface charge. Hence,
the field on the interior boundary of the drop is due only to the bulk charge, and is given by
equation 4.2.16. By symmetry there is no tangential component to the electric field, so the
jump condition on the electric field can be reduced to the following:

lim
R−→R+

0

εxEx(R, t) = q(t) + lim
R−→R−0

εdEd(R, t)

= q(t) + qde
−σt/εd

= q0 + qd

This can be evaluated by differentiating the exterior voltage:

lim
R→R+

0

∂ϕh

∂R
= b1 lim

R→R+
0

∂

∂R

(
1− R1

R

)
=
R1b1
R2

0

= − 1

εx

(q0 + qd)

Putting everything together, the total voltage is

ϕ(R, t) = ϕ0(R)e−σt/ε +
R2

0

εx

(
1

R0

− 1

R1

)
(q0 + qd) when R < R0

ϕ(R, t) =
R2

0

εx

(
1

R
− 1

R1

)
(q0 + qd) when R > R0

(4.2.17)

From equation 4.2.17, we see regardless of initial conditions, the exterior voltage and electric
field are independent of the behavior of the bulk charge, but rather, depend only on the total
charge in the drop.
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Uniform initial charge

Assuming ρe
0(R) = ρe

0 is uniform and the initial charge is zero, q0 = 0, we obtain the following
simplified analytic solution:

1. Bulk Charge:

ρe(R, t) = ρe
0e
−σt/εd for R < R0

2. Surface Charge:

q(t) =
1

3
R0ρ

e
0(1− e−σt/εd)

3. Voltage:

for R < R0 ϕ(R, t) =
ρe

0

6εd

(R2
0 −R2)e−σt/ε +

R3
0ρ

e
0

3εx

(
1

R0

− 1

R1

)
for R ≥ R0 ϕ(R, t) =

R3
0ρ

e
0

3εx

(
1

R
− 1

R1

)

We set up this test problem in Aria with the following parameters:

ρ0
V = 1.0× 10−9 g mm3

ε = 7.1× 10−10 sec-S/m
σ = 4.0× 10−4 S/m
tf = 1.0× 10−6 sec
R0 = 1.0 mm
R1 = 1.5 mm

and thus from equation 4.2.7 we have

ρV (tf ) = ρ0
V exp(−σtv/ε) = 5.693× 10−10. (4.2.18)

We show our results from this simulation in Figure 4.4. The charge decays exponentially
within the sphere and charge remains at the surface - although it does not build up as if total
charge were preserved. There are two reasons for this behavior. One, we do not account for
charge accumulation at the surface since charge is only computed in the bulk here, and two,
the is error associated with our no-flux boundary conditions. However, it should be noted
that the voltage is quite similar to the analytic solution (assuming that charge is allowed to
accumulate at the interface), and therefore this suggests that the surrounding fluid dynamics
are not extremely sensitive to charge conservation in this parameter regime (at least this is
true for droplet deformation - coalescence may be very dependent).
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Figure 4.4. Verification for charge density implementa-
tion: Left: Voltage potential comparison between analytic
solution and computational solution. Right: Charge density
decays appropriately, however for simple no-flux boundary
conditions, charge at the interface remains constant or builds
up much slower than it should if total charge were preserved.

4.3 Validation

Hamlin et al. [16] conducted a series of experiments of electrically driven coalescence (see
Figure 4.5). An electric field is applied by forcing a potential difference across the domain.
The water droplet is a salt solution of KCl that gains charge initially from the top electrode
via dielectrophoresis. Once the droplet is charged, it moves toward the lower water surface
and coalesces, forming a daughter droplet after pinch-off. In this paper it is discovered that
the convective time scale is important to the charge transfer dynamics.

The simulation results we compare these experiments to should not be exact since the
computations are in two-dimensions and hence surface tension effects will vary. The oil
to water viscosity ratio for the experiment was approximately 350 and the ratio for the
computation is 500. Due to the viscosity ratio, the time step for the water droplet as it
approaches the contact surface is fairly slow. The surface tension is assumed to be 40 g-
sec−2, which drives coalescence after the aqueous bridge forms. However, once contact occurs,
the time step is driven down quickly by a factor of 25 in order to capture coalescence and
keep the simulation stable. Dye injection for the simulation is accomplished by including a
benign initial species concentration in the droplet with a low diffusivity to keep track of how
the fluid originating in the droplet distributes into the lower fluid upon contact.

We see in Figure 4.6 that our computational results match well qualitatively with Hamlin
et al.’s experimental work, although we are not able to distinguish the formation of a daughter
droplet for this case. Since the simulation is in two dimensions only the surface tension effects
and pressure drop are different. In addition, the time scale for the charge density was chosen
to be much slower than is physically reasonable, since the fluid time scale and the charge

38



Figure 4.5. Electrically driven partial coalescence, showing
vortex penetration. The surrounding oil is highly viscous.
The water droplet contains blue food dye for visualization
of the penetrating vortex, which demonstrates that the fluid
advection time scale should not be neglected. Figure courtesy
of William Ristenpart [16].

density time scales are very different. Charge density should equilibriate much more quickly
in reality than it does in this simulation and it is also predicted that the daughter droplet
has a opposite charge from the parent drop since opposite charge ought to accumulate at
the surface of the drop, and may be the reason for the daughter droplet to pinch-off. This
computational experiment should be revisited once surface charge can be correctly accounted
for using shell elements and the full surface charge density equation.

Figure 4.6. Simulation result for validation experiment to
be compared with merging droplet and vortex formation in
[16] and shown in Figure 4.5.
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4.4 Droplet coalescence and cone formation

Figure 4.7 shows the formation of a Taylor cone at the bottom end of a charged droplet
due to an applied electric field. As opposed to a droplet driven downward by gravity, a
charged droplet moves with a pointed tip that sharpens with charge and the strength of the
electric field. Upon contact with the impact surface, the aqueous bridge is asymmetric. This
asymmetry is due to the fact that the neck region is so thin that the mesh becomes visible;
the neck region is only about 5-10 elements wide. As coalescence begins to take place, this
asymmetry disappears, but resolving the aqueous bridge at contact is very important to the
resulting dynamics of the system. In these computational experiments, viscosity is uniform
in the water and oil and surface tension lower than in the penetrating vortex case described
above.

Figure 4.7. Simulation results for cone formation of a
charged drop as it impacts an oppositely charged water sur-
face. The aqueous bridge that forms is asymmetric, resulting
from the mesh visibility at the neck width (about 5-10 ele-
ments wide).

In order to demonstrate the code capability in three dimensions, we perform simulations
shown in Figure 4.8. It is clear that a refined mesh is required in order to accurately capture
the neck region without mesh artifacts.
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Figure 4.8. 3D charged droplet simulation. Blue color
represents “dye injection” from droplet fluid into the lower
water reservoir.
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Chapter 5

Conclusion

Accurate and stable interface-tracking methods capable of capturing and predicting coales-
cence and break-up of interfaces are currently a major challenge in the computational science
community. Including electric forces and charge pose further challenges due to the complex-
ity of electrostatic and hydrodynamic interactions involved in coalescence. Therefore, we
require a novel modeling approach to understand this phenomenon. This report describes
a CDFEM approach to solving low to intermediate Reynolds number electrohydrodynamic
flow problems that has the potential to be adapted for use in a variety of application areas
including lab on a chip technology, purifying biodiesel fuel, and electrowetting. This capabil-
ity is available within Sandia’s internal Sierra codes. CDFEM treats interfacial dynamics by
cutting elements along the boundary such that the interface is exactly aligned with element
surfaces. This approach has many advantages including straightforward implementation of
interfacial Dirichlet boundary conditions, zero interfacial thickness, the ability to handle
complex topologies using unstructured meshes, and good convergence for stationary prob-
lems. We are able to demonstrate the method’s validity with analytic verification problems
and validation problems that we can compare to experimental data. This investigation is
able to demostrate droplet electrocoalecsence, however the bouncing phenomenon was not
able to be simulated for two reasons: (1) the time scale for which charge density decays
was considerably slowed down in this simulations in order to get a large enough time step
to allow for computation. Experiments suggest that the charge density redistributes almost
instantaniously and this is what causes the aqueous bridge to pinch off (since there is no
longer a force pushing the droplets together). (2) This phenomenon should only be seen in
three dimensions, which is computationally demanding on an adequetely refined mesh. The
first reason could be experimented with by restarting a simulation without any non-uniform
charge density distribution once the aqueous bridge has formed. It is predicted that in this
case, the bridge would pinch off due to pressure and surface tension minimization forces.
The second obstacle could soon be overcome with the axisymmetric capability for CDFEM
simulations in Aria. This capability would allow for effectively three-dimensional rotation-
ally symmetric simulations to be simulated with the computational cost of a two-dimensional
simulation.
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A The axisymmetric Maxwell stress tensor

In an axisymmetric setup, the electric field can be written as E = Erer + Ezez. Most
significantly, the aximuthal coordinate is zero: Eθ = 0. Then the Maxwell Stress Tensor can
be written as follows:

Te = εε0

 ErEr 0 ErEz

0 0 0
EzEr 0 EzEz

− 1

2
αεε0

 E2 0 0
0 E2 0
0 0 E2


=

1

2
εε0

 2E2
r − αE2 0 2ErEz

0 −αE2 0
2EzEr 0 2EzEz − αE2


In cylindrical coordinates, the divergence of a rank 2 tensor is given by

∇ ·

 Srr Srθ Srz

Sθr Sθθ Sθz

Szr Szθ Szz

 =

 ∂Srr

∂r
+ Srr

r
+ 1

r
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1
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For a symmetric tensor in cylindrical coordinates, this expression simplifies:

∇ ·

 Srr Srθ Srz

Sθr Sθθ Sθz

Szr Szθ Szz

 =

 ∂Srr
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r
+ ∂Szr

∂z
− Sθθ

r

0
∂Szz
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(rSrr) + ∂Szr
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0
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(rSrz)


Development of an axisymmetric capability in Aria is currently in progress for ALE methods,
and having this capability in place for CDFEM is on the horizon. This form of the Maxwell
stress tensor can be included in Aria for use in axisymmetric problems in the future. This
will save dramatically on computational time compared to fully three-dimensional problems.
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B Summary of scales and constants

B.1 Experimental timescales

1. Duration of Experiments: 0.5s ≤ τexp ≤ 0.8s [34].

2. Timescale for Aqueous Bridge: τb ≈ 8× 10−5s [34].

B.2 Length scales

1. Drop Radii: 10−4m ≤ R0 ≤ 10−3m

2. Radius of bridge (meniscus): Rb ≈ 10−5m

3. Drop Volume: 2µL = 2× 10−9m3

B.3 Electromagnetic constants and scales

1. Applied Electric Field: 105V/m ≤ E0 ≤ 106V/m

2. Permittivity of Free Space: ε0 ≈ 8.854× 10−12F/m

3. Permeability of Free Space: µ0 = 4π × 10−7V s/A m

4. Relative Permittivity of water: εw ≈ 80.1 (wikipedia)

5. Relative Permeability of Water: µM
w ≈ 1.0 (wikipedia)

6. Relative Permittivity of Polydimethylsiloxane: εpms � εw

7. Electric Pressure: εwε0E
2
0 ≈ 63.74Pa

B.4 Fluid properties

1. Density of Water: ρw = 103kg/m3

2. Viscosity of Water: µw = 10−3Pa s

3. Density of Polydimethylsiloxane: ρpms = 965.00kg/m3 [34].

4. Viscosity ofCa Polydimethylsiloxane: µpms = 0.965Pa s (Google)

5. Water/Polydimethylsiloxane Surface Tension: γwo = 10−2N/m [34].

6. Capillary Pressure: γwo/R0 = 10Pa
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B.5 Charged flow

1. Elementary Charge: e = 1.602176565(35)× 10−19C

2. 1mol = 6.02214078× 1023

3. Number of ions: 0.2mMKCl = 0.2mol/m3KCl [34].

4. Conductivity of deionized Water: 4× 10−4S/m ≤ σw ≤ 164× 10−4S/m [34].

5. Conductivity of Polydimethylsiloxane: σpms ≤ σw [34].

6. Ionic mobility of potassium: eω(K+) ≈ 7.15× 10−8m2/V s

7. Ionic mobility of chloride: eω(Cl−) ≈ 6.85× 10−8m2/V s

8. Diffusion coefficient of potassium: ω(K+)kB ≈ (2.65× 10−9m2/s)/300K

9. Diffusion coefficient of potassium: ω(Cl−)kB ≈ (1.70× 10−9m2/s)/300K

10. Charge Density: en0 ≈ 2× 104C/m3

B.6 Thermodynamics

1. Room Temperature: T = 300K

2. Boltzmann Constant: kB = 1.3806488(13)× 10−23J/K

3. Thermal Factor: kBT = 4.14× 10−21J

C Force comparisons

C.1 Full process

We Use a lengthscale of R0 = 1mm and a timescale of τ = 0.1s [34]. Then the local forces
at play scale as follows

1. Electric Force: fe ∼ ε∗E2
0/R0 ≈ (63.74Pa)/(10−3m) ≈ 6× 104N/m3

2. Viscous Force: fµ ∼ µu/R0τ ≈ (1Pa s)/(10−3m)(0.1s) ≈ 104N/m3

3. Surface Force: fc ∼ γ/R2
0 ≈ (10−2N/m)/(10−3m)2 ≈ 104N/m3

4. Inertia: fi ∼ ρlR0/τ
2 ≈ (103kg/m3)(10−3m)/(0.1s)2 ≈ 100N/m3

5. Gravity: fg ∼ g(ρl − ρu) ≈ (10m/s2)(35kg/m3) ≈ 350N/m3
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Clearly the electric force is dominant, while viscosity and surface forces are comparable, at
about 1/6 the strength, inertia is about 1/100 the strength of these, and gravity is 3.5 times
as strong as inertia

fµ

fe

∼ fc

fe

∼ 1

6

fi

fe

∼ 1

6
× 10−2 fg

fe

∼ 1

2
× 10−2

C.2 Aqueous bridge

We Use a lengthscale of Rb = 10−5m and a timescale of τb = 10−5s [34]. Then the local
forces at play scale as follows

1. Electric Force: fe,b ∼ ε∗E0/Rb ≈ (63.74Pa)/(10−5m) ≈ 6× 106N/m3

2. Viscous Force: fµ,b ∼ µu/Rbτ ≈ (1Pa s)/(10−5m)(10−5s) ≈ 1010N/m3

3. Surface Force: fc.b ∼ γ/R2
b ≈ (10−2N/m)/(10−5m)2 ≈ 108N/m3

4. Inertia: fi,b ∼ ρlRb/τ
2
b ≈ (103kg/m3)(10−5m)/(10−5s)2 ≈ 108N/m3

5. Gravity: fg,b ∼ g(ρl − ρu) ≈ (10m/s2)(35kg/m3) ≈ 350N/m3

Obtain the ratios:

fe,b

fµ,b

∼ 6× 10−4 fc,b

fµ,b

∼ fi,b

fµ,b

∼ 10−2 fg,b

fµ,b

∼ 3.5× 10−8

Here, the viscous forces appear to dominate, while the surface tension and inertia come in
second, at a relative strength of roughly 10−2. The electric force appears to have a relative
strength of 6× 10−4, and the force of gravity appears to be completely negligible, having a
relative strength of 3.5× 10−8. However, given that the scales for length and time are rough
estimates, and the fact that we have not yet accounted for charge mobility within the drop,
we should be cautious about neglecting any of these forces, except gravity.

D Groupings

D.0.1 Composite timescales

1. Magnetic Time: τm = µµ0σR
2
0 ≤ 2× 10−14s

2. Charge Relaxation Time: τe = εε0/σ ≈ 10−7s [34].

3. Ion Drift Time: τi = R0/eE0ω0 ≈ 5× 10−2s

4. Viscous Capillary Time: τvc = µR/γ ≈ 10−1s [34].
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5. Electroviscous Time: τev = µu/εwε0E
2
0 ≈ 1.5× 10−2s

6. Viscous Relaxation Time: τµ = τevMd = R2
0ρl/µu ≈ 10−3s

7. Inertial Capillary Time: τCa =
√
ρR3/γ

D.1 Summary of dimensionless numbers

D.1.1 Ratios of scales

1. Ratio of Characteristic Timescales

η =
τb
τ

(D.1)

2. Ratio of Characteristic Lengthscales

ζ =
Rb

R0

(D.2)

D.1.2 Charge and ion conservation

1. Ion Peclet Number

Pei =
R2

0

ω0kBTτ
≈ 3.77× 103 (D.3)

2. Ion Drift Number

Io =
kBT

eR0E0

≈ 8.625× 10−5 (D.4)

3. Ion Charge Number

Chi =
en0R0

ε∗E0

≈ 105 (D.5)

D.1.3 Electrodynamics

1. Masuda Number

Md =
ρlR

2
0ε
∗E2

0

µ2
u

≈ 6.374× 10−2 (D.6)

2. Electroinertial Number

Ie =
ρlR

2
0

ε∗E2
0τ

2
≈ 1.5× 10−3 (D.7)

3. Electroviscous Number

Ve =
µu

ε∗E2
0τ
≈ 0.16 (D.8)
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4. Electrogravity Number

Ge =
gR0 (ρl − ρu)

ε∗E2
0

≈ 5.5× 10−3 (D.9)

5. Electrocapillary Number

χe =
ε∗E2

0R0

γ
≈ 6.374 (D.10)

E Units associated to electric charge

Unit Symbol From “Base Units” Measures
Coulumb C C Charge
Ampere A A = C/s Current

Volt V V = J/C = N m/C Electic Potential
Ohm Ω Ω = V/A Resistence

Siemen S S = Ω−1 = A/V Admittance
Farad F F = C/V Capacitance
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