BNL-94214-2010 Formal Report

Proceedings of RIKEN BNL Research Center Workshop

Volume 95

Progress in High-p_⊤ Physics at RHIC

March 17-19, 2010

Organizing Committee:

Alexander Bazilevsky, Leslie Bland and Werner Vogelsang

RIKEN BNL Research Center

Building 510A, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

DISCLAIMER

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Preface to the Series

The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the "Rikagaku Kenkyusho" (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Memorandum of Understanding between RIKEN and BNL, initiated in 1997, has been renewed in 2002 and again in 2007. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists.

The RBRC has both a theory and experimental component. The RBRC Theory Group and the RBRC Experimental Group consists of a total of 25-30 researchers. Positions include the following: full time RBRC Fellow, half-time RHIC Physics Fellow, and full-time, post-doctoral Research Associate. The RHIC Physics Fellows hold joint appointments with RBRC and other institutions and have tenure track positions at their respective universities or BNL. To date, RBRC has ~50 graduates of which 14 theorists and 6 experimenters have attained tenure positions at major institutions worldwide.

Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists. A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center.

RBRC has an active workshop program on strong interaction physics with each workshop focused on a specific physics problem. In most cases all the talks are made available on the RBRC website. In addition, highlights to each speaker's presentation are collected to form proceedings which can therefore be made available within a short time after the workshop. To date there are ninety seven proceeding volumes available.

A 10 teraflops RBRC QCDOC computer funded by RIKEN, Japan, was unveiled at a dedication ceremony at BNL on May 26, 2005. This supercomputer was designed and built by individuals from Columbia University, IBM, BNL, RBRC, and the University of Edinburgh, with the U.S. D.O.E. Office of Science providing infrastructure support at BNL. Physics results were reported at the RBRC QCDOC Symposium following the dedication. QCDSP, a 0.6 teraflops parallel processor, dedicated to lattice QCD, was begun at the Center on February 19, 1998, was completed on August 28, 1998, and was decommissioned in 2006. It was awarded the Gordon Bell Prize for price performance in 1998.

N. P. Samios, Director March 2010

*Work performed under the auspices of U.S.D.O.E. Contract No. DE-AC02-98CH10886.

CONTENTS

Preface to the Series	
Introduction	i
Photograph of Workshop Participants	ii
High p _T at RHIC	
George Sterman	1
High p _T Physics from the AGS to the ISR to RHIC	
Mike Tannenbaum	7
Some Relevant Cases for Studying High-p _T Physics at the RHIC pp Collider	
Jacques Soffer	13
CHE: W Production at NLO and the Polarized Sea Distributions	
Daniel de Florian	21
First W Production Results from STAR	
Harold Spinka	27
W Boson Production and Spin Asymmetry Measurements at PHENIX	
Kenichi Karatsu	33
Longitudinal Parity-Violating Asymmetry in W-Boson Mediated Jet Pair Production	
Pavel Nadolsky	39
Spin Physics Results from COMPASS	
Christian Schill	45
The STAR W Physics Program - Status and Future Plans	
Bernd Surrow	51
Heavy Quark Correlations in Polarized pp Collisions	
Marco Stratmann	57
Status of the Gluon Spin Program at STAR	
Scott Wissink	63
Gluon Polarization: Status and Plans for Measurements at PHENIX	
Swadhin Taneja	69
SSAs in Hadron-Hadron Collisions and TMDs	
Mauro Anselmino	75
Transverse Spin Measurements at PHENIX	
John Koster	8 1
Measurement of the Collins Asymmetry in Mid-Rapidity Jets at STAR	
Robert Fersch	87
Nontrivial Relations Between GPDs and TMDs	
Andreas Metz	93
Recent Results and Future Prospects for Drell-Yan Experiments	
Jen-Chieh Peng	99
New Probes for the Future Transverse Spin Physics @ RHIC	
Ming Liu	105

Looking Forward (Rapidity) at RHIC	
Feng Yuan	111
Fragmentation Function Measurements at Belle	
Ralf Seidl	117
Recent Results from HERMES	
Delia Hasch	123
Two-Particle Correlations and the Small-x Gluon Four-Point Function	
Adrian Dumitru	129
Double Transverse Spin Asymmetries as a Probe for New Physics	
Wilco den Dunnen	135
Low Mass Dilepton Production at High-p _T	
Jianwei Qiu	141
Probing Low x in d+Au and p+p Collisions in PHENIX	
Zvi Citron	147
Low x Measurements at STAR	
Hank Crawford	153
Photon-Hadron Correlations	
Jamal Jalilian-Marian	159
Transverse Λ Polarization and Small- χ Physics	
Daniel Boer	165
TMDs in Two-Photon Production	
Mark Schlegel	171
Medium Modified Fragmentation Functions and PDFs	
Rodolfo Sassot	177
Jet Measurements in p-p and A-A Collisions	
Mateusz Ploskon	183
\sqrt{s} Dependence of Pion Distributions	
Martin Purschke	191
Nucleon Spin Structure Studies at JLab	
Zein-Eddine Meziani	1 99
High pt Physics: LHC Prospects	
Brian Cole	205
The Science of Future Electron Ion Collider Connections to Existing Facilities	
Abhay Deshpande	211
List of Registered Participants	217
Agenda	219
Additional RIKEN BNL Research Center Proceeding Volumes	221
Contact Information	

INTRODUCTION

This volume archives the presentations at the RIKEN BNL Research Center workshop "Progress in High- p_T Physics at RHIC", held at BNL in March 2010.

Much has been learned from high- p_T physics after 10 years of RHIC operations for heavyion collisions, polarized proton collisions and d+Au collisions. The workshop focused on recent progress in these areas by both theory and experiment.

The first morning saw review talks on the theory of RHIC high- p_T physics by G. Sterman and J. Soffer, and on the experimental results by M. Tannenbaum. One of the most exciting recent results from the RHIC spin program is the first observation of W bosons and their associated single-spin asymmetry. The new preliminary data were reported on the first day of our workshop, along with a theoretical perspective. There also were detailed discussions on the global analysis of polarized parton distributions, including the knowledge on gluon polarization and the impact of the W-data.

The main topic of the second workshop day were single-transverse spin asymmetries and their analysis in terms of transverse-momentum dependent parton distributions. There is currently much interest in a future Drell-Yan program at RHIC, thanks to the exciting physics opportunities this would offer. This was addressed in some of the talks. There also were presentations on the latest results on transverse-spin physics from HERMES and BELLE.

On the final day of the workshop, the focus shifted toward forward and small-*x* physics at RHIC, which has become a cornerstone of the whole RHIC program. Exciting new data were presented and discussed in terms of their possible implications for our understanding of strong color-field phenomena in QCD. In the afternoon, there were discussions of nuclear parton distributions and jet observables, among them fragmentation. The workshop was concluded with outlooks toward the near-term (LHC, JLab) and longer-term (EIC) future.

The workshop has been a great success. We had excellent presentations throughout and productive discussions, which showed the importance and unique value of the RHIC high- p_T program. We are grateful to all participants for coming to BNL.

The support provided by the RIKEN-BNL Research Center for this workshop has been magnificent, and we are most grateful for it. We also thank Brookhaven National Laboratory and the U.S. Department of Energy for providing additional support and for the facilities to hold this workshop. Finally, sincere thanks go to Pamela Esposito for her most efficient and tireless work in organizing and running the workshop.

Alexander Bazilevsky, Leslie Bland, Werner Vogelsang June 2010 .

HIGH- p_T AT RHIC

George Sterman

C.N. Yang Institute for Theoretical Physics SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA

Abstract

This talk reviews some aspects of jet physics at hadron colliders. Energy flow plays a central role in jet identification, although different jet definitions will provide different cross sections, both theoretically and experimentally. At the RHIC, both Star and Phenix have made innovative use of this framework to measure jet cross sections for both proton and nuclear initial states. Single-particle inclusive cross sections are related to jet cross sections by factorization theorems. This observation sheds light on some surprising recent data from the Tevatron. • What we're really looking at here (with local source J)

$$egin{aligned} \sigma[f] &= \lim_{R o \infty} eta \, d^4 x \mathrm{e}^{-iq \cdot y} & \mathrm{II} \ A \hat{n}^{(a)} \, f_a(\hat{n}^{(a)}) \ & imes \langle 0 | \, J(0) T[\mathrm{II} \ \hat{n}_i^{(a)} T_{0i}(x_0, R \hat{n}_a) J(y)] \, | 0
angle \end{aligned}$$

(Sveshnikov & Tkachov 95, Korchemsky, Oderda & GS 96, Bauer, Fleming, Lee & GS 08, Hofman & Maldacena 08)

With T_{0i} the energy momentum tensor at the detector

• "Weights" $f^{(a)}(\hat{n})$ should introduce no new dimensional scale

Short-distance dominated if all f continuous almost everywhere.

• We only have to ask "smooth" questions.

Gaussian filtering.

(Lai and Cole, 2008)

- Seems to me most closely to energy flow, with a weight function as above.
- Replaces the *theta*-function weights of cone algorithms with a truly smooth function.

$$ilde{p}_T(\eta,\phi) = egin{array}{c} d\hat{n} \, p_T(\hat{n}) \, e^{-(\eta-\eta(\hat{n}))^2 - (\phi-\phi(\hat{n}))^2} \end{array}$$

which is

$$egin{aligned} ilde{p}_T(\eta,\phi) &= \lim_{R o\infty} \int d\hat{n} \, rac{1}{\cosh\eta(n)} ig\langle AA | \hat{n}_i T_{0i}(x_0,R\hat{n}) \, | AA
angle \ & imes e^{-(\eta-\eta(\hat{n}))^2 - (\phi-\phi(\hat{n}))^2} \end{aligned}$$

• Year-old CDF Data, as analyzed in papers by Albino, Kniehl and Kramer (1003.1954) Arleo, d'Enteria and Yoon (1003.2963):

- This data had been hanging around since last April (0904.1098), but its significance was lost in a comparison with PYTHIA tunes. It was published in Phys. Rev. D (2009).
- Both AKK and AEY observe: either a (big) problem with universality of fragmentation or with the data itself.

- A QCD description is difficult. Isolated single pions are suppressed compared to jets by at least $\alpha_s (f_\pi/p_T)^2 \sim 10^{-4}$ at 100 GeV.
- But compared to NLO jets (red) and NLO 1PI (green) the data (with green fit) looks like:

(Vogelsang, yesterday)

• A general form at $\eta = 0$; $z = x_a x_b = \hat{s}/S$:

$$Erac{d^3\sigma}{d^3p_T}=rac{1}{p_T^4}\int_{x_T^2}^1 dz {\cal L}_{
m partonic}(z)\,\omega(x_T,z)$$

• Suppose a narrow resonance at $M^2 = z_0 S$ decays to single hadrons plus unobservable particles . . .

$$\omega(x_T,z)=f(4x_T^2/z_0)\,\delta(z-z_0)$$

• Then

$$Erac{d^3\sigma}{d^3p_T}=rac{1}{p_T^4}\,\mathcal{L}_{ ext{partonic}}(z_0)\,f(4x_T^2/z_0)\,,$$

- and the distribution $f(4x_T^2/z_0)$ can be read off from the data where it dominates QCD fragmentation, while it cuts off abruptly at $2x_T = \sqrt{z_0}$.
- But of course, it should be wide and not narrow, and where does the rest of the energy go, etc., etc?

High p_T physics from the AGS to the ISR to RHIC

M. J. Tannenbaum **Brookhaven National Laboratory** Upton, NY 11973 USA

Progress in High-p_T Physics at RHIC **RBRC** Workshop, BNL March 17, 2010

ffice of

BROOKHAVEN

Progress in High-p_T Physics at RHIC **PH***ENIX M. J. Tannenbaum 1/48

Timeline of hard-constituent Scattering

• 1968--Deeply Inelastic scattering of electrons on protons observed at SLAC. First direct indication of sub-constituents of proton, "partons" as explained by Bjorken scaling [J.D. Bjorken, Phys. Rev. **179**, 1547 (1969)]

• 1971--High p_T scattering of "partons" via QED predicted for p-p collisions by Bjorken, Berman, Kogut [BBK, Phys. Rev. D4, 3388 (1971)]

• 1972 First evidence of hard-scattering of constituents discovered at CERN ISR--attention turns from spectroscopy to "high p_T physics"

• 1974--J/ ψ discovered at BNL and SLAC-people start believing that partons are real and are the same as quarks.

• 1972-1982 properties of hard-scattering and "Jets" mapped out at CERN-ISR for a decade 1975,1977-78 first theory papers on QCD applied to hard-scattering

• 1982-Constituent-scattering Angular distribution measured at ISR in agreement with QCD. (Rutherford scattering of quarks). SppS (UA2)-first observation of unbiased Jets in hadron collisions.

Office of Science BROOKHAVEN Progress in High-p_T Physics at RHIC PH*ENIX M. J. Tannenbaum 2/48

Searches for W boson in p-p collisions

• 1965-1969 Beam dump experiments at ANL-ZGS and BNL-AGS looking for "large angle" muons didn't find any. [ZGS-Lamb, et al PRL 15, 800 (1965), AGS-Burns, et al, ibid 830, AGS-Wanderer et al, PRL 23,729(1969)]

• How do you know how many W should have been produced?

• Chilton, Saperstein, Shrauner [PR148, 1380 (1966)] emphasize the importance of the timelike form factor, which is solved by

• Y. Yamaguchi [Nuovo Cimento 43, 193 (1966)] Timelike form factor can be found by measuring the number of lepton pairs e^+e^- or $\mu^+\mu^-$ "massive virtual photons" of the same invariant mass; BUT the individual leptons from these electromagnetically produced pairs might mask the leptons from the W[±].

• This set off a spate of single and di-lepton experiments, notably the discovery by Lederman et al of "Drell-Yan" production at the BNL-AGS, E70 at FNAL and CCR at the CERN-ISR.

Office of Science BROOKHAVEN Progress in High-p_T Physics at RHIC PH*ENIX M. J. Tannenbaum

LML very excited in 1970: AGS-diµ continuum +Bj scaling→W cross section at any √s

The CERN ISR was the first Hadron Collider and made many discoveries and developed many techniques which are in use in Au+Au and p-p collisions at RHIC today.

G. Giacomelli and M. Jacob, Phys. Rept. **55** (1979) 1-132 M. Jacob and K. Johnsen, CERN Yellow Report 84-13

The rapidity plateau (although several of my RHI colleagues don't believe in a plateau). Will not be discussed in this talk.
 Hard scattering in p-p collisions via particle production at large p_T which proved that the partons of DIS strongly interacted with each other. x_T scaling measurements to find the underlying physics.
 Proof using same-side and away side two particle correlations that high p_T particles in p-p collisions are produced from states with two roughly back-to-back jets which are the result of scattering of constituents of the nucleons as described by QCD, which was developed during the course of these measurements.

CERN-ISR Discoveries, cont'd

• direct lepton (e[±]) production from the decay of (unknown at that time-1974) particles composed of b and c quarks.

• first and only J/Psi cross section measurement for all pair $p_T \ge 0$ at a hadron collider, until PHENIX at RHIC [PRL 92 (2004) 051802] and CDF [PRD 71(2005) 032001 (15 years after their first publication)]

direct photon production

Status of QCD Theory in 1978

• The first modern QCD calculation and prediction for high p_T single particle inclusive cross sections including non-scaling and initial state radiation was done in 1978 by J. F. Owens, E. Reya, M.Gluck, PRD **18**, 1501 (1978), "Detailed quantum-chromodynamic predictions for high- p_T processes," and J.F. Owens, J. D. Kimel, PRD **18**, 3313 (1978), "Parton-transverse-momentum effects and the quantumchromodynamic description of high- p_T processes".

• This work was closely followed and corroborated by Feynman, Field, Fox PRD **18**, 3320 (1978), "Quantum-chromodynamic approach for the large-transverse-momentum production of particles and jets."

• Unfortunately jets in 4π Calorimeters at ISR energies or lower are invisible below $\sqrt{\hat{s}} \approx E_T \le 25$ GeV, which led to considerable confusion in the period 1980-1982.

CO Office of Science Progress in High-p_T Physics at RHIC PH*ENIX M. J. Tannenbaum 26/48

QCD and Jets

are now a cornerstone of the standard model

• Incredibly at the famous Snowmass conference in July 1982, many if not most people were skeptical

e.g. MJT Seminar 3/22/82

• The International HEP conference in Paris, three weeks later, July 26--31, 1982 changed everything.

Science BROCKHAVEN Progress in High-p_T Physics at RHIC PH*ENIX M. J. Tannenbaum

At the CERN ISR from 1975-1982 two-particle correlations showed unambiguously that high p_T particles come from jets.

For the past decade these single and two-particle techniques were used exclusively at RHIC for hardscattering, with outstanding results...

SOME RELEVANT CASES FOR STUDYING HIGH-P $_T$ PHYSICS AT THE RHIC PP COLLIDER

Jacques Soffer

Department of Physics, Temple University Philadelphia, Pennsylvania 19122-6082, USA E-mail: jacques.soffer@gmail.com

Abstract

Spin occurs in all particle processes, so by ignoring this fundamental quantum number, we will certainly miss a relevant part of the story. Needless to say that spin observables allow a deeper understanding of the underlying dynamics and this sometimes leads to uncover new important tools. We should also remember that the spin sector of pQCD remains to be carefully checked and the high-p_T kinematic region is the most appropriate region to study QCD spin physics at the energy of the RHIC pp collider. We will consider successively for various processes, double helicity asymmetries A_{LL} , which are sensitive to quark and gluon helicity distributions, double transverse spin asymmetries A_{TT} , depending upon the quark transversity distributions, spin transfer in Λ production involving fragmentation functions, single spin asymmetries A_N with some new mechanisms to generate them and finally search for new physics. Positivity constraints will occur in the discussion of some of these topics. Expected high- $p_T A_{LL}$ data on γ production at RHIC

Predictions for larger p_T

Expect $A_{LL}(\pi^+) > A_{LL}(\pi^0) > A_{LL}(\pi^-)$ if $\Delta G > 0$

What positivity can bring into this game?

New general positivity bounds were derived

(J.S., PRL 91,092005,2003), among the spin observables in a single particle inclusive reaction, where the two initial particles carry a spin-1/2. In particular for y = 0 one has

 $1 - A_{TT}(y = 0, p_T) \ge 2|A_N(y = 0, p_T)|$

for any value of \sqrt{s} and p_T . From the previous results $A_{TT} \sim 0$ for $pp \rightarrow \gamma X$ and $pp \rightarrow jet X$, we get a strong bound e.g. $|A_N| \leq 1/2$. (See also a recent review on positivity: X. Artru, M. Elchikh, J.M. Richard, J.S., O. Tervaev, Phys. Reports, 470, 1 (2009))

Single spin asymmetry A_N in W^{\pm} production

Consider the collision $p^{\uparrow}p$ with a proton p of momentum \overrightarrow{p} , carrying a transverse spin \overrightarrow{s}_p producing a W^{\pm} of transverse momentum $\mathbf{p_T}$. The SSA in first approximation factorizes and then it reads

$$A_N^{W^{\pm}}(\sqrt{s}, y, \mathbf{p}_T) = H(p_T) A^{\pm}(\sqrt{s}, y) \mathbf{S}_p \cdot \hat{\mathbf{p}} \times \mathbf{p}_T, \tag{1}$$

where \mathbf{p}_T is the transverse momentum of the W^{\pm} produced at the c.m. energy \sqrt{s} and $H(p_T)$ is a function of p_T , the magnitude of \mathbf{p}_T . For W^+ we have

$$A^{+}(\sqrt{s}, y) = \frac{\Delta^{N} u(x_{a}) d(x_{b}) + \Delta^{N} d(x_{a}) u(x_{b})}{u(x_{a}) \bar{d}(x_{b}) + \bar{d}(x_{a}) u(x_{b})},$$
(2)

where y denotes the W^+ rapidity, which is related to x_a and x_b . Actually we have $x_a = \sqrt{\tau}e^y$ and $x_b = \sqrt{\tau}e^{-y}$, with $\tau = M_W^2/s$, and we note that a similar expression for $A_N^{W^-}$, the SSA corresponding to W^- production, is obtained by permuting u and d. This allows to perform a flavor separation of the Sivers functions.

Search for New Physics at RHIC

- Why ? : polarized protons at RHIC may discover a new pure hadronic interaction of weak strength. New interactions involving leptons would have been discovered at other facilities (LEP, HERA, Tevatron-(Drell-Yan)).
- $\vec{p}\vec{p}$ RHIC facility :
 - highest Energy ($\sqrt{s} = 500 \ GeV$)
 - + highest Luminosity ($L = 800 \ pb^{-1}$)
 - + highest Polarisation (P = 70 %).

CHE: W production at NLO and the polarized sea distributions

Daniel de Florian Universidad de Buenos Aires, Argentina

in collaboration with Werner Vogelsang

We present a next-to-leading order calculation of the cross section and longitudinal spin asymmetry in single-inclusive charged-lepton production, pp -> e X, at RHIC, where the lepton is produced in the decay of an electroweak gauge boson. Our calculation is presented in terms of a multi-purpose Monte-Carlo integration program that may be readily used to include experimental spin asymmetry data in a global analysis of helicity parton densities. We perform a toy global analysis, studying the impact of anticipated RHIC data on our knowledge about the polarized anti-quark distributions. Need to count with a new calculation $\sigma(pp \xrightarrow{\longrightarrow} e\bar{\nu}X)$

- Exclusive to implement experimental cuts
- Unpolarized, single polarized and double polarized
- "Ready/Available" for Mellin implementation
- Full NLO in line with other observables already in fit
- Allow to compute Z/Gamma 'background'

Monte-Carlo-like (set of) code(s)

CHE : Collisions at High Energies

Full access to final and initial state kinematics : compute any infrared-safe observable

Little modification in the distributions \checkmark Strong reduction in uncertainty band at x > 0.07 !!

More precise data and extended coverage

Very nice prospects for $~x\gtrsim 0.05$

Simulated data generated in agreement with DSSV : strong bias towards SIDIS

Summary (good news)

single inclusive lepton ✓ CHE : Full NLO calculation for W asymmetries

✓ Includes Z/Gamma contribution

 \checkmark Can be included in Global Fit (Mellin grids)

 \checkmark First (realistic) analysis with 'simulated' data

 \checkmark W asymmetries clearly help to constrain $\Delta \bar{u} \ , \ \Delta \bar{d} \ x \gtrsim 0.05$

During next decade : Confront/Compete/Check/Replace SIDIS ! (in some kinematical range)
First W Production Results from STAR

Hal Spinka (ANL) for the

Progress in High p_T Physics at RHIC, RBRC Workshop 17 March 2010

Cross Section – Shape

- A comparison is shown of full PYTHIA + GEANT simulations of STAR W \rightarrow e v events at 500 GeV.
 - The systematic uncertainties were estimated by varying cuts and normalization regions for the QCD background and by varying the BEMC energy scale uncertainty (\pm 7.5%).

Cross Section – Results

A_L Determination – Results

Physics asymmetries (A_L , A_{LL}) are corrected for unpolarized background.

A_L Determination – Results

 $\begin{aligned} & \mathsf{STAR \ Preliminary \ Run \ 9} \\ & A_L(W^+) = -0.33 \pm 0.10(\text{stat.}) \ \pm 0.04(\text{syst.}) \\ & A_L(W^-) = \ 0.18 \pm 0.19(\text{stat.}) \ \overset{+0.04}{-0.03}(\text{syst.}) \end{aligned}$

- For mid-rapidity, W decay electrons / positrons
 - A_L (W⁺) is negative, as predicted, by 3.3 σ.
 - A_L (W⁻) is consistent with being positive, as expected.

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

Summary

- There was a successful polarized $\sqrt{s} = 500$ GeV p+p run at RHIC last year. First data were collected at this energy.
- STAR observed W decay electrons and positrons at mid-rapidity (|η| < 1).
 - The measured cross sections for both W⁺ and W⁻ are in reasonable agreement with theoretical expectations.
 - The parity-violating asymmetries, A_L, were also obtained and the results agree with theoretical predictions. In particular, A_L (W⁺) was found to be 3.3 σ away from zero (negative).
 - Future results will work towards flavor separation of the different quark and anti-quark contributions to the proton spin.
- We look forward to additional $\sqrt{s} = 500$ GeV data in the future (see the upcoming talk by B. Surrow).

W boson production and spin asymmetry measurements at PHENIX

Kyoto University/RIKEN Ken'ichi Karatsu for the PHENIX Collaboration

- W bosons provide possibilities for flavor separated measurements, and asymmetry of W production is sensitive to the polarization of sea quark
- Upgrades are ongoing to measure W boson in the PHENIX Muon Arms. They have been partially installed & tested at 2009 & 2010 RHIC Run.
- -> They are ready for the next 500 GeV run!
- ◆ PHENIX observed W→ e decay in the mid-rapidity region (PHENIX Central Arms) at 2009 RHIC Run (Run9).
- -> Preliminary result for single spin asymmetry $|\underline{A}_{L} = -0.83 \pm 0.3 1|$
- Analysis of W measurement at PHENIX Central Arms is ongoing and will be finalized soon (first measurement of W bosons at RHIC!)
- -> Experience from analysis also enables us to obtain greater result from the next 500 GeV run!

Measured spectra (PHENIX Central Arms)

Data driven BG estimation:

- (EMCal cluster) x (conversion + mis association probability)
- The rest is explained by the h[±] shape (NLO pQCD+EMCal response, scaled so that the sum matches the 10-20 GeV region)

Charge separated spectra (PHENIX Central Arms)

Charge sign :

from DC angle (2.3 σ separation for 40GeV/c track

++ magnetic field

Integrals are roughly

adjusted to the expected ratio

e+

The same factor for PYTHIA was used for signal shape $W^- \rightarrow e^-$ signal has less acceptance than $W^+ \rightarrow e^+$ signal

90+% of signal is kept (red histograms)

Single Spin Asymmetry (positive charge)

Longitudinal parity-violating asymmetry in W-boson mediated jet pair production

Pavel Nadolsky

Southern Methodist University

March 17, 2010

Based on E. Berger and P. Nadolsky, Phys. Rev. D78, 114010 (2008)

Pavel Nadolsky (SMU)

High-pT Physics workshop, LBNL

3/17/10 1

Two classes of subprocesses with \boldsymbol{W} bosons

- 1: Resonant (s-channel) W boson production
- dominant parity-violating process at $Q \approx M_W$
- Leptonic decays: $Br(W \rightarrow e\nu_e) \approx 10.8\%$
- Hadronic decays: $Br(W \rightarrow hadrons) \approx 67\%$

Calculation of the dijet cross sections

- Compute $pp \rightarrow \text{jet} + \text{jet} + X$, approximated by $2 \rightarrow 2$ exchanges of V = g, $\gamma^*.W^{\pm}, Z^0$ in the s, t, and u channels; orders α_{EW}^2 , $\alpha_s \alpha_{EW}$, and α_s^2
- Cross sections are fully differential in the momenta of two jets; allow acceptance cuts
- MadGraph for generation of cross sections and MadEvent for phase-space Monte-Carlo integration. Programs operate with helicity-dependent scattering amplitudes, but typically the amplitudes are summed over all helicity combinations to produce spin-averaged cross sections.
 - modified MadEvent to evaluate single-spin cross sections (available upon request)

Pavel Nadolsky (SMU)	High-pT Physics workshop, LBNL	03/17/10	16

Unpolarized dijet mass (Q) distributions

Continuous event distribution from QCD and electromagnetic scattering (g and γ^*) dominates

■ "Signal region" = region in which Q is close to M_W (e.g., $70 \le Q \le 90 - 100 \text{ GeV}$)

Even in this region, the spin-averaged W and Z contribution is no more than a few percent of the full event rate

Pavel Nadolsky	(SMU)	High-pT Physics workshop, LBNL	03/17/10	17
	territoria da constructione de la construcción de la construcción de la construcción de la construcción de la c			

Spin-dependent dijet production

With subtraction

■ $\mathcal{O}(\alpha_s^2)$ terms, other non-resonant contributions are measured at Q < 70 GeV and Q > 90 GeV; interpolated and subtracted from D at 70 < Q < 90 GeV

 \blacksquare A_L is enhanced; statistical errors remain reasonable

Sensitivity to $\Delta f_{a/p}$ is improved all uncertainties

Error bars are projected statistical uncertainties for $\mathcal{L}=160~{
m pb}^{-1}$, $P_{beam}=0.7$

Pavel Nadolsky (SMU)	High-pT Physics workshop, LBNL	03/17/10	24

Sensitivity of A_L to $\Delta \bar{q}$ A_L for production of jet pairs, after side-band subtraction

For y < 0, pronounced variations in A_L due to the variation of $\Delta \overline{d}(x, Q)$

The black curve corresponds to the DNS2005 NLO PDF set 1. The pairs of other curves contain the ranges of A_L obtained if $\Delta q \equiv \int_0^1 dx \,\Delta q(x, 3.16 \text{ GeV})$ is varied within $\Delta \chi^2 / \chi^2_{min} < 2\%$

Pavel Nadolsky (SMU)	High-pT Physics workshop, LBNL	03/17/10	25
 and the second			

Spin Physics Results from COMPASS

Christian Schill Universität Freiburg for the COMPASS collaboration

- Selection of Results
 - DIS and Polarized Distribution Functions
 - Polarization of the strange quark sea
 - Asymmetry of the polarized sea
 - Direct measurements of ∆g/g
 - Transversity measurements
- Future plans
 - Near future: transverse and longitudinal data
 - Study of GPD using DVCS and HEMP
 - Drell-Yan

Progress in High-Pt Physics at RHIC, BNL, Mar. 2010

Proton & Deuteron $g_1(x)$ world data

Proton data - world

Deuteron data - world

 $(\Delta s + \Delta s) = 1/3(a_0 - a_8) = -0.08 \pm 0.01 \pm 0.02$

Compass results for $\Delta u(x)$, $\Delta d(x)$, and $\Delta s(x)$

LO semi-inclusive data analysis of COMPASS proton and deuteron data

DNS: De Florian, Navarro, Sassot, Phys. Rev. D71, 2005

Results on direct measurements of $\Delta g/g$

Collins Asymmetries

<u>New:</u> full 2007 proton data set (statistics tripled)

Two-hadron asymmetry

- large asymmetries
- interference FF and transversity sizable

The STAR W Physics Program

- Status and Future Plans -

Bernd Surrow

(On behalf of the STAR Collaboration)

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

Bernd Surrow

Outline

- Run 9 Lessons and Expectations:
 STAR W Results
- Future Plans STAR W Program

O Plans

- Projections of future mid-rapidity measurements
- Projections of future forward/ backward rapidity measurements

O Layout

O Technical realization

O Schedule

 Summary and Outlook

Introduction

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

Bernd Surrow

Introduction

□ STAR W program in e-decay mode at mid-rapidity and forward/backward rapidity

- Key signature: High p_T lepton
 (e⁻/e⁺)(Max. M_W/2) Selection
 of W⁺/W⁻: Charge sign
 discrimination of high p_T
 lepton
- Required: Lepton/Hadron discrimination

Workshop on Progress in High-pT Physics at RHIC BNL, Upton, NY, March 17, 2010

do/dp^T (pb/GeV) 1 0.9 0.8 0.7 0.6 0.5 0.5 0.4 Total cross-section: 151900 Total cross-section: 8989ab Total cross-section: 8.0pb Total cross-section: 29.5pb 1 < y. <2 $-1 < y_{0} < 1$ p. > 268 XX/c P-> 290-Wa 0.3 3 0.2 2 0.1 1 0 0 30 20 40 40 50 30 20 40 40 50 0 0 p_T (GeV) p_T (GeV)

Total ($\sqrt{s}=500$ GeV) σ (W⁺)=135pb and σ (W⁻)=42pb

Bernd Surrow

□ STAR Overview

- Calorimetry system with 2π coverage: BEMC (-1<η<1) and EEMC (1<η<2)
- TPC: Tracking and particle ID
- O ZDC: Relative luminosity and local polarimetry (500GeV)
- BBC: Relative
 luminosity and
 Minimum bias trigger

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

Introduction

First collisions of polarized proton beams at STAR at $\int s = 500 \text{GeV}$: Run 9 (P~40% / L~14pb⁻¹)

- STAR Mid-rapidity W program ($|\eta|<1$): BEMC and TPC
- STAR Forward/Backward W program $(1<|\eta|<2)$: EEMC and

TPC / FGT (Installation in summer 2011)

Bernd Surrow

Introduction

W boson kinematics relevant for STAR rapidity acceptance

• Leptonic rapidity inherits relation to mean x

- Forward rapidity:
 - □ n>0
 - <x1> larger than <x2>
- O Backward rapidity:
 - □ n<0
 - \Box <x1> less than <x2>
- O Mid-rapidity:
 - **Π**η~0
 - <x1> similar to <x2>

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

Bernd Surrow

Summary

□ STAR W program

- First Run 9 STAR W result (Cross-section and AL for W⁺/W⁻ at mid-rapidity) important milestone!
- Mid-rapidity:
 - \Box Charge sign discrimination: Demonstrated at high-p_T (~50GeV/c)
 - □ Signal (S) / Background (B): S/B = 6 for W⁻ and S/B = 11 for W⁺ (Integrated for E_T >25GeV)

O Forward rapidity: Complete FGT construction in ~fall 2010 followed by full system test and subsequent

full installation in ~summer 2011

- \Rightarrow Ready for anticipated long 500GeV polarized pp run in FY12 (Run 12)
- Critical: Design polarization performance of 70% with ~5% absolute polarization uncertainty (⇒ Required by eRHIC program!) to collect at least 300pb⁻¹!
- Future measurements of AL at STAR at mid-rapidity and forward rapidity (Wide rapidity coverage!) are expected to play an important role in our understanding of the polarized QCD sea!

Workshop on Progress in High-pr Physics at RHIC BNL, Upton, NY, March 17, 2010

Bernd Surrow

Heavy Quark Correlations in Polarized pp Collisions

Marco Stratmann

Regensburg / Wűrzburg

We present a comprehensive phenomenological study of heavy flavor distributions and correlations in longitudinally polarized proton-proton collisions at BNL-RHIC. All results are obtained with a flexible parton-level Monte Carlo program at NLO accuracy and include the fragmentation into heavy mesons, their subsequent semileptonic decays, and experimental cuts. Next-to-leading order QCD corrections are found to be significant for both cross sections and double-spin asymmetries. The sensitivity of heavy flavor measurements at BNL-RHIC to the gluon polarization of the nucleon is assessed. Electron-muon and muon-muon correlations turn out to be the most promising observables.

Theoretical uncertainties are estimated by varying renormalization and factorization scales, heavy quark masses, and fragmentation parameters.

I. Bojak, MS, Phys. Rev. <u>D67</u> (2003) 034010

J. Riedl, A. Schafer, MS, Phys. Rev. <u>D80</u> (2009) 114020

Why ALL for heavy quarks?

4 p_T [GeV] 6 0.02 -0.3 ′x∆g ---- DSSV 0.01 ---- DNS ----- DSSV Δχ²=1 $A_{LL}^{\pi^0}$ 0 ---- GRSV DSSV 4x2/x2=2% 0.2 PHENIX
 PHENIX
 -0.01 PHENIX (prel.) 0.1 -0.02 ¢ STAR 0 0.05 A STAR (pre1.) A_{LL}^{jet} 0 -0.1 DSSV GRSV max. Ag $= DSSV \Delta \chi^2 = 1$ DSSV $\Delta \chi^2 / \chi^2 = 2\%$ -0.05 GRSV min. Ag -0.2 10⁻² 10 -1 10 20 p_T [GeV] 30 х

• present knowledge of Δg based on *single* class of processes: hadrons & jets

rare probes (prompt photons, HQs) can be never as significant as jets

but \checkmark different hard scattering dynamics than jets and hadrons \checkmark much smaller number of subprocesses

crucial in understanding spin-dep. QCD hard scattering test universality and factorization

technical aspects in a nutshell

previous calculation: I. Bojak, MS, Phys. Rev. <u>D67</u> (2003) 034010
 phase space calculations done largely analytically; phase space slicing method
 → fast numerical implementation but limited to single-inclusive HQ yields

new calculation: J. Riedl, A. Schafer, MS, Phys. Rev. <u>D80</u> (2009) 114020

phase space calculations performed numerically; uses available matrix elements subtraction method for singular regions (a la Mangano, Nason, Ridolfi, NPB373 (1992) 295)

 \rightarrow no so fast numerical implementation but fully flexible:

- HQ correlations; HQ-jet correlations (not yet)
- experimental cuts
- HQ decays (so far: semi-leptonically)
- can be easily extended to cover HQ photoproduction at an EIC (soon!)

double-spin asymmetries: single-inclusive

double-spin asymmetries: correlations

• correlations more stable w.r.t. NLO corrections; ≈ constant w.r.t. inv. mass
Status of the Gluon Spin Program at STAR

Scott Wissink, Indiana University

for the STAR Collaboration

<u>Abstract</u>

After a brief review of why ΔG is an interesting and important quantity to determine, I present a survey of STAR's inclusive pion and jet spin asymmetries, and describe how these have helped constrain models of gluonic contributions to the proton's spin. The need for new correlation studies, such as di-jet and photon-jet efforts, is discussed, along with realistic projections for what STAR will measure for these processes in the next few years at $\sqrt{s} = 200$ and 500 GeV.

Scott Wissink, Indiana

17-19 March, 2010

Progress in High-PT Physics at RHIC

The Spin Puzzle: What RHIC brings to the table

STAR Inclusive jets: Impact on (first) global analysis

Represents the *first global NLO analysis* to include **inclusive DIS**, **SIDIS**, **and RHIC pp data** on an equal footing.

 Strong constraint on the magnitude of Δg over kinematic range 0.05 < x < 0.2 probed by STAR at √s = 200 GeV

Mapping out $\Delta g(x)$: the need for correlations

Despite great advances made via study of inclusive processes:

- Measurements average over a broad range in x_q at a given p_T
- Provide minimal information on partonic subprocess involved
- \rightarrow Could 'hide' non-trivial behavior of $\Delta g(x)$, esp. if a node exists!

67

Di-jets in Run 9, 200 GeV: Expected sensitivity to Δg

Summary and Outlook

- STAR has developed a broad and diverse program for studying ΔG
 → Complementary measurements support small gluon polarization over the range 0.05 < x_q < 0.2
 - Over next 2-3 years expect greater precision in inclusive channels at 200 GeV, plus new results at 500 ...
 - ... and increased focus on di-jet and γ -jet correlations to more fully map out gluon helicity distribution

→ Must view ∆G studies as <u>one component</u> of broader program to understand <u>all aspects</u> of parton spin behavior in the nucleon!

Scott Wissink, Indiana

17-19 March, 2010

Progress in High-Pi Physics at RHIC

Name: Swadhin Taneja Affiliation: SUNY Stony Brook For the PHENIX collaboration

Title: Gluon polarization: status and plans for measurements at PHENIX

Ever since the discovery, by the EMC experiment, that quarks contribute only ~ 25 % to the proton spin the gluon spin (\$\Delta{G}\$) contribution has become the most sought after number in spin physics. The PHENIX spin program with the longitudinally polarized proton proton collisions at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been a center of focus for new results in \$\Delta{G}\$. We will review recent results from \$\pi^0\$, \$\pi^{\pm}\$ and direct photons final states measured by PHENIX detector.

3/19/2010

Swadhin Taneja Progress in High-pT onysics at RHIC

Cross section results from PHENIX

Cross section results from PHENIX

π^0 and γ asymmetry results from PHENIX

Constraining ΔG (using run5,6 π^0 data)

□ Vary ΔG in GRSV fit, generate A_{LL} , calculate χ^2 for each expectation curve, plot profile.

- χ^2 profile is asymmetric so $\Delta \chi^2 = 1$ and 9 (1 σ and 3 σ) are significant From just the statistical uncertainty :

 $\Delta G_{
m GRSV}^{[0.02,0.3]} = 0.2 \pm 0.1 \ (1\sigma) \ {
m and} \ 0.2^{+0.2}_{-0.8} \ (3\sigma)^{-1}$

physics at RHIC

3/19/2010

Summary & Outlook

- □ PHENIX π^0 data offers strong constraint on ΔG as found by DSSV.
- □ Other probes (π +/-, η , γ) also can constrain Δ G, and will be used in future global fits.
- □ 200 GeV data from Run9 and future runs will further significantly constrain ΔG .
- □ Δ G at lower *x* range (*x*<0.02) is presently being explored with $\sqrt{s} = 500$ GeV at RHIC (2009 polarized pp run).
 - Future measurement at 500 GeV will help constrain ΔG given > 50%
- □ It is much too early to claim that $\Delta G=0$, as uncertainty in range 0 < x < 1 is large

3/19/2010

Swadhin Taneja Progress in High-pT physics at RHIC

SSAs in hadron-hadron collisions and TMDs

M. Anselmino Torino University & INFN

based on work with M. Boglione, U. D'Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin

A presentation and a discussion of a TMD-factorized scheme for inclusive hadronic processes with one large scale only, pp ---> hX, is made. The role of Sivers and Collins mechanisms in understanding the observed transverse single spin asymmetries A_N (SSAs) is discussed. Predictions for SSAs in Drell-Yan processes are presented.

SSA in hadronic processes: TMDs, higher-twist correlations? Two main different (?) approaches

1. Generalization of collinear scheme (assuming factorization)

M.A., M. Boglione, U. D'Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ... (first proposed by Field-Feynman in unpolarized case)

$$\begin{aligned} &Phenomenology - \mathsf{TMD factorization} \\ &A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} & \text{main contribution from Sivers} \\ &d\sigma^{\uparrow} - d\sigma^{\downarrow} \equiv \frac{E_{\pi} \, d\sigma^{\, p \to \pi \, X}}{d^3 p_{\pi}} - \frac{E_{\pi} \, d\sigma^{\, p \to \pi \, X}}{d^3 p_{\pi}} = [d\sigma^{\uparrow} - d\sigma^{\downarrow}]_{\text{Sivers}} + [d\sigma^{\uparrow} - d\sigma^{\downarrow}]_{\text{Collins}} \\ &[d\sigma^{\uparrow} - d\sigma^{\downarrow}]_{\text{Sivers}} = \sum_{\substack{q_a, b, q_c, d \\ q_a, b, q_c, d}} \int \frac{dx_a \, dx_b \, dz}{16 \, \pi^2 \, x_a \, x_b \, z^2 s} \, d^2 \mathbf{k}_{\perp a} \, d^2 \mathbf{k}_{\perp b} \, d^3 p_{\perp} \, \delta(\mathbf{p}_{\perp} \cdot \hat{\mathbf{p}}_c) \, J(p_{\perp}) \, \delta(\hat{s} + \hat{t} + \hat{u}) \\ &\times \underbrace{\Delta^N f_{a/}(x_a, \mathbf{k}_{\perp a})}_{f_b/p} \cos \phi_a \longrightarrow \text{Sivers phase} \\ &\times f_{b/p}(x_b, \mathbf{k}_{\perp b}) \frac{1}{2} \left[|\hat{M}_1^0|^2 + |\hat{M}_2^0|^2 + |\hat{M}_3^0|^2 \right]_{ab \to cd} D_{\pi/c}(z, p_{\perp}) \end{aligned}$$

$$\begin{split} [d\sigma^{\uparrow} - d\sigma^{\downarrow}]_{\text{Collins}} &= \sum_{q_a, b, q_c, d} \int \frac{dx_a \, dx_b \, dz}{16 \, \pi^2 \, x_a \, x_b \, z^2 s} \, d^2 \mathbf{k}_{\perp a} \, d^2 \mathbf{k}_{\perp b} \, d^3 \mathbf{p}_{\perp} \, \delta(\mathbf{p}_{\perp} \cdot \hat{\mathbf{p}}_c) \, J(p_{\perp}) \, \delta(\hat{s} + \hat{t} + \hat{u}) \\ &\times \underbrace{\Delta_T q_a(x_a, k_{\perp a})}_{\times f_{b/p}(x_b, k_{\perp b})} \underbrace{\left[\hat{M}_1^0 \, \hat{M}_2^0\right]}_{q_a b \to q_c d} \underbrace{\Delta^N D_{\pi/q_c}(z, p_{\perp})}_{N D_{\pi/q_c}(z, p_{\perp})} \end{split}$$

negligible contributions from other TMDs

in principle, Collins effect might be large (depending on Collins function and transversity)

in preparation

there was a mistake in previous evaluation (wrong sign in one spin transfer cross-section)

PRD 71:014002,2005

contributions to A_N of SIDIS extracted Sivers, Collins and transversity distributions

a combination of Sivers and Collins effect might explain data (great uncertainty in actual knowledge of Sivers functions at large x)

M.A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin, e-Print: arXiv:0901.3078

Transverse Spin Measurements at PH * ENIX

PHENIX strategy:

Measure several observables each sensitive to different transverse spin effects

- (i) Forward SSA → Sivers & Collins Neutral Pions & Charged hadrons
- (ii) Transversity-type Asymmetries Interference Frag. Func. Analysis
- (iii) Sivers-type Asymmetries Heavy Flavor Back to Back Hadrons A_N for y~0

John Koster for the PHENIX collaboration University of Illinois at Urbana-Champaign Progress in High-p_T Physics at RHIC RBRC Workshop 2010/03/18

PH^{*}ENIX

(i) Forward SSA A_N Cluster in MPC at \sqrt{s} =200 GeV

(iii) Mid-rapidity π^0 and ηA_N

PH^{*}ENIX

Outlook with Upgrades

- Vertex Detectors (2010 installation) Large acceptance precision tracking
 - Heavy flavor tagging
 - Electrons from charm decays and beauty decays separately
 - c,b-Jet Correlations
 - Expanded IFF analysis
- W+/- A_N

98

Suggested in: Phys.Rev.Lett.103:172001,2009

- Flavor sensitive quark Sivers measurement
- Instrumentation:
 Ready : Upgrade in progress

Measurement of the Collins Asymmetry in Mid-Rapidity Jets at STAR

Robert Fersch University of Kentucky for the STAR Collaboration

SUMMARY OF PRESENTATION

First quantitative insights into transverse quark spin degrees of freedom in the proton have been obtained from Belle measurements of Collins fragmentation in e⁺e⁻ collisions along with HERMES and COMPASS measurements of the Collins asymmetry in deep-inelastic lepton-nucleon scattering (see, for example, Anselmino et al. PRD 75:05032(2006) and Seidl et al. PRD 78:032011(2008)). Further constraints can be added from measurements of the azimuthal asymmetry of leading charged pions in jets produced by transversely polarized proton collisions. This asymmetry can be expressed as a convolution of the quark transversity, the Collins fragmentation function and a hard-scattering spintransfer coefficient. We present a summary of the the first such asymmetry measurement from \sqrt{s} =200 GeV transversely polarized (-58%) proton collision data (totalling -1 pb⁻¹) collected at the Solenoidal Tracker at RHIC(STAR), with full azimuthal coverage at mid-rapidity (InI < 1). Progress on this measurement and the statistical precision of analyzed data vs. hadron to jet momentum fraction *z* is shown. Future work is mainly concerned with determination of systematic errors.

Jet Patch trigger:

Requires sum of 400 localized "patches" above a threshold as a cluster for soft fragmentation (total coverage $\Delta \Phi = \Delta \eta = 1$)

High Tower trigger:

Uses a single ADC channel as a jet "seed" and totals energy in surrounding trigger "patch"

full azimuthal (Φ) coverage

Jet physics in terms of p_T

 ΔR measures collimation of particles within jet

Lower p_T cut is a tradeoff between statistics and gluon event contamination: BJP1-127221

Asymmetry Statistics

"blue" beam polarized

"yellow" beam polarized

(jets in forward hemisphere of each beam analyzed)

Asymmetry should be opposite in sign for + vs. – pions

Simulation/theory (estimate): $A^{\pm}(\pi^{\pm}) \approx \pm 0.03$

Nontrivial Relations between GPDs and TMDs

A. Metz¹, S. Meissner², M. Schlegel³

¹Department of Physics, Barton Hall, Temple University, Philadelphia, PA 19122-6082, USA

²Institut für Theoretische Physik II, Ruhr-Universität Bochum, 44780 Bochum, Germany ³Institut für Theoretische Physik, Universität Tübingen, 72076 Tübingen, Germany

Abstract

Generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs), respectively, are the key ingredients in the QCD description of hard exclusive and semiinclusive processes (see page 1 for their definition for quarks). In [1, 2] for the first time a nontrivial relation between a GPD and a TMD was proposed — a connection between the GPD E^q and the transverse momentum dependent Sivers function $f_{11T}^{\perp q}$. A quantitative relation between these two distributions was later on obtained in a simple spectator model, where the impact parameter representation of E^q is involved [3] (see also page 2).

Comparing the GPD-correlator in impact parameter space with the TMD correlator leads to a complete list of potential nontrivial analogies/relations between GPDs and TMDs both for quarks and gluons [4, 5]. Those analogies can be grouped into 4 different types (see page 3). While the analogies of first type represent nothing but (trivial) general model-independent relations, the remaining ones are potential nontrivial relations. We have explored the nontrivial cases in the framework of two simple models to lowest nontrivial order in the coupling constants [5]: a diquark spectator model for the nucleon as well as the quark target model in perturbative QCD. The latter allows one, in particular, to study potential nontrivial relations on the gluon sector. It turns out that a whole host of explicit relations can be found in those models [5] (see also page 4). Moreover, recent work has shown that a nontrivial relation between E^q and $f_{1T}^{\perp q}$ can also be obtained in a spectator model when summing up a certain subclass of diagrams to all orders in perturbation theory [6].

To find out whether any of the nontrivial relations obtained in models can be promoted to a model-independent status we performed an analysis in terms of GTMDs (generalized transverse momentum dependent parton distributions) [7, 8] (see also page 5). We make use of the fact that GPDs and TMDs appear as certain limits of GTMDs (*mother functions*). This connection allows us to explore which GPDs and TMDs have the same *mother functions*. As a general outcome we find that none of the (model-dependent) nontrivial relations can have a model-independent status since the respective GPDs and TMDs are related to different GTMDs. On the other hand, it is currently not known to what extent the nontrivial relations are violated numerically.

References

[1] M. Burkardt, Phys. Rev. D 66, 114005 (2002) [arXiv:hep-ph/0209179].

[2] M. Burkardt, Nucl. Phys. A 735, 185 (2004) [arXiv:hep-ph/0302144].

[3] M. Burkardt and D. S. Hwang, Phys. Rev. D 69, 074032 (2004) [arXiv:hep-ph/0309072].

[4] M. Diehl and Ph. Hagler, Eur. Phys. J. C 44, 87 (2005) [arXiv:hep-ph/0504175].

[5] S. Meissner, A. Metz and K. Goeke, Phys. Rev. D 76, 034002 (2007) [arXiv:hep-ph/0703176].

[6] L. Gamberg and M. Schlegel, Phys. Lett. B 685, 95 (2010) [arXiv:0911.1964 [hep-ph]].

[7] S. Meissner, A. Metz, M. Schlegel and K. Goeke, JHEP 0808, 038 (2008) [arXiv:0805.3165 [hep-ph]].

[8] S. Meissner, A. Metz and M. Schlegel, JHEP 0908, 056 (2009) [arXiv:0906.5323 [hep-ph]].

Definition of GPDs and TMDs

• GPD-correlator

$$F^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ik \cdot z} \left\langle p'; \lambda' \right| \bar{\psi} \left(-\frac{z}{2} \right) \gamma^{+} \mathcal{W}_{GPD} \psi \left(\frac{z}{2} \right) \left| p; \lambda \right\rangle \Big|_{z^{+}=z_{T}=0}$$

$$= \frac{1}{2P^{+}} \bar{u}(p', \lambda') \left(\gamma^{+} H^{q}(x, \xi, t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E^{q}(x, \xi, t) \right) u(p, \lambda)$$

$$x = \frac{k^{+}}{P^{+}} \qquad \xi = -\frac{\Delta^{+}}{2P^{+}} \qquad t = \Delta^{2}$$

TMD-correlator

$$\begin{split} \Phi^{q} &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} \frac{d^{2} \vec{z}_{T}}{(2\pi)^{2}} e^{ik \cdot z} \left\langle P; S \right| \bar{\psi} \left(-\frac{z}{2} \right) \gamma^{+} \mathcal{W}_{TMD} \psi \left(\frac{z}{2} \right) \left| P; S \right\rangle \Big|_{z^{+}=0} \\ &= f_{1}^{q}(x, \vec{k}_{T}^{2}) - \frac{\epsilon_{T}^{ij} k_{T}^{i} S_{T}^{j}}{M} f_{1T}^{\perp q}(x, \vec{k}_{T}^{2}) \end{split}$$

- Sivers function f_{1T}^{\perp} induces distortion of TMD correlator in k_T -plane
- Effect of this distortion has (probably) been observed by HERMES

– Typeset by FoilT $_{\rm E} {
m X}$ –

Impact parameter representation of GPDs

• Fourier transform of GPD-correlator ($\xi = 0$) (Burkardt, 2000)

$$\mathcal{F}^{q}(x, \vec{b}_{T}; S) = \int \frac{d^{2}\vec{\Delta}_{T}}{(2\pi)^{2}} e^{-i\vec{\Delta}_{T}\cdot\vec{b}_{T}} F^{q}(x, \vec{\Delta}_{T}; S)$$
$$= \mathcal{H}^{q}(x, \vec{b}_{T}^{2}) + \frac{\epsilon_{T}^{ij}b_{T}^{i}S_{T}^{j}}{M} \left(\mathcal{E}^{q}(x, \vec{b}_{T}^{2})\right)'$$

• Distortion of GPD-correlator in impact parameter space

$$d^{q,i} = \int dx \int d^2 \vec{b}_T \, b^i_T \, \mathcal{F}^q(x, \vec{b}_T; S) = -\frac{\epsilon^{ij}_T S^j_T}{2M} \int dx \, E^q(x, 0, 0) = -\frac{\epsilon^{ij}_T S^j_T}{2M} \kappa^q$$

ightarrow (Large) flavor dipole moment of about $0.2\,{
m fm}$

• Quantitative nontrivial GPD-TMD relation in spectator model (Burkardt, Hwang, 2003)

$$\begin{split} \left\langle k_T^{q,i}(x) \right\rangle_{UT} &= -\int d^2 \vec{k}_T \, k_T^i \, \frac{\epsilon_T^{jk} k_T^j S_T^k}{M} \, f_{1T}^{\perp q}(x, \vec{k}_T^2) \\ &= \int d^2 \vec{b}_T \, \mathcal{I}^{q,i}(x, \vec{b}_T) \, \frac{\epsilon_T^{jk} b_T^j S_T^k}{M} \left(\mathcal{E}^q(x, \vec{b}_T^2) \right)' \end{split}$$

– Typeset by FoilT_EX –

Overview of model-independent relations/analogies

• Relations of first type

$$\begin{aligned} f_1^{q/g} &\leftrightarrow \mathcal{H}^{q/g} \qquad g_{1L}^{q/g} &\leftrightarrow \tilde{\mathcal{H}}^{q/g} \\ \left(h_{1T}^q + \frac{\vec{k}_T^2}{2M^2} h_{1T}^{\perp q} \right) &\leftrightarrow \left(\mathcal{H}_T^q - \frac{\vec{b}_T^2}{M^2} \Delta \tilde{\mathcal{H}}_T^q \right) \end{aligned}$$

• Relations of second type

$$f_{1T}^{\perp q/g} \leftrightarrow -\left(\mathcal{E}^{q/g}\right)' \qquad h_1^{\perp q} \leftrightarrow -\left(\mathcal{E}_T^q + 2\tilde{\mathcal{H}}_T^q\right)' \\ \left(h_{1T}^g + \frac{\vec{k}_T^2}{2M^2}h_{1T}^{\perp g}\right) \leftrightarrow -2\left(\mathcal{H}_T^g - \frac{\vec{b}_T^2}{M^2}\Delta\tilde{\mathcal{H}}_T^g\right)'$$

• Relations of third type

$$h_{1T}^{\perp q} \leftrightarrow 2\left(\tilde{\mathcal{H}}_{T}^{q}\right)'' \qquad h_{1}^{\perp g} \leftrightarrow 2\left(\mathcal{E}_{T}^{g} + 2\tilde{\mathcal{H}}_{T}^{g}\right)''$$

• Relation of fourth type

$$h_{1T}^{\perp g} \leftrightarrow -4 \left(\tilde{\mathcal{H}}_{T}^{g} \right)^{\prime\prime\prime}$$

– Typeset by FoilT $_{E}X$ –

Nontrivial relations in spectator models

• Moments of GPDs and TMDs

$$\begin{aligned} X^{(n)}(x) &= \frac{1}{2M^2} \int d^2 \vec{\Delta}_T \left(\frac{\vec{\Delta}_T^2}{2M^2} \right)^{n-1} X\left(x, 0, -\frac{\vec{\Delta}_T^2}{(1-x)^2} \right) \\ Y^{(n)}(x) &= \int d^2 \vec{k}_T \left(\frac{\vec{k}_T^2}{2M^2} \right)^n Y(x, \vec{k}_T^2) \end{aligned}$$

• Relations of second type

$$f_{1T}^{\perp q(n)}(x) = H_2(n) \frac{1}{1-x} E^{q(n)}(x) \qquad (0 \le n \le 1)$$

- $H_2(n)$ depends on model
- Relations of third type

$$h_{1T}^{\perp q(n)}(x) = H_3(n) \frac{1}{(1-x)^2} \tilde{H}_T^{q(n)}(x) \qquad (0 \le n \le 1)$$

- $H_3(n)$ is the same in both used spectator models

– Typeset by FoilT $_{\rm E}\!{
m X}$ –

Model-independent analysis in terms of GTMDs

• GTMD-correlator (e.g., Belitsky, Ji, Radyushkin, Yuan, 2003, 2005)

$$W^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} \frac{d^{2}\vec{z}_{T}}{(2\pi)^{2}} e^{ik \cdot z} \left\langle p'; \lambda' \right| \bar{\psi} \left(-\frac{z}{2} \right) \gamma^{+} \mathcal{W}_{GTMD} \psi \left(\frac{z}{2} \right) \left| p; \lambda \right\rangle \Big|_{z^{+}=0}$$

 $\rightarrow W^q$ parameterized in terms of 4 complex-valued GTMDs $F_{1,n} = F^e_{1,n} + iF^o_{1,n}$ • Projection onto GPDs and TMDs

$$F^q = \int d^2 ec k_T \, W^q \qquad \Phi^q = W^q \Big|_{\Delta=0}$$

- Results and general conclusion
 - Relations between GTMDs and GPDs as well as TMDs worked out
 - Example

$$E(x, 0, \vec{\Delta}_T^2) = \int d^2 \vec{k}_T \left[-F_{1,1}^e + 2\left(\frac{\vec{k}_T \cdot \vec{\Delta}_T}{\vec{\Delta}_T^2} F_{1,2}^e + F_{1,3}^e\right) \right]$$
$$f_{1T}^{\perp}(x, \vec{k}_T^2) = -F_{1,2}^o(x, 0, \vec{k}_T^2, 0, 0)$$

- $\,E\,\,{\rm and}\,\,f_{1T}^{\perp}$ not related as they depend on different GTMDs
- None of the nontrivial relations can have model-independent status

– Typeset by FoilT $_{\rm E}{
m X}$ –
Recent Results and Future Prospects for Drell-Yan Experiments

Jen-Chieh Peng

University of Illinois at Urbana-Champaign

<u>Summary</u>

- We first review the unique features of the Drell-Yan process for probing the parton distributions of the nucleons and nucleus.
- Recent results from the Fermilab experiment E866 on the azimuthal angular distributions of Drell-Yan in p+p and p+d interactions are presented. The connection to the Transverse Momentum Distributions (TMD) is discussed.
- Recent results on the measurement of the Upsilon production in p+p and p+d are presented. Implication on the ratio of gluon distribution in the proton versus that in the neutron is emphasized..
- Future prospects of Drell-Yan experiments at various facilities are discussed. List of outstanding physics issues to be resolved in these future experiments is presented.

Physics results from Fermilab dimuon experiments 1) Drell - Yan process :

- Antiquarks in nuclei and nucleons
- Quark energy loss in nuclear medium
- Drell-Yan angular distributions

2) Quarkonium production :

- Pronounced nuclear dependence
- Production mechnism and polarizations
- Gluon distributions in the nucleons

3) Heavy quark production :

- Open charm production
- B-meson production

Gluon distributions in proton and neutron are very similar

A comparison with D-Y could lead to extraction of CSV effect Is $u_p(x) = d_n(x)$? $\overline{u}_p(x) = \overline{d}_n(x)$? etc. 4

• p+p is similar to p+d; More data at higher p_T is needed

More data are expected soon from Fermilab E906

Outstanding questions to be addressed by future Drell-Yan experiments

- Does Sivers function change sign between DIS and Drell-Yan?
- Does Boer-Mulders function change sign between DIS and Drell-Yan?
- Are all Boer-Mulders functions alike (proton versus pion Boer-Mulders functions)
- Flavor dependence of TMD functions
- Independent measurement of transversity with Drell-Yan

New Probes for the Future Transverse Spin Physics @RHIC Ming X. Liu Los Alamos National Laboratory

The study of transverse single spin asymmetry (TSSA) has been one of the most exciting and challenging areas in QCD. The recent observations of non-zero TSSA effects from HERMES and COMPASS as well as RHIC-SPIN have stimulated a tremendous interest in studying these phenomena, and also have produced a much deep understanding of the QCD dynamics and nucleon structure at the partonic level. However, there are many outstanding issues remain as major challenges, such as the universality of transverse momentum dependent (TMD) functions and higher-twist (HT) mechanisms.

We propose to study TSSAs in charm and Drell-Yan production at RHIC. This requires much improved beam luminosity and polarization, as well as silicon vertex detector upgrade for both experiments at RHIC. We expect they all can be realized in the near future.

As we know, at RHIC energy, heavy quarks are predominantly produced via gluon-gluon interaction, thus providing a unique opportunity to study TMD and HT mechanisms: 1) in the TMD model, since there is only one gluon Sivers function, both charm and anti-charm will have identical TSSAs; 2) however, the situation is very different in the HT approach. There are two independent tri-gluon functions that couple to charm and anti-charm differently, thus TSSAs of charm and anti-charm are not necessarily the same, a distinct experimental signature that can be checked. The PHENIX experiment has produced preliminary results on heavy quark A_N but currently they are statistically limited.

It is proposed that in the Drell-Yan (including W/Z) process, the Sivers functions will change sign compared to the ones extracted from SIDIS experiments. It is of great importance to check this fundamental prediction of QCD. Our initial study indicate it is possible to perform such measurements at RHIC. Further more, with 500GeV beams, it is also possible to study flavor dependent Sivers functions at RHIC.

Current Understanding of TSSAs (II)

- Collinear Approach
 - Twist-3 three-parton correlation functions, Qiu-Sterman matrix
 - Twist-3 parton fragmentation functions

Qiu, Duke Spin workshop '10 Qiu, Duke Spin workshop '10 $\sigma(Q, \vec{s}) \propto \left| \begin{array}{c} p, \vec{s} \\ p, \vec{$

3/23/10

RBRC High pT Workshop Ming Liu

A unique opportunity @RHIC to study charm physics!

Heavy Quark, Drell-Yan and Silicon Vertex Detectors

3/23/10

RBRC High pT Workshop Ming Liu

Drell-Yan and Heavy Quark Background Suppression (PHENIX Muon Acceptance)

3/23/10

RBRC High pT Workshop Ming Liu

Latest Results of Heavy Quark SSA

Gluon's Sivers fun was not constrained well by DIS data
PHENIX Charm data exclude the maximum gluon Sivers Fun (Anselmino et al, 06)

•Much improved results expected soon (Run6+Run8)

 Led to a new development in spin physics, beyond traditional spin topics, study J/Psi production mechanisms. (F. Yuan 08)

3/23/10

RBRC High pT Workshop Ming Liu

Looking Forward (Rapidity) at RHIC

Feng Yuan^{1,2}

¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 ²RIKEN BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, NY 11973

Abstract

In this talk, I briefly discuss recent theoretical developments concerning the phenomena observed at RHIC experiments, including the single transverse spin asymmetry in pp_{\uparrow} collision, and di-jet (di-hadron) correlation in dA collisions. In particular, we emphasize the non-universality of the associated parton distributions in these processes due to the initial/final state interaction effects.

- theoretical challenge
- □Eta/pi0 SSA
- Dijet-correlation not only probe small-x saturation, but also the QCD dynamics (initial/final state interaction effects)

Fragmentation function measurements at Belle

RIKEN high P_T Workshop, BNL, March 17-19

Ralf Seidl (RBRC) Anselm Vossen (University of Illinois) Matthias Grosse Perdekamp (University of Illinois) Martin Leitgab (University of Illinois) Akio Ogawa (BNL/RBRC) eran Boyle (RBRC)

RBRC High Pt, March 17th

R.Seidl: fragmentation functions from Belle

menerence hag

thrust method

- $e^+e^- \rightarrow (\pi^+\pi^-)_{jet1}(\pi^+\pi^-)_{jet2}X$
- Stay in the mass region around ρmass
- Find pion pairs in opposite hemispheres
- Observe angles $\phi_1 + \phi_2$ between the event-plane (beam, jet-axis) and the two two-pion planes.
- Transverse momentum is integrated

(universal function, evolution easy

- \rightarrow directly applicable to
- semi-inclusive DIS and pp)
- Theoretical guidance by papers of Boer, Jakob, Radici [PRD 67, (2003)] and Artru, Collins [ZPhysC69(1996)]
- Early work by Collins, Heppelmann, Ladinsky [NPB420(1994)] $A \propto H_1^2(z_1, m_1)H_1^2(z_2, m_2)\cos(\varphi_1 + \varphi_2)$

 $\varphi_2 - \pi$ \vec{P}_{h1} $\vec{P}_{h1} + \vec{P}_{h2}$

Model predictions by: •Jaffe et al. [PRL **80**,(1998)] •Radici et al. [PR**D 65**,(2002)]

RBRC High Pt, March 17th

R.Seidl: fragmentation functions from Belle

Asymmetry extraction

- Build normalized yields: $\frac{N(\phi_1 + \phi_2)}{\langle N \rangle},$
- Fit with:

or

Amplitude a₁₂ directly measures (IFF) x (-IFF) (no double ratios)

Results including systematic errors

Summary and outlook

- First direct measurement of the interference fragmentation function
 - Large asymmetries seen, rising with z and invariant mass
 - No sign change at ρ mass
 - No double reatios make interpretation simple
- Significant, nonzero Collins asymmetries, long paper published
- Data used already in Global analysis
- Measure precise unpolarized fragmentation functions of many final states
- → Important input for general QCD physics and helicity structure measurements

Analysis progressing:

- PID studies finished
- Acceptance correction
- Continue to measure precise spin dependent fragmentation functions at Belle
 - kT dependence of Collins function
 - Artru model test with Vector meson Collins
- Measure other interesting QCDrelated quantities at Belle:
 - Chiral-odd A-fragmentation function
 - A single spin asymmetry
 - Event shapes
 - R-ratio with ISR

RBRC High Pt, March 17th

R.Seidl: fragmentation functions from Belle

recent results from HERMES

Delia Hasch

HERMES is a second generation polarised DIS experiment approaching the quest for the spin of the nucleon by measuring not only inclusive processes but also semi-inclusive and exclusive ones. It utilized the polarised 27.5 GeV HERA electron or positron beam incident on pure nuclear polarised H and D gas targets and featured excellent particle identification capabilities.

HERMES' major contributions to the exploration of the longitudinal spin structure of the nucleon has been widely discussed. A recent measurement of the strange momentum and spin distributions is presented. We concentrate here on recent achievements obtained mainly with a transversely polarised H target. Such measurements provide the necessary information to explore transverse momentum dependent distribution and fragmentation functions (TMD) and the transversity. Such TMDs describe spin-orbit correlations and hence provide a multi-dimensional imaging of the nucleon. We also investigated any sign of a possible two-photon exchange contribution which could be excluded to 10^{-3} accuracy. Inclusive hadron production at $Q^2 \approx 0$ GeV² provides a means to directly compare to transverse spin asymmetries measured in pp collisions at RHIC.

The complementary approach of accessing the 3D structure of the nucleon with GPDs is not presented here. HERMES has however measured a large variety of exclusive processes that provide information of GPDs.

Sivers amplitudes

[PRL103(2009)]

 $f_{1T}^{\perp q}(x,k_T) \otimes D_1^q(z,p_T)$

first observation of T-odd Sivers effect in SIDIS

• K⁺ amplitudes larger than π^+ ones \rightarrow non trivial role of sea quarks ?

$$K^+ = \ket{uar{s}} \quad \pi^+ = \ket{uar{d}}$$

• pion difference \rightarrow access to valence quark distributions: $4 f_{1x}^{\perp,u_v} - f_{1x}^{\perp,d_v}$

$$\propto \frac{4f_{1T}^{-,v} - f_{1T}^{-,v}}{4f_{1}^{u_{v}} - f_{1}^{d_{v}}}$$

$<\cos 2\phi$ >: spin-orbit correlations

 $h_1^{\perp}(x,k_T) \otimes H_1^{\perp}(z,p_T)$

hérmes

deuterium \approx hydrogen values \rightarrow B-M must have same sign for u & d

 $<\cos\phi>$: intrinsic quark transverse momentum

 very similar result for deuterium
 → different effects for different pion charges ... unexpected for Cahn effect!

• Boer-Mulders term important ?

• $<k_T>$ flavour dependent ?

inclusive hadrons: $e p^{\uparrow} \rightarrow h X$

• scattered electron not detected (ignored) \rightarrow Q2 \approx 0 \rightarrow huge statistics **P**_T, **x**_F w.r.t. beam direction

Two-particle correlations and the small-x gluon four-point function

Adrian Dumitru, RIKEN-BNL and Baruch College

 particle correlations probe complete B-JIMWLK evolution equation incl. "N_c corrections"

• kinematic regime:

 $p,q \sim Q_s$ (say, 1-3 GeV for pp @ LHC, AA @ RHIC)

• azim. angles $\Phi \ll \pi$

arXiv:1001.4820

ridge in pp @ LHC ?!

Depends on angle $\angle(p_{\perp},q_{\perp})$, not flat in Φ

$$\begin{split} C(p_{\perp},q_{\perp}) &= \quad \frac{g^{12}}{64(2\pi)^6} \left(f_{abc} f_{a'\bar{b}\bar{c}} f_{a\hat{b}\hat{c}} f_{a'\tilde{b}\bar{c}} \right) \int \prod_{i=1}^4 \frac{d^2 k_{i\perp}}{(2\pi)^2 k_{i\perp}^2} \\ &\times \frac{L_{\mu}(p_{\perp},k_{1\perp}) L^{\mu}(p_{\perp},k_{2\perp})}{(p_{\perp}-k_{1\perp})^2 (p_{\perp}-k_{2\perp})^2} \frac{L_{\nu}(q_{\perp},k_{3\perp}) L^{\nu}(q_{\perp},k_{4\perp})}{(q_{\perp}-k_{3\perp})^2 (q_{\perp}-k_{4\perp})^2} \\ &\times \left\langle \rho^*{}^{\hat{b}}_1(k_{2\perp}) \rho^*{}^{\tilde{b}}_1(k_{4\perp}) \rho_1{}^{b}(k_{1\perp}) \rho_1{}^{\bar{b}}(k_{3\perp}) \right\rangle \\ &\times \left\langle \rho^*{}^{\hat{c}}_2(p_{\perp}-k_{2\perp}) \rho^*{}^{\tilde{c}}_2(q_{\perp}-k_{4\perp}) \rho_2{}^{c}(p_{\perp}-k_{1\perp}) \rho_2{}^{\bar{c}}(q_{\perp}-k_{3\perp}) \right\rangle \end{split}$$

B-JIMWLK four-point function: (dilute regime)

$$\begin{split} \frac{d}{dY} \langle \alpha_r^a \alpha_{\bar{r}}^b \alpha_s^c \alpha_{\bar{s}}^d \rangle &= \\ \frac{g^2 N_c}{(2\pi)^3} \int d^2 z \left\langle \frac{\alpha_z^a \alpha_{\bar{r}}^b \alpha_s^c \alpha_{\bar{s}}^d}{(r-z)^2} + \frac{\alpha_r^a \alpha_z^b \alpha_s^c \alpha_{\bar{s}}^d}{(\bar{r}-z)^2} + \frac{\alpha_r^a \alpha_{\bar{r}}^b \alpha_z^c \alpha_{\bar{s}}^d}{(s-z)^2} + \frac{\alpha_r^a \alpha_{\bar{r}}^b \alpha_s^c \alpha_{\bar{s}}^d}{(\bar{s}-z)^2} - 4 \frac{\alpha_r^a \alpha_{\bar{r}}^b \alpha_s^c \alpha_{\bar{s}}^d}{z^2} \right\rangle \\ &+ \frac{g^2}{\pi} \int \frac{d^2 z}{(2\pi)^2} \left\langle f^{e\kappa a} f^{f\kappa b} \frac{(r-z) \cdot (\bar{r}-z)}{(r-z)^2 (\bar{r}-z)^2} \left[\alpha_r^e \alpha_{\bar{r}}^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_{\bar{r}}^f + \alpha_z^e \alpha_z^f \right] \alpha_s^c \alpha_{\bar{s}}^d \right. \\ &+ f^{e\kappa a} f^{f\kappa c} \frac{(r-z) \cdot (s-z)}{(r-z)^2 (s-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_{\bar{r}}^b \alpha_s^d \\ &+ f^{e\kappa a} f^{f\kappa c} \frac{(\bar{r}-z) \cdot (\bar{s}-z)}{(r-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_{\bar{r}}^b \alpha_s^c \\ &+ f^{e\kappa b} f^{f\kappa c} \frac{(\bar{r}-z) \cdot (s-z)}{(\bar{r}-z)^2 (s-z)^2} \left[\alpha_{\bar{r}}^e \alpha_s^f - \alpha_{\bar{r}}^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \\ &+ f^{e\kappa b} f^{f\kappa d} \frac{(\bar{r}-z) \cdot (\bar{s}-z)}{(\bar{r}-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \\ &+ f^{e\kappa b} f^{f\kappa d} \frac{(\bar{r}-z) \cdot (\bar{s}-z)}{(\bar{r}-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \\ &+ f^{e\kappa c} f^{f\kappa d} \frac{(\bar{r}-z) \cdot (\bar{s}-z)}{(\bar{r}-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \\ &+ f^{e\kappa c} f^{f\kappa d} \frac{(\bar{r}-z) \cdot (\bar{s}-z)}{(\bar{r}-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \\ &+ f^{e\kappa c} f^{f\kappa d} \frac{(s-z) \cdot (\bar{s}-z)}{(s-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \\ &+ f^{e\kappa c} f^{f\kappa d} \frac{(s-z) \cdot (\bar{s}-z)}{(s-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \\ &+ f^{e\kappa c} f^{f\kappa d} \frac{(s-z) \cdot (\bar{s}-z)}{(s-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_z^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \\ &+ f^{e\kappa c} f^{f\kappa d} \frac{(s-z) \cdot (\bar{s}-z)}{(s-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_z^f + \alpha_z^e \alpha_z^f \right] \alpha_r^e \alpha_z^f \\ &+ f^{\epsilon$$

$$A^{\mu}(x^{+},r) \equiv \delta^{\mu-}\alpha(x^{+},r) = -g\,\delta^{\mu-}\delta(x^{+})\frac{1}{\nabla_{\perp}^{2}}\rho(x^{+},r) \qquad k^{2}\alpha(k) = g\rho(k)$$

"subleading-Nc" piece contributes at the same order to C(p,q)

Complete Balitsky/JIMWLK four-point function: (in Gaussian approximation)

 $\langle \rho^a \rho^b \rho^c \rho^d \rangle = \delta^{ab} \delta^{cd} \langle \rho^2 \rangle^2 + \frac{1}{N_c} f^{ab\kappa} f^{cd\kappa} \langle \rho^2 \rangle^2 + \cdots$

$$\begin{split} f_{gaa'}f_{g'bb'}f_{gcc'}f_{g'dd'} & \delta^{ac}\delta^{bd} & \delta^{a'b'}\delta^{c'd'} = N_c^2(N_c^2-1) \\ f_{gaa'}f_{g'bb'}f_{gcc'}f_{g'dd'} & \frac{1}{N_c}f^{ab\kappa}f^{cd\kappa}\,\delta^{a'c'}\delta^{b'd'} = N_c^2(N_c^2-1) \\ \\ \text{Projectile} & \text{Target} \end{split}$$

[Note: independent/uncorrel. production $f_{gaa'}f_{g'bb'}f_{gcc'}f_{g'dd'} \,\delta^{ac}\delta^{bd} \,\delta^{a'c'}\delta^{b'd'} = N_c^2(N_c^2-1)^2$]
Double transverse spin asymmetries as a probe for new physics

Wilco J. den Dunnen, Daniël Boer

March 18, 2010

Abstract

The Relativistic Heavy Ion Collider (RHIC) at BNL will soon start its transversely polarized proton collision program. Although the energy is lower than the Tevatron and the LHC, it has been suggested that the ability to polarize the protons makes it sensitive to certain forms of Beyond the Standard Model (BYSM) physics. We investigate spin asymmetries in transversely polarized proton-proton collisions induced by a right-handed charged weak interaction. With negligible Standard Model contributions these asymmetries are directly sensitive to new physics, generically attributed to the existence of a new gauge boson called W'. We discuss present bounds on a right-handed weak interaction and show the urge for confirmation of the only model independent bound to date. We present, given reasonable estimates of the transversity distributions, quantitative estimates of the size of the asymmetries and of the possible background. We conclude that, if the original design goals are met and the anti-quark transversity distribution is not negligible, a competitive bound can be obtained at RHIC. Measuring CP violation BYSM in those spin asymmetries is most likely too optimistic.

phenomenology of LR models

 $SU(2)_L$: W_L boson and V_{CKM}^L matrix $SU(2)_R$: W_R boson and V_{CKM}^R matrix

mixing:

light $W = \cos \zeta W_L - e^{i\omega} \sin \zeta W_R$ heavy $W' = \sin \zeta W_L + e^{i\omega} \cos \zeta W_R$

- 6 new CP violating phases in V^R_{CKM}
- \blacksquare CP violating phase ω

manifest: $g_L = g_R$, $\omega = 0$ and $V^R_{CKM} = V^L_{CKM}$ pseudo-manifest: $g_L = g_R$, $\omega \neq 0$ and $V^R_{CKM} = (V^L_{CKM})^*$

asymmetries

define:

$$A_{TT} \equiv \left(\int_{-\pi/4}^{\pi/4} - \int_{\pi/4}^{3\pi/4} + \int_{3\pi/4}^{5\pi/4} - \int_{5\pi/4}^{7\pi/4}\right) d\phi \delta d\sigma / \int_{0}^{2\pi} d\phi d\sigma$$
$$A_{TT}^{\perp} \equiv \left(\int_{0}^{\pi/2} - \int_{\pi/2}^{\pi} + \int_{\pi}^{3\pi/2} - \int_{3\pi/2}^{2\pi}\right) d\phi \delta d\sigma / \int_{0}^{2\pi} d\phi d\sigma$$

such that $A_{TT} \propto \zeta \cos \omega$ $A_{TT}^{\perp} \propto \zeta \sin \omega$

can, in principle, determine full coupling including CP-violating part

size of the asymmetries

If we assume $ar{h}_1(x)=ar{f}_1(x)/2$ (compatible with Soffer bound)

$\zeta\cos\omega=0.04$	\rightarrow	$ A_{TT} = \begin{cases} 1.2\%\\ 1.0\% \end{cases}$	W^+ W^-
$\zeta \sin \omega = 0.04$	\rightarrow	$ A_{TT}^{\perp} =\left\{egin{array}{c} 0.6\%\ 0.4\% \end{array} ight.$	W^+ W^-

optimal (realistic) cuts:

A_{TT} :	Y <1,	35 <	$p_T < 45 \text{GeV}$
A_{TT}^{\perp} :	0.2 < Y < 1,	35 <	$p_T < 45 \text{GeV}$

potential exclusion

potential exclusion given $|A_{TT}^{(\perp)}| < 1\%$

likely requires $\mathscr{O}(800) \mathrm{pb}^{-1}$ @70% polarization

NLO likely not much smaller \rightarrow Martin et al. PRD 57, 3084 (1998)

conclusion

prospects for measuring W' physics at RHIC

- **\blacksquare** RHIC can, in principle, set bounds on ζ and ω independently
- determining CP violation BYSM ($\omega \neq 0$) likely too optimistic
- \blacksquare so far only one bound on $\zeta \rightarrow$ needs confirmation
- possible if
 - original design goals are met
 - \bar{h}_1 not negligible

Low mass dilepton production at high $p_{\rm T}$

Jian-Wei Qiu

Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

In this talk, I present our recent work on the transverse momentum distribution of low-mass lepton pairs produced in hadronic scattering, using the perturbative QCD factorization approach [1]. We argue that the distribution at large transverse momentum, $Q_T \gg Q$, with the pair's invariant mass Q as low as $Q \sim \Lambda_{\rm QCD}$, can be systematically factorized into universal parton-to-lepton pair fragmentation functions, parton distributions, and perturbatively calculable partonic hard parts evaluated at a short distance scale ~ $\mathcal{O}(1/Q_T)$. We introduce a model for the input lepton pair fragmentation functions at a scale $\mu_0 \sim 1$ GeV, which are then evolved perturbatively to scales relevant at RHIC. Using the evolved fragmentation functions, we calculate the transverse momentum distributions in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions at RHIC. We compare our calculated production rates with recent PHENIX data on low mass lepton pair production [2]. We find that our results are consistent with the data from protonproton collision, but, much lower than the data from Gold-Gold collisions in the region of low transverse momentum, $Q_T < 3$ GeV. We also evaluate the nuclear modification from partonic multiple scattering in cold nuclear matter. We find that although the partonic multiple scattering enhances the production rate in Gold-Gold collisions, in contrast to the suppression from nuclear shadowing, the enhancement is not sufficient to explain the large excess of low mass lepton pairs in low transverse momentum region observed by PHENIX Collaboration.

References

Z. B. Kang, J. W. Qiu, and W. Vogelsang, Phys. Rev. D**79**, 054007 (2009).
 A. Adare, *et. al.* [PHENIX Collaboration], arXiv:0804.4168.

Questions

How reliable we can calculate the production rate of low mass lepton pairs in hadronic collisions?

Process: $A(p_1) + B(p_2) \rightarrow \ell^+ \ell^-(Q) + X$ Kinematics: $Q_T^2 \gg Q^2$

"Drell-Yan" – like process:

$$Q_T^2 \gg Q^2 \gg \Lambda_{
m QCD}^2$$

Clean process for extracting the gluon distribution Berger, Gordon, Klasen, 1998

"Direct photon" – like process:

 $Q_T^2 \gg Q^2 \sim \Lambda_{
m QCD}^2$

1

Qiu, Zhang, 2001

Berger, Qiu, Zhang, 2002

Jianwei Qiu

QCD factorization is as good as that for high p_T direct photon production Kang, Qiu, Vogelsang, 2009

March 19, 2010

March 19, 2010

Input fragmentation functions

 \Box "Drell-Yan" – like process $Q_T^2 \gg Q^2 \gg \Lambda_{\rm QCD}^2$: Berger, Qiu, Zhang 2002

- lepton pair is mainly from decay of a virtual photon of mass ${\it Q}$
- $-Q(\gg \Lambda_{\rm QCD})$ is a natural regulator for the fragmentation logs
- Input fragmentation functions are purely perturbative
- \Box "Direct photon" like process $Q_T^2 \gg Q^2 \sim \Lambda_{\rm QCD}^2$: Kang, Qiu, Vogelsang 2009
 - $Q_T (\gg \Lambda_{\rm QCD})$ is a perturbative scale, but $Q(\sim \Lambda_{\rm QCD})$ is not
 - the lepton pair can be produced non-perturbatively

$$\left| \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \right|^{2} \otimes \left| \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \right|^{2} \otimes \left| \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \right|^{2} + \frac{\gamma^{2}}{\rho^{2}} + \frac{\gamma^$$

$$D_{f \to \gamma^*}(z, \mu_0^2; Q^2) \equiv D_{f \to \gamma^*}^{\text{QED}}(z, \mu_0^2; Q^2) + D_{f \to \gamma^*}^{\text{Nonpert}}(z, \mu_0^2; Q^2)$$

4

March 19, 2010

Jianwei Oiu

Model the input fragmentation functions

□ Extract the input fragmentation functions from data:

- input fragmentation functions are process independent
- "derive" or "model" the functional form of the distributions
- fix all unknown parameters by fitting available data

□ Our model:

- "QED" part:
 - $$\begin{split} D_{q \to \gamma^*}^{\text{QED}(0)}(z,\,\mu_0^2;\,Q^2) &= e_q^2 \Big(\frac{\alpha_{\text{em}}}{2\pi} \Big) \Big[\Big(\frac{1+(1-z)^2}{z} \Big) \ln \! \Big(\frac{\mu_0^2}{Q^2/z+\lambda^2} \Big) \Big(\frac{Q^2}{Q^2/z+\lambda^2} \frac{Q^2}{\mu_0^2} \Big) \Big], \\ D_{q \to \gamma^*}^{\text{QED}(0)}(z,\,\mu_0^2;\,Q^2) &= D_{q \to \gamma^*}^{\text{QED}(0)}(z,\,\mu_0^2;\,Q^2), \quad D_{g \to \gamma^*}^{\text{QED}(0)}(z,\,\mu_0^2;\,Q^2) = 0. \end{split}$$
- "hadronic" part:

$$\begin{split} D_{q \to \gamma^*}^{\text{Nonpert}}(z, \mu_0^2; Q^2) &\equiv \kappa D_{q \to V}(z, \mu_0^2) \frac{4\pi \alpha_{\text{em}}}{f_V^2} \Big(1 - \frac{Q^2}{m_V^2}\Big)^3 \\ \text{Further assume:} \quad m_V &= m_\rho, \quad f_\rho^2/4\pi = 2.2, \text{ and } D_{f \to V} \approx D_{f \to \pi} \end{split}$$

– fitting parameters: $\lambda (> \Lambda_{QCD}), \kappa (\sim 1)$

March 19, 2010

Jianwei Qiu

Other nuclear effect: multiple scattering

□ Initial state multiple scattering – power correction:

Power correction from cold nuclear matter (solid) is not enough! March 19, 2010 9 Jianwei Qiu

Summary and outlook

□ Hadronic production of low mass lepton pairs at high p_T is perturbatively calculable

- QCD factorization is as good as that for direct photon production
- Low mass lepton pair production is complementary to direct photon production in extracting gluon distribution
 - Cleaner lepton signals, no complication on isolation cut, but, relatively lower rate
- □ Nuclear enhanced power corrections from cold nuclear matter alone can not explain the observed excess of lepton pair production at low p_T in AuAu collisions:
 - Thermal photons from sQGP, ...

Thank you! 10

March 19, 2010

Jianwei Qiu

Zvi Citron, Stony Brook University, for the PHENIX Collaboration "Probing Low x in d+Au and p+p Collisions in PHENIX" RIKEN-BNL Progress in High P_T Physics at RHIC Workshop 19 March 2010

The saturation of the gluon distribution at low momentum fraction, x, and high parton density is an area of active theoretical interest. Suppression of particle yields is expected due to extremely high gluon density. Forward calorimeters in PHENIX allow the study of parton densities at low x. Mid-rapidity triggered, forward correlated rapidity yields are measured in d+Au collisions at Vs=200 GeV. The correlated yields per trigger and widths of the azimuthal angular distributions are compared to the same quantities measured in p+p collisions. No significant broadening between d+Au and p+p is observed, but suppression of the correlated yield relative to p+p is observed in more central collisions. In addition, a comparison of the mid-rapidity inclusive yield conditioned on a forward (d going side) trigger is compared to that with a backward (Au going side) trigger and some suppression is observed. Further studies leveraging PHENIX's rapidity acceptance to probe the x of the Au nucleus are underway.

PHENIX forward EMCs (MPCs)

- Forward and backward Muon Piston Calorimeters have rapidity 3.1<|η|<3.9
- 2.2 x 2.2 x 18 cm³ PbWO₄ scintillating crystals
- 220 cm from nominal interaction point
- Detect pions (via $\pi^0 \rightarrow \gamma \gamma$) up to ~ 20 GeV
- Limitations are the tower separation and merging effects (p_T max ~ 2 GeV/c)
- To go to higher p_{τ} , use single clusters
 - Use π^0 s for 7 GeV < E < 17 GeV
 - Use clusters for E > 20 GeV

Decay photon impact positions for low and black energy π^0 s

(d side triggered)/(Au side triggered) Ratio Trends

The suppression of the d going side triggered yield relative to the Au going side triggered yield as a function of the trigger energy. (Bands indicate systematic uncertainties from the centrality bias associated with the trigger requirement and possible asymmetries stemming from the higher multiplicity in the Au going side MPC.)

Summary and a Look Forward

- Azimuthal angle correlations for rapidity separated hadron pairs: $|\eta| < 0.35$, 1.4< $|\eta| < 2.0$ and $|\eta| < 0.35$, 3.1< $\eta < 3.9$
 - No significant broadening between d+Au vs pp within experimental precision
 - Suppression of I_{dA} is observed as one goes to more central collisions for larger $\Delta \eta$ correlations
- Comparison of integrated mid-rapidity yields between forward and backward trigger
 - Suppression of yield in d going side trigger compared to Au going side trigger
 - Comparison of correlated yield coming soon...
- Upcoming
 - Scan different Δη gaps within PHENIX acceptance
 - Forward-Forward correlations to probe the lowest x

Low-x Measurements at STAR

Hank Crawford UC Berkeley Space Sciences Laboratory

Our program is to investigate the internal structure of the proton. and to determine nuclear gluon densities at low-x to understand energy densities achieved in RHI collisions. Our approach is to measure correlation functions for forward leading π^0 triggers in the pseudorapidity interval $3<\eta<4$ with subleading charged tracks having $-1<\eta<1$ or with subleading π^0 having $-1<\eta<4$. I present results from the STAR detector at RHIC from the run8 pp and dAu program, in which we use the Au-side beam-beam counters to provide a measure of collision centrality. Our analysis shows clear evidence for suppression of the correlation for the most central collisions when both the leading and subleading π^0 s are in the forward direction, a result consistent with prediction of the Color Glass Condensate model of nuclear parton distributions.

Get x from correlations between a trigger or leading particle (a π^0 in the FMS) and a subleading particle (a TPC track hadron, or a BEMC π^{0} , or another FMS π^0)

3/19/10

Crawford - RBRC

Marquette See below

Crawford - RBRC

Impact parameter b in Hijing

3/19/10

Crawford - RBRC

Centrality dependence of correlations

Photon-Hadron Correlations

Jamal Jalilian-Marian, Baruch College

Short summary:

The Color Glass Condensate formalism is used to calculate photon-hadron azimuthal angular correlations in deuteron-gold collisions at RHIC. It is shown that saturation effects lead to a disappearance of the away side correlations as one lowers the transverse momenta of the hadron and photon. The qualitative behavior of the correlation function is very similar to that of hadronhadron correlation. Photon-hadron correlations have the advantage of being more robust theoretically.

$$\begin{split} &\frac{d\sigma^{d\,\mathbf{A}\to\mathbf{h}\,\gamma\,\mathbf{X}}}{d^{2}b_{t}\,dq_{t}^{2}\,dk_{t}^{2}\,dy_{\gamma}\,dy_{h}\,d\theta} = a\,\int_{\mathbf{z_{min}}}^{1}\,\frac{dz}{z^{5}}\,f_{q/d}(\mathbf{x_{p}},\mathbf{Q}^{2})\\ &\mathbf{D_{h/q}}(\mathbf{z},\mathbf{Q}^{2})[\mathbf{z}^{2}+(\frac{\mathbf{q}^{-}}{\mathbf{q}^{-}+\mathbf{z}k^{-}})^{2}]\,\frac{(\tilde{\mathbf{q}}_{t}+\mathbf{z}\tilde{k}_{t})^{2}}{(k^{-}\tilde{\mathbf{q}}_{t}-\mathbf{q}^{-}\tilde{k}_{t})^{2}}\mathbf{N_{F}}(|\tilde{\mathbf{q}}_{t}/\mathbf{z}+\tilde{k}_{t}|) \end{split}$$

FG-JJM, PRD66 (2002) 014021 JJM, EPJC61 (2009) 789

Transverse Λ polarization and small-x physics

Daniël Boer

KVI, University of Groningen, Zernikelaan 25, 9747 AA Groningen, The Netherlands

It is well-known that Λ hyperons produced in unpolarized pp collisions are to a large degree polarized transversely to the production plane. There have been many experimental and theoretical investigations aimed at understanding this striking polarization phenomenon, but consensus has yet to be reached about its origin. At high p_T a factorized description should be applicable. In this talk we discuss such a description involving a transverse momentum and spin dependent fragmentation function D_{1T}^{\perp} [1]. It offers a description of the available pp and pBe data for Λ transverse momenta above 1 GeV [2], but whether this p_T cut is sufficient to guarantee the validity of the description is matter of concern [3].

Polarized Λ data from the high-energy hadron colliders RHIC, Tevatron or LHC, would be very welcome but their capabilities to measure Λ polarization via $\Lambda \to p \pi^-$ are usually restricted to the midrapidity region, where the degree of transverse polarization is very small. A new jet+ Λ observable [4,5] that does not need to vanish at midrapidity, could allow for a more trustworthy extraction of D_{1T}^{\perp} and subsequent predictions. It could also shed light on the role of gluons fragmenting into Λ 's, as there appears to be an inconsistency between p pand $e^+e^- \Lambda$ production data [6] that still awaits clarification.

Another suggestion for colliders is to try to use neutral decays $\Lambda \to n \pi^0$ to measure Λ polarization at forward rapidities. This could then offer a direct probe of gluon saturation [7]. The transverse polarization of forward Λ 's produced in high-energy pA collisions is expected to display a peak at a transverse momentum around the saturation scale. This was first observed within the context of the McLerran-Venugopalan model which has an x-independent saturation scale [7]. The extremum arises due to the k_T -odd nature of the polarization dependent fragmentation function D_{1T}^{\perp} , which probes approximately the derivative of the dipole scattering amplitude. The amplitude changes most strongly around the saturation scale, resulting in a peak in the polarization. This observation also extends to the more realistic case in which the saturation scale Q_s is x dependent [8]. Since a range of x values and hence of Q_s values is probed at a given transverse momentum and rapidity, this result is a priori not expected. The measurement of Λ polarization over a range of x_F values actually provides a direct probe of the x dependence of the saturation scale. This novel feature is demonstrated for typical LHC kinematics for both pp and pPb collisions and for several phenomenological models of the dipole scattering amplitude. The situation at RHIC is not favorable, because the peak will likely be at too low transverse momentum of the Λ to be a trustworthy measure of the saturation scale.

[1] Mulders, Tangerman, Nucl. Phys. B 461 (1996) 197.

[2] Anselmino, Boer, D'Alesio, Murgia, Phys. Rev. D 63 (2001) 054029.

[3] Anselmino, Boer, D'Alesio, Murgia, Phys. Rev. D 65 (2002) 114014.

[4] Boer, Bomhof, Hwang, Mulders, Phys. Lett. B 659 (2008) 127.

[5] Boer, DIS2009 proceedings, arXiv:0907.1610

[6] Albino, Kniehl, Kramer, Nucl. Phys. B 803 (2008) 42.

[7] Boer, Dumitru, Phys. Lett. B 556 (2003) 33.

[8] Boer, Utermann, Wessels, Phys. Lett. B 671 (2009) 91.

Collinear factorization

Consider for example the $qg \rightarrow qg$ subprocess

$$\sigma \sim q(x_1) \otimes g(x_2) \otimes \hat{\sigma}_{qg
ightarrow qg} \otimes D_{\Lambda/q}(z)$$

 $q(x_1) =$ quark density $g(x_2) =$ gluon density $D_{\Lambda/q}(z) = \Lambda$ fragmentation function

$$P_{\Lambda} \sim q(x_1) \otimes g(x_2) \otimes \hat{\sigma}_{qg \to qg} \otimes ?$$

No leading twist collinear fragmentation function exists for $q \to \Lambda^{\uparrow} X$ (due to symmetry reasons)

Would be necessarily higher twist, which leads to a fall-off as $1/p_T$

Noncollinear factorization

Dropping the requirement of collinear factorization, does allow for a solution

Mulders & Tangerman, NPB 461 (1996) 197

- Transverse momentum dependent: $D_{1T}^{\perp}(z, \boldsymbol{k}_T)$
- A nonperturbative $k_T imes S_T$ dependence in the fragmentation process
- Allowed by the symmetries (parity and time reversal)

 Λ polarization arises in the fragmentation of an *unpolarized* quark Hence, the suggested name "polarizing fragmentation function"

High energy hadron collider data?

Validity of factorized description depends on a proper cross section description This requires data at higher energies and higher p_T

Except for ISR, all data is from fixed target experiments, with $\sqrt{s} \lesssim 60$ GeV, requiring large K factors

Why no Λ^{\uparrow} data from high energy hadron colliders, such as RHIC or Tevatron?

Capabilities to measure Λ polarization via $\Lambda \rightarrow p \pi^-$ are usually restricted to the midrapidity region, where the degree of transverse polarization is very small

 $P_{\Lambda} = 0$ at $\eta = 0$ in p p collisions in cms

Alternative: consider jet+ Λ production: $p p \rightarrow (\Lambda^{\uparrow} \text{jet})$ jet X Such an asymmetry does not need to vanish at $\eta = 0$ D.B., Bomhof, Hwang, Mulders, PLB 659 (2008) 127; D.B., arXiv:0907.1610

Hadron production in the saturation regime

The cross section of forward hadron production in the (near-)saturation regime:

pdf \otimes dipole cross section \otimes FF

Dumitru, Jalilian-Marian, PRL 89 (2002) 022301

Since D_{1T}^{\perp} is k_T -odd, it essentially probes the derivative of the dipole cross section

At transverse momenta of $\mathcal{O}(Q_s)$ the dipole cross section changes much

This leads to a Q_s -dependent peak in the Λ polarization

First demonstrated for the McLerran-Venugopalan model, which has constant Q_s D.B. & Dumitru, PLB 556 (2003) 33

For an x-dependent Q_s a range of Q_s values is probed, so a *priori* not clear whether this signature remains

 Λ polarization in $p+Pb \rightarrow \Lambda^{\uparrow} + X$ at $\sqrt{s} = 8.8~{\rm TeV}$

D.B., Utermann, Wessels, PLB 671 (2009) 91
TMDs in two-photon production

Marc Schlegel

Institute for Theoretical Physics University of Tuebingen

in collaboration with W. Vogelsang and A. Metz

"Progress in High-p, Physics at RHIC", BNL

Diphoton production

However, we can calculate the cross section in the parton model.

Marc Schlegel (UTüb.) "Progress in High-p, Physics", BNL March 19, 2009

Marc Schlegel (UTüb.) "Progress in High-p, Physics", BNL March 19, 2009

High - q_{τ} of the photon pair Same strategy as for DY: quark - antiquark scattering: R 00000 guark - gluon scattering: \mathbf{R} Xa However: No model-independent angular decomposition! Diphoton angles enter the partonic cross section in numerator and denominator \rightarrow All angular dependencies are allowed. Marc Schlegel (UTüb.) "Progress in High-p, Physics", BNL March 19, 2009

Medium modified fragmentation functions and PDFs¹

Rodolfo Sassot

Departamento de Fisica, FCEN, Universidad de Buenos Aires

We perform a detailed phenomenological analysis of how hard hadronization processes occurring in nuclear environments can be described in terms of effective fragmentation functions. These fragmentation functions, that are assumed to factorize from the cross sections and evolve in the hard scale in the same way as the standard or vacuum fragmentation functions, are found to differ significantly with the latter in shape and magnitude. Based on very precise data on semi-inclusive lepton-nuclei deep inelastic scattering and hadroproduction in deuteron-gold collisions, we perform an extraction of these effective fragmentation functions for pions and kaons at NLO accuracy. The results, which include a rather accurate description of the kinematical dependence of the different cross sections, support the validity of factorization and universality, at least in an effective way, and within the precision of the available data.

¹Progress in high pT physics at RHIC, Brookhaven, March 2010

Medium-modified fragmentation functions and nPDFs

Rodolfo Sassot Universidad de Buenos Aires

> in collaboration with M. Stratmann and P. Zurita Phys.Rev.D81 054001 (2010)

Progress in high pT phyisics at RHIC, Brookhaven, March 2010

Motivation

high pT hadroproduction in pA and AA: RHIC, LHC

study hadronization in different environments

factorization & universality in a nucleus?

relevant for the extraction of nPDFs

Phenomenology:

Early evidence:

SLAC Phys.Rev.Lett. 40, 1624 (1978) EMC Z.Phys. C52, 1 (1991) E665 Phys.Rev. D50, 1836 (1994)

Precise SIDIS:

HERMES Nucl. Phys.B 780 I (2007);

Precise dAu: PHENIX Phys.Rev.Lett.98 172302 (2007). STAR Phys.Lett.B616, 8 (2005) B637, 161 (2006)

Jet measurements **STAR** in p-p and A-A collisions

Mateusz Ploskon (LBNL) for the STAR Collaboration

- Outline:
 - Introduction tools of heavy-ion collisions
 - Inclusive jet cross-section and pQCD at RHIC in p-p collisions
 - Jet quenching via single hadron observables
 - Success and limitations
 - Full jet reconstruction in heavy-ion collisions
 - Jet quenching using fully reconstructed jets in heavy-ion collisions
 - Outlook

Quantitative analysis: tools of heavy-ion collisions

- Inclusive cross-sections
 - Scaling of x-section ("Glauber";

e.g. hard x-sec ~ Nbinary collisions)

- Correlation measurements
 - Observable "B" under a condition "A" (trigger)
- Control over geometry
 - Correlations with reaction plane
- Jet quenching
 - Geometric biases use to the extreme
 - Color charged probes
 - Color neutral probes
- "Discovery by/through deviation"
 - use p-p and p-A collisions as references for A-A measured observables
- Interpretation -> Dependent upon modeling (!)

19th of March 2010

RIKEN/BNL High-pT, BNL, M.Ploskon

p+p: cross-section ratio R=0.2/R=0.4

Complete Jet Reconstruction in Heavy Ion Collisions: why bother?

Jet quenching is a *partonic* proces

High p_T hadron triggers bias towards non-interacting jets

 \rightarrow suppresses the jet population that interacts the most

→no access to dynamics of energy loss

Soft hadron correlations (p_T<few GeV/c) are difficult to interpret as QCD jets

- →requires strong analysis and modeling assumptions
- ➔ no clear connection to theory

Goal of full jet reconstruction: integrate over hadronic degrees of freedom to measure medium-induced jet modifications at the *partonic* level \rightarrow much more detailed connection to theory

19th of March 2010

RIKEN/BNL High-pT, BNL, M.Ploskon

Stronger broadening seen in measurement than NLO calculation... Strong hadronization effects? (that would be unfortunate) RIKEN/BNL High-pT, BNL, M.Ploskon

Summary and Outlook

Complete jet reconstruction promises qualitatively new insight into jet interactions in matter

→major focus of RHIC II and LHC HI programs

→has stimulated significant new theory activity

First results from fully reconstructed jets from STAR/RHIC show significant broadening of the jet structure in HI collisions

But significant technical issues for systematically well-controlled measurements

→ main issue: HI background characterization

→high backgrounds expected also in high luminosity p+p at LHC

More on jets from STAR: E. Bruna [STAR] Nucl.Phys.A830:267c-270c,2009 H. Caines [STAR] Nucl.Phys.A830:263c-266c,2009; arXiv:0911.3211v1 [nucl-ex]

19th of March 2010

RIKEN/BNL High-pT, BNL, M.Ploskon

\sqrt{s} Dependence of Pion Distributions

Martin L. Purschke, BNL

for the PHENIX collaboration

We present an overview of pion distributions at various center-of-mass energies. So far, RHIC has provided energies of 200, 62.4, and 22.4 GeV for proton-proton and heavy-ion collisions, and 500 GeV for proton-proton collisions.

Recent Run 9 proton-proton data at 500 GeV show a modest change in π^0 yields as a function of x_T from 200 GeV and 62.4 GeV, and agree with NLO calculations within 30%. The 62.4 GeV data may need an inclusion of NLL contributions to explain the yields.

While the proton-proton data only exhibit a moderately different behavior for the different energies, the distributions obtained in heavy ion collisions show more pronounced differences. The nuclear modification factor R_{AA} quantifies the difference of a distribution in a heavy ion collision compared to a simple superposition of the equivalent number of independent proton-proton collisions. A $R_{\rm AA}$ of 1 means that the heavy-ion collision can be explained as such a simple superposition; deviations from one indicate additional effects. We show R_{AA} values as a function of p_T for different values of \sqrt{s} for different centralities and collision systems. There is a systematic trend that higher energies, higher centralities, and larger collision systems show a higher hadron suppression, that is, a R_{AA} value significantly below 1, going as low as 0.2 for the most central collisions in Au + Au, while the R_{AA} value for photons remain around 1. Hadrons are suppressed, while photons are not. However, there is a significant difference between the data at $\sqrt{s} = 22.4 \,\text{GeV}$, which is so far only available for Cu + Cu data. Instead of a suppression, the 22.4 GeV data show a Cronin enhancement. Since the suppression and a R_{AA} value below 1 is found in all systems at "standard" RHIC energies (62.4 and 200 GeV), this means that there is a transition from enhancement to suppression somewhere between 22.4 and 62.4 GeV.

π^{0} spectrum and NLO: \sqrt{s} =62, 200 and 500 GeV

Comparison of π^0 with π^+

π°: PRD 79, 012003 (2009),
 PHENIX
 π[±]: PHENIX preliminary

Good agreement between charged pions and neutral, ~10%.

x_T scaling 62, 200, 500 GeV

Example: π° Spectra in Au+Au at $\sqrt{s_{N}}$ = 200 GeV

- $\pi^{\circ} R_{\mathbb{A}}$ measured up to $p_{\uparrow} = 20 \text{ GeV}/c$ (central Au+Au)
- Constant $R_{\text{A}} \approx 0.2$ in central Au+Au up to highest p_{T} (5 < p_{T} < 20 GeV/c)

p_{T} Dependence of $\pi^{0} R_{AA}$ in Cu+Cu

PHENIX, arXiv:0801.4555 [nucl-ex]

は、緑竹小ドックを使わせて思想のないのかか

- 62.4, 200 GeV:
 - Suppression consistent with parton energy loss for p₁ > 3 GeV/c
- 22.4 GeV:
 - No suppression
 - Enhancement consistent with calculation that describes Cronin enhancement in p+A
- Parton energy loss starts to compensate Cronin enhancement between 22.4 and 62.4 GeV

Progress in High-p_T Physics at RHIC RIKEN BNL Research Center Workshop March 17-19, 2019 at Brookhaven National Laboratory

Nucleon Spin Structure Studies at JLab

Zein-Eddine Meziani Temple University

⊙ Longitudinal nucleon spin structure at large x

⊙ Quark-gluon correlations and the color Lorentz force

03/19/10

RIKEN-BNL Research Center

Nucleon structure in the valence region

- Access to very large x (x > 0.4)
 - Clean region
 - No strange sea effects
 - No explicit hard gluons to be included
- Quark models can be a powerful tool to investigate the structure of the nucleon
- Comparison with lattice QCD is possible for higher moments of structure functions.

$$\begin{split} M_n(Q^2) = & \int_0^1 dx \; x^{n-2} \; F_2(x,Q^2) \quad \text{n=2,4,..} \\ M_n(Q^2) = & \int_0^1 dx \; x^{n-1} \; g_1(x,Q^2), \quad n=1,3,5... \\ & \text{O3/19/10} \quad 0 \quad \text{Riken-BNL Research Center} \end{split}$$

 \hookrightarrow d_2 a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon

$$\langle F^y(0)
angle = -M^2 d_2$$
 (rest frame; $S^x = 1$)

03/19/10

RIKEN-BNL Research Center

Summary

- Carge x is a good ground for testing our understanding of nucleon structure
- Access to some dynamics like quark-gluon correlations is also possible using higher moments of g2 accessible at large x.

© Stay tuned for results on d2p and d2n coming soon at a workshop near you!

LHC HIGN-pT Physics (Relevant to this meeting)
While the primary focus of the LHC is on
electro-weak and BSM physics, the LHC
will be a powerful tool for studying QCD
 Very high Q2 hard scattering processes
 Production of many-jet final states, heavy flavor
⇒ Tests of understanding of parton showers
 Hard processes involving low-x partons
 In p+p, tests for BFLK physics, diffractive hard physics(?)
 In p+A, A+A, shadowing measurements, saturation tests
⇒ (semi?)-hard QCD @ large parton densities
Jet quenching in A+A
 Extended jet p_T range , higher jet yields
 Jet measurements at very large Q²
⇒ Modification of extended parton showers in medium

Prospects	
• 7 TeV p-p	
-LHC magnets already being ramped to 3.5 TeV	
 – 7 TeV operation on few week time-scale 	
– Goal for 2010-2011, 1 fb-1	
⇒Unprecedented sample of jets out to ~ TeV	
• 2.6 TeV Pb+Pb	
 Few weeks of low-luminosity ~10⁻²⁵ fall 2010. 	
Physics	
 High-statistics studies of parton showers generated by high-Q² processes 	
 Unique studies of jet quenching in Pb+Pb 	
\Rightarrow New physics of radiating color charge in medium	
\Rightarrow Crucial probe of quark-gluon plasma for T /T _c > 2	
• Low-x physics (which I didn't have time to discuss) 29	6

The Science of Future Electron Ion Collider Connections to Existing Facilities

Abhay Deshpande Stony Brook University & RBRC

In the first part of this talk, I emphasized the historical precedence and the importance of the complementary methods to understand the laws of physics. Electron-electron (e-e), electron-hadron (e-h or DIS) and hadron-hadron (h-h) scattering have historically played a crucial role in our knowledge of the Standard Model. There is no reason to anticipate any thing different in future for QCD studies, which include spin & heavy nuclei as controlled experimental variables. Recent attempts to elevate, one technique against the other, i.e. the importance of DIS vs. h-h scattering for understanding the nucleon spin, miss the essential point that they allowing independent confirmation of the object of interest. Further, results obtained in h-h scattering include input from e-e and e-h scattering experiments. On the other hand, it can also be argued that only the measurements made in h-h scattering, and state-of-the-art theory of pQCD along with the underlying assumptions of universality and (where appropriate) factorization.

In the second half of the talk, I reviewed the two polarized-electron-ion-collider proposals under consideration at BNL (eRHIC) and Jefferson Laboratory (ELIC <u>EL</u>ectron Ion Collider). The eventual machine parameters planned for the proposals are similar, but the path and time scale to achieve may be different. The luminosities are planned between 10^{32} - \sim few x 10^{34} cm⁻²sec⁻¹ (10 - few x1000 times HERA). Electron, proton and deuteron (in ELIC) and ³He (in eRHIC) are expected to be polarized. eRHIC proposal uses one of the existing hadron/nuclear beams of RHIC. The staged realization proposes starting with a ~4 GeV energy electron beam, employing a race-track layout of ERLs with multiple passes. This could then be expanded in to the full eRHIC, which would involve electron beams in the existing RHIC tunnel, also with multiple passes. Up to 20 GeV electron beams are possible. ELIC plans to use the upgraded CEBAF 12 GeV electron from 3-11 GeV may be used for collisions. In the initial stage, the proton beam energies are expected to be around 30-60 GeV, to be later increased to about 250 GeV by adding additional hadron ring.

The science drivers (the golden measurements) for the electron ion collider are being studied and formulated in detail by the EIC Collaboration. The nucleon spin study will be driven by precision measurements of the gluon's contribution to the nucleon spin and aspects of 3D structure of the nucleon through measurements of Transverse Momentum Distributions (TMDs) and Generalized Parton Distributions (GPDs). The nuclei at high energy in the EIC will allow a precision study of QCD at extremely high gluon densities (Color Glass Condensate). A new possibility and preliminary studies in precision electroweak physics with the highest possible energy and luminosity is now being explored.

Nucleon Spin Crisis Puzzle

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_Q + \Delta G + L_G \qquad (?)$$

- We **know** how to measure $\Delta\Sigma$ and ΔG precisely using pQCD in a **model independent** way
 - $\frac{1}{2} (\Delta \Sigma) \sim 0.15$: From fixed target pol. DIS experiments
 - RHIC-Spin: ∆G not large as anticipated in the 1990s, but measurements incomplete, precision at low x?
- Orbital angular momenta: L_O (L_G?)
 Z.E. Meziani's talk
 - Through GPDs: 3D tomographic images of the proton
 - Significant model dependence...
 - A lot to learn from the 6 GeV and the 12 GeV Jlab program & an ongoing theoretical development

6/26/09

EIC: Physics Opportunities & Accelerator Challenges

Machine/Detector (→Physics)

Inclusive

	– Nucleon		
	• Polarized PDFs (g1 $\rightarrow \Delta G$, F ₂ & F ₁ $\rightarrow G$)	Nucleon Spin	
	Parity experiments	Beyond SM	
	 – Nucleus: Nuclear PDFs, EMC Effect, Low-x →G 	Extreme QCD	
•	Semi-Inclusive		
	- Nucleon:		
	• Polarized PDFs (g1 $\rightarrow \Delta Q, \Delta Q$ bar, Δg_{iets})	Nucleon Spin	
	 Transverse Momentum Dependent (TMDs) 	Nucleon Spin	
	− Nucleus: Diffraction \rightarrow Low-x \rightarrow G	Extreme QCD	
•	Exclusive		
	– Nucleon:		
	• 3D structure \rightarrow GPDs \rightarrow L _z	Nucleon Spin	
	EW physics	EW & BSM	
	 – Nucleus: 3D structure of Nuclei(?) 	QCD of nuclei	

V.N. Litvinenko, EICC neeting, Stony Brook, NY, January 11, 2010

Overarching goals of EIC

- Nucleon Spin Structure
 - Longitudinal spin structure: ΔG, ΔQ, ΔQbar
 Mostly inclusive & semi-inclusive measurements
 - Nucleon spatial structure
 - TMDs & GPDs (→L,?)
 - Mostly semi-inclusive & exclusive measurements
- QCD at extreme condition & spatial structure of nuclei - Low x gluon distribution & GPDs in nuclei
 - Inclusive & semi-inclusive (diffractive & other) off nuclei
- Parity & Precision EW Physics (Emergent ?)
 Inclusive, semi-inclusive/exclusive physics

Progress in High-p_{-T} Physics at RHIC March 17 – 19, 2010 Registered Participants

Name	Affiliation	E-Mail Address
Zubayer Ahammed	LBNL	za@veccal.ernet.in
Mauro Anselmino	Torino University & INFN	mauro.anselmino@to.infn.it
Kenneth Barish	UC Riverside	Kenneth.Barish@ucr.edu
Alexander Bazilevsky	BNL	shura@bnl.gov
Les Bland	BNL	bland@bnl.gov
Daniel Boer	KVI, Univ of Groningen	D.Boer@rug.nl
Gerry Bunce	RIKEN	bunce@bnl.gov
William Christie	BNL	christie@bnl.gov
Zvi Citron	Stony Brook University	zcitron@skipper.physics.sunysb.edu
Brian Cole	Columbia University	cole@nevis.columbia.edu
Hank Crawford	UC Berkeley, SSL	hjcrawford@lbl.gov
Daniel de Florian	Univ of Buenos Aires	deflo@df.uba.ar
Wilco den Dunnen	VU University Amsterdam	wdunnen@few.vu.nl
Abhay Deshpande	Stony Brook Univ	abhay.deshpande@stonybrook.edu
Adrian Dumitru	Baruch College / RBRC	Adrian.Dumitru@baruch.cuny.edu
Robert Fersch	Univ of Kentucky	fersch@pa.uky.edu
Wlodek Guryn	BNL	guryn@bnl.gov
Delia Hasch	INFN-Frascati	delia.hasch@lnf.infn.it
George Igo	UCLA	igo@physics.ucla.edu
Jamal Jalilian-Marian	Baruch College	jamal.jalilian-marian@baruch.cuny.edu
Kenichi Karatsu	Kyoto University	karatsu@scphys.kyoto-u.ac.jp
John Koster	Univ of IL, Urbana Champaign	jkoster2@uiuc.edu
Sookhyun Lee	Stony Brook Univ	shlee@bnl.gov
Ming X Liu	LANL	mliu@lanl.gov
Yousef Makdisi	BNL	makdisi@bnl.gov
Andreas Metz	Temple Univ	metza@temple.edu
Zein-Eddine Meziani	Temple Univ	meziani@temple.edu
David Morrison	BNL	morrison@bnl.gov
Kensuke Okada	BNL	okada@bnl.gov
Jen-Chieh Peng	Univ of IL, Urbana-Champaign	jcpeng@uiuc.edu
Mateusz Ploskon	LBNL	MPloskon@lbl.gov
Jianwei Qiu	BNL	jwq@iastate.edu
Martin Purschke	BNL	purschke@bnl.gov
Jan Rak	Jyvaskyla Finland	jan.rak@phys.jyu.fi or jan.rak@bnl.gov
Takao Sakaguchi	BNL	takao@bnl.gov
Rodolfo Sassot	Univ of Buenos Aires	sassot@df.uba.ar
Christian Schill	Albert-Ludwigs-Univ Freiburg	Christian.Schill@cern.ch
Marc Schlegel	Tuebingen University	marc.schlegel@uni-tuebingen.de
Joseph Seele	MIT	seelej@mit.edu
Ralf Seidl	BNL	rseidl@rcf.rhic.bnl.gov
Jacques Soffer	Temple Univ	jacques.soffer@gmail.com
Harold Spinka	ANL	hms@anl.gov
George Sterman	SUNY, SB	george.sterman@stonybrook.edu
Marco Stratmann	Regensburg University	marco@ribf.riken.jp
Bernd Surrow	MIT	surrow@me.com
Swadhin Taneja	Stony Brook University	taneja@skipper.physics.sunysb.edu
Michael Tannenbaum	BNL	mjt@bnl.gov
Larry Trueman	BNL	trueman@bnl.gov
Flemming Videbaek	BNL	videbaek@bnl.gov
Werner Vogelsang	Tuebingen University	werner.vogelsang@uni-tuebingen.de
Scott Wissink	Indiana University	wissink@indiana.edu
Feng Yuan	LBNL	fyuan@lbl.gov

Progress in High-P_T Physics at RHIC Physics Large Seminar Room March 17-19, 2010

Wednesday, March 17th

8:30 - 9:00	REGISTRATION	
Session Chair:	Gerry Bunce	
9:00 - 9:05	Nick Samios	Welcome
9:05 - 9:35	George Sterman	High p _T Physics at RHIC
9:35 - 10:05	Mike Tannenbaum	High p _T Physics from the AGS to the ISR to RHIC
10:05 - 10:35	Jacques Soffer	A Few Relevant Cases for Studying High-p _T Physics at the RHIC pp Collider
10:35 - 11:00	COFFEE BREAK	
11:00 - 11:30	Daniel de Florian	CHE: W Production at NLO and the Polarized Sea Distributions
11:30 - 12:00	Harold Spinka	First W Production Results From STAR
12:00 - 12:30	Kenichi Karatsu	W Boson Production and Spin Asymmetry Measurements at PHENIX
12:30 - 14:00	LUNCH	
Session Chair:	Abhay Deshpande	
14:00 - 14:30	Pavel Nadolsky via EVO	Spin Asymmetry in W Boson Production Hadron Decay Modes
14:30 - 15:00	Christian Schill	Spin Physics Results from COMPASS
15:00 - 15:30	Bernd Surrow	Status and Future Prospects of the STAR W Program
15:30 - 16:00	COFFEE BREAK	
16:00 - 16:30	Marco Stratmann	Heavy Quark Correlations in Polarized pp Collisions
16:30 - 17:00	Scott Wissink	Status of Delta G Measurements at STAR
17:00 - 17:30	Swadhin Taneja	Gluon Polarization: Status and Plans for Measurements at PHENIX

Thursday, March 18th

Session Chair:	Jacques Soffer	
9:00 - 9:30	Mauro Anselmino	SSAs in Hadron-Hadron Collisions and TMDs
9:30 - 10:00	John Koster	Transverse Spin Physics at PHENIX
10:00 - 10:30	Robert Fersch	Measurement of the Collins Asymmetry in Mid-Rapidity Jets at STAR
10:30 - 11:00	COFFEE BREAK	
11:00 - 11:30	Andreas Metz	Nontrivial Relations Between GPDs and TMDs
11:30 - 12:00	Jen-Chieh Peng	Recent Results and Future Prospects for Drell-Yan Experiments
12:00 - 12:30	Ming Liu	New Probes for Future Transverse Spin Physics
12:30 - 14:00	LUNCH	

Session Chair:	Mauro Anselmino	
14:00 - 14:30	Feng Yuan	Looking Forward at RHIC
14:30 - 15:00	Ralf Seidl	Experimental Results and Future Prospects on Spin-Dependent Fragmentation
15:00 - 15:30	Delia Hasch	Latest Results from HERMES
15:30 - 16:00	COFFEE BREAK	
16:00 - 16:30	Adrian Dumitru	Two-Particle Correlations and the Small-x Gluon Four-Point Function
16:30 - 17:00	Wilco den Dunnen	Double Transverse Spin Asymmetries as a Probe for New Physics
18:00 - 20:00	DINNER, BROOKHAV	EN CENTER SOUTH ROOM

Thursday, March 18th (continued)

Friday, March 19th

Session Chair:	Jen-Chieh Peng	
9:00 - 9:30	Jianwei Qiu	Low Mass Dilepton Production at High-p _T
9:30 - 10:00	Zvi Citron	Probing Low x in d+Au and p+p Collisions in PHENIX
10:00 - 10:30	Hank Crawford	Low x Physics at STAR
10:30 - 11:00	COFFEE BREAK	
11:00 - 11:30	Jamal Jalilian-Marian	Photon-Hadron Correlations in dA Collisions as a Probe of Saturation Physics
11:30 - 12:00	Daniel Boer	Lambda Polarization and Low-x Physics
12:00 - 12:30	Mark Schlegel	TMDs in Two-Photon Production
12:30 - 14:00	LUNCH	
Session Chair:	Jianwei Qiu	
14:00 - 14:30	Rodolfo Sassot	Medium Modified Fragmentation Functions and PDFs
14:30 - 15:00	Mateusz Ploskon	Jet Measurements in p-p and A-A Collisions by STAR
15:00 - 15:30	Martin Purschke	\sqrt{s} Dependence of Pion Production Cross Sections
15:30 - 16:00	COFFEE BREAK	
16:00 - 16:30	Zein-Eddine Meziani	Nucleon Spin Structure Studies at JLab
16:30 - 17:00	Brian Cole	Status and Plans at the LHC
17:00 - 17:30	Abhay Deshpande	RHIC-to-EIC Transition: Connections and Complementarities

Additional RIKEN BNL Research Center Proceedings:

Volume 94	 Summer Program on Nucleon Spin Physics at LBL, June 1-12, 2009 – BNL 	
Volume 93	- PHENIX Spinfest School 2009 at BNL - July 1 -31, 2009. BNL-90343-2009	
	Link: PHENIXSpinfestSchool2009@BNL	
Volume 92	- PKU-RBBC Workshop on Transverse Spin Physics, June 30-July 4, 2008, Beijing, China, BNL-81685-2008	
Volume 91	- RBRC Scientific Review Committee Meeting, November 17-18, 2008 - BNL-81556-2008	
Volume 90	- PHENIX Spinfest School 2008 at BNL August 4-8, 2008 - BNL-81478-2008	
Volume 80	- Understanding OCB through Spectral Eurotions and Euclidean Correlators April 23-25, 2008 - BNI-91318-	
volume og	- Onderstanding QGP through Spectral Functions and Euclidean Correlators, April 25-25, 2006 - BNE-01510-	
Maluma 00	2008	
Volume 88	- Hydrodynamics in Heavy Ion Collisions and QCD Equation of State, April 21-22, 2008 - BNL-81307-2008	
Volume 8/	- RBRC Scientific Review Committee Meeting, November 5-6, 2007 - BNL-79570-2007	
Volume 86	- Global Analysis of Polarized Parton Distributions in the RHIC Era, October 8, 2007 - BNL-79457-2007	
Volume 85	 Parity-Violating Spin Asymmetries at RHIC-BNL, April 26-27, 2007 – BNL-79146-2007 	
Volume 84	– Domain Wall Fermions at Ten Years, March 15-17, 2007 – BNL 77857-2007	
Volume 83	 – QCD in Extreme Conditions, July 31-August 2, 2006 – BNL-76933-2006 	
Volume 82	 RHIC Physics in the Context of the Standard Model, June 18-23, 2006 – BNL-76863-2006 	
Volume 81	- Parton Orbital Angular Momentum (Joint RBRC/University of New Mexico Workshop) February 24-26, 2006 -	
	BNL-75937-2006	
Volume 80	– Can We Discover the QCD Critical Point at RHIC?, March 9-10, 2006 – BNL-75692-2006	
Volume 79	 Strangeness in Collisions, February 16-17, 2006 – BNL-79763-2008 	
Volume 78	 Heavy Flavor Productions and Hot/Dense Quark Matter, Dec 12-14, 2005 – BNL-76915-2006 	
Volume 77	- RBRC Scientific Review Committee Meeting - BNL-52649-2005	
Volume 76	- Odderon Searches at RHIC, September 27-29, 2005 - BNL-75092-2005	
Volume 75	– Single Spin Asymmetries, June 1-3, 2005 – BNL-74717-2005	
Volume 74	- RBRC OCDOC Computer Dedication and Symposium on RBRC OCDOC, May 26, 2005 - BNL-74813-2005	
Volume 73	- Jet Correlations at RHIC, March 10-11, 2005 - BNL-73910-2005	
Volume 72	- RHIC Spin Collaboration Meetings XXXI(January 14, 2005), XXXII (February 10, 2005), XXXIII (March 11,	
	2005) – BNL-73866-2005	
Volume 71	- Classical and Quantum Aspects of the Color Glass Condensate - BNL-73793-2005	
Volume 70	- Strongly Coupled Plasmas: Electromagnetic, Nuclear & Atomic - BNL-73867-2005	
Volume 69	– Review Committee – BNL-73546-2004	
Volume 68	- Workshop on the Physics Programme of the RBRC and UKOCD OCDOC Machines - BNL-73604-2004	
Volume 67	- High Performance Computing with BlueGene/L and OCDOC Architectures - BNL-	
Volume 66	- RHIC Spin Collaboration Meeting XXIX, October 8-9, 2004, Torino Italy - BNI -73534-2004	
Volume 65	- RHIC Spin Collaboration Meetings XXVII (July 22, 2004), XXVIII (Sentember 2, 2004), XXX (December 6	
volume ob	2004) - BNI-73506-2004	
Volume 64	- Theory Summer Program on RHIC Physics - BNI-73263-2004	
Volume 63	- PHIC Spin Collaboration Meetings XXIV (May 21, 2004), XXV (May 27, 2004), XXVI (June 1, 2004) - BNI-	
volume 05		
Volumo 62	Now Discoveries at PHIC, May $14.15, 2004 - RNL - 72201-2004$	
Volume 62	- New Discovenes at Rnic, May 14-13, 2004 - DNL- 72391-2004	1
Volume 61	- RIKEN-TODAL MINI WORKShop of Topics in Hadron Physics at RHC, March 25-24, 2004 - BNL-72336-200	4
Volume 60	- Lattice QCD at Finite Temperature and Density - BNL-72083-2004	
Volume 59	- RHIC Spin Collaboration Meeting XXI (January 22, 2004), XXII (February 27, 2004), XXIII (March 19, 2004) BNL-72382-2004	-
Volume 58	- RHIC Spin Collaboration Meeting XX - BNL-71900-2004	
Volume 57	 High pt Physics at RHIC, December 2-6, 2003 – BNL-72069-2004 	
Volume 56	 RBRC Scientific Review Committee Meeting – BNL-71899-2003 	
Volume 55	- Collective Flow and QGP Properties - BNL-71898-2003	
Volume 54	- RHIC Spin Collaboration Meetings XVII, XVIII, XIX - BNL-71751-2003	
Volume 53	- Theory Studies for Polarized pp Scattering - BNL-71747-2003	
Volume 52	- RIKEN School on QCD "Topics on the Proton" - BNL-71694-2003	
Volume 51	- RHIC Spin Collaboration Meetings XV, XVI - BNL-71539-2003	
Volume 50	 High Performance Computing with QCDOC and BlueGene – BNL-71147-2003 	

Additional RIKEN BNL Research Center Proceedings:

Volume 49	-	RBRC Scientific Review Committee Meeting – BNL-52679
Volume 48	_	RHIC Spin Collaboration Meeting XIV – BNL-71300-2003
Volume 47	_	RHIC Spin Collaboration Meetings XII, XIII – BNL-71118-2003
Volume 46	_	Large-Scale Computations in Nuclear Physics using the QCDOC – BNL-52678
Volume 45	_	Summer Program: Current and Future Directions at RHIC – BNL-71035
Volume 44	_	RHIC Spin Collaboration Meetings VIII, IX, X, XI – BNL-71117-2003
Volume 43	_	RIKEN Winter School – Quark-Gluon Structure of the Nucleon and QCD – BNL-52672
Volume 42	_	Baryon Dynamics at RHIC – BNL-52669
Volume 41	_	Hadron Structure from Lattice QCD – BNL-52674
Volume 40	-	Theory Studies for RHIC-Spin – BNL-52662
Volume 39	-	RHIC Spin Collaboration Meeting VII – BNL-52659
Volume 38	_	RBRC Scientific Review Committee Meeting – BNL-52649
Volume 37	_	RHIC Spin Collaboration Meeting VI (Part 2) – BNL-52660
Volume 36	-	RHIC Spin Collaboration Meeting VI – BNL-52642
Volume 35	-	RIKEN Winter School – Quarks, Hadrons and Nuclei – QCD Hard Processes and the Nucleon Spin – BNL-52643
Volume 34	-	High Energy QCD: Beyond the Pomeron – BNL-52641
Volume 33	-	Spin Physics at RHIC in Year-1 and Beyond – BNL-52635
Volume 32	-	RHIC Spin Physics V – BNL-52628
Volume 31	-	RHIC Spin Physics III & IV Polarized Partons at High Q^2 Region – BNL-52617
Volume 30	-	RBRC Scientific Review Committee Meeting – BNL-52603
Volume 29	-	Future Transversity Measurements – BNL-52612
Volume 28	-	Equilibrium & Non-Equilibrium Aspects of Hot, Dense QCD – BNL-52613
Volume 27	-	Predictions and Uncertainties for RHIC Spin Physics & Event Generator for RHIC Spin Physics III – Towards
		Precision Spin Physics at RHIC – BNL-52596
Volume 26	-	Circum-Pan-Pacific RIKEN Symposium on High Energy Spin Physics – BNL-52588
Volume 25	-	RHIC Spin – BNL-52581
Volume 24	-	Physics Society of Japan Biannual Meeting Symposium on QCD Physics at RIKEN BNL Research Center – BNL- 52578
Volume 23	_	Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589
Volume 23 Volume 22	-	Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591
Volume 23 Volume 22 Volume 21		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568
Volume 23 Volume 22 Volume 21 Volume 20	- - -	Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590
Volume 23 Volume 22 Volume 21 Volume 20 Volume 19		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573
Volume 23 Volume 22 Volume 21 Volume 20 Volume 19 Volume 18		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571
Volume 23 Volume 22 Volume 21 Volume 20 Volume 19 Volume 18 Volume 17		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574
Volume 23 Volume 22 Volume 21 Volume 20 Volume 19 Volume 18 Volume 17 Volume 16		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569
Volume 23 Volume 22 Volume 21 Volume 20 Volume 19 Volume 18 Volume 17 Volume 16 Volume 15		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561
Volume 23 Volume 22 Volume 21 Volume 20 Volume 19 Volume 18 Volume 17 Volume 16 Volume 15 Volume 14		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560
Volume 23 Volume 22 Volume 21 Volume 20 Volume 19 Volume 18 Volume 17 Volume 16 Volume 15 Volume 14 Volume 13		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560 Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration – BNL-66299
Volume 23 Volume 22 Volume 21 Volume 20 Volume 19 Volume 18 Volume 17 Volume 16 Volume 15 Volume 14 Volume 13 Volume 12		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560 Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration – BNL-66299 Quarkonium Production in Relativistic Nuclear Collisions – BNL-52559
Volume 23 Volume 22 Volume 20 Volume 19 Volume 18 Volume 17 Volume 16 Volume 15 Volume 13 Volume 12 Volume 11		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560 Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration – BNL-66299 Quarkonium Production in Relativistic Nuclear Collisions – BNL-52559 Event Generator for RHIC Spin Physics – BNL-66116
Volume 23 Volume 22 Volume 21 Volume 20 Volume 19 Volume 18 Volume 17 Volume 16 Volume 15 Volume 13 Volume 13 Volume 11 Volume 11 Volume 10		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560 Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration – BNL-66299 Quarkonium Production in Relativistic Nuclear Collisions – BNL-52559 Event Generator for RHIC Spin Physics – BNL-66116 Physics of Polarimetry at RHIC – BNL-65926
Volume 23 Volume 22 Volume 20 Volume 19 Volume 18 Volume 17 Volume 16 Volume 15 Volume 14 Volume 13 Volume 11 Volume 11 Volume 10 Volume 9		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560 Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration – BNL-66299 Quarkonium Production in Relativistic Nuclear Collisions – BNL-52559 Event Generator for RHIC Spin Physics – BNL-66116 Physics of Polarimetry at RHIC – BNL-65926 High Density Matter in AGS, SPS and RHIC Collisions – BNL-65762
Volume 23 Volume 22 Volume 20 Volume 19 Volume 18 Volume 17 Volume 17 Volume 15 Volume 13 Volume 13 Volume 11 Volume 10 Volume 9 Volume 8		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560 Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration – BNL-66299 Quarkonium Production in Relativistic Nuclear Collisions – BNL-52559 Event Generator for RHIC Spin Physics – BNL-66116 Physics of Polarimetry at RHIC – BNL-65926 High Density Matter in AGS, SPS and RHIC Collisions – BNL-65762 Fermion Frontiers in Vector Lattice Gauge Theories – BNL-65634
Volume 23 Volume 22 Volume 20 Volume 19 Volume 18 Volume 17 Volume 16 Volume 15 Volume 13 Volume 13 Volume 11 Volume 10 Volume 9 Volume 8 Volume 7		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560 Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration – BNL-66299 Quarkonium Production in Relativistic Nuclear Collisions – BNL-52559 Event Generator for RHIC Spin Physics – BNL-66116 Physics of Polarimetry at RHIC – BNL-65926 High Density Matter in AGS, SPS and RHIC Collisions – BNL-65762 Fermion Frontiers in Vector Lattice Gauge Theories – BNL-65634 RHIC Spin Physics – BNL-65615
Volume 23 Volume 22 Volume 21 Volume 20 Volume 19 Volume 18 Volume 17 Volume 17 Volume 15 Volume 13 Volume 13 Volume 11 Volume 10 Volume 10 Volume 9 Volume 8 Volume 7 Volume 6		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560 Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration – BNL-66299 Quarkonium Production in Relativistic Nuclear Collisions – BNL-52559 Event Generator for RHIC Spin Physics – BNL-66116 Physics of Polarimetry at RHIC – BNL-65926 High Density Matter in AGS, SPS and RHIC Collisions – BNL-65762 Fermion Frontiers in Vector Lattice Gauge Theories – BNL-65763 RHIC Spin Physics – BNL-65615 Quarks and Gluons in the Nucleon – BNL-65234
Volume 23 Volume 22 Volume 21 Volume 20 Volume 19 Volume 17 Volume 17 Volume 17 Volume 15 Volume 14 Volume 13 Volume 12 Volume 11 Volume 10 Volume 9 Volume 8 Volume 7 Volume 6 Volume 5		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560 Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration – BNL-66299 Quarkonium Production in Relativistic Nuclear Collisions – BNL-52559 Event Generator for RHIC Spin Physics – BNL-66116 Physics of Polarimetry at RHIC – BNL-65926 High Density Matter in AGS, SPS and RHIC Collisions – BNL-65762 Fermion Frontiers in Vector Lattice Gauge Theories – BNL-65634 RHIC Spin Physics – BNL-65615 Quarks and Gluons in the Nucleon – BNL-65234 Color Superconductivity, Instantons and Parity (Non?)-Conservation at High Baryon Density – BNL-65105
Volume 23 Volume 22 Volume 20 Volume 19 Volume 19 Volume 17 Volume 17 Volume 17 Volume 13 Volume 13 Volume 13 Volume 11 Volume 10 Volume 9 Volume 8 Volume 7 Volume 5 Volume 4		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560 Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration – BNL-66299 Quarkonium Production in Relativistic Nuclear Collisions – BNL-52559 Event Generator for RHIC Spin Physics – BNL-66116 Physics of Polarimetry at RHIC – BNL-65926 High Density Matter in AGS, SPS and RHIC Collisions – BNL-65762 Fermion Frontiers in Vector Lattice Gauge Theories – BNL-65762 Fermion Frontiers in Vector Lattice Gauge Theories – BNL-65634 RHIC Spin Physics – BNL-65615 Quarks and Gluons in the Nucleon – BNL-65234 Color Superconductivity, Instantons and Parity (Non?)-Conservation at High Baryon Density – BNL-65105 Inauguration Ceremony, September 22 and Non-Equilibrium Many Body Dynamics –BNL-64912
Volume 23 Volume 22 Volume 20 Volume 19 Volume 18 Volume 17 Volume 17 Volume 17 Volume 13 Volume 13 Volume 13 Volume 11 Volume 10 Volume 10 Volume 8 Volume 7 Volume 6 Volume 5 Volume 4 Volume 3		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560 Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration – BNL-66299 Quarkonium Production in Relativistic Nuclear Collisions – BNL-52559 Event Generator for RHIC Spin Physics – BNL-66116 Physics of Polarimetry at RHIC – BNL-65926 High Density Matter in AGS, SPS and RHIC Collisions – BNL-65762 Fermion Frontiers in Vector Lattice Gauge Theories – BNL-65634 RHIC Spin Physics – BNL-65615 Quarks and Gluons in the Nucleon – BNL-65234 Color Superconductivity, Instantons and Parity (Non?)-Conservation at High Baryon Density – BNL-65105 Inauguration Ceremony, September 22 and Non-Equilibrium Many Body Dynamics –BNL-64912 Hadron Spin-Flip at RHIC Energies – BNL-64724
Volume 23 Volume 22 Volume 21 Volume 20 Volume 19 Volume 17 Volume 17 Volume 17 Volume 13 Volume 13 Volume 13 Volume 11 Volume 11 Volume 10 Volume 11 Volume 10 Volume 3 Volume 3 Volume 3 Volume 2		Coulomb and Pion-Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies – BNL-52589 OSCAR II: Predictions for RHIC – BNL-52591 RBRC Scientific Review Committee Meeting – BNL-52568 Gauge-Invariant Variables in Gauge Theories – BNL-52590 Numerical Algorithms at Non-Zero Chemical Potential – BNL-52573 Event Generator for RHIC Spin Physics – BNL-52571 Hard Parton Physics in High-Energy Nuclear Collisions – BNL-52574 RIKEN Winter School – Structure of Hadrons - Introduction to QCD Hard Processes – BNL-52569 QCD Phase Transitions – BNL-52561 Quantum Fields In and Out of Equilibrium – BNL-52560 Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration – BNL-66299 Quarkonium Production in Relativistic Nuclear Collisions – BNL-52559 Event Generator for RHIC Spin Physics – BNL-66116 Physics of Polarimetry at RHIC – BNL-65926 High Density Matter in AGS, SPS and RHIC Collisions – BNL-65762 Fermion Frontiers in Vector Lattice Gauge Theories – BNL-65634 RHIC Spin Physics – BNL-65615 Quarks and Gluons in the Nucleon – BNL-65234 Color Superconductivity, Instantons and Parity (Non?)-Conservation at High Baryon Density – BNL-65105 Inauguration Ceremony, September 22 and Non-Equilibrium Many Body Dynamics –BNL-64912 Hadron Spin-Flip at RHIC Energies – BNL-64723

For information please contact:

Ms. Pamela Esposito RIKEN BNL Research Center Building 510A Brookhaven National Laboratory Upton, NY 11973-5000 USA

 Phone:
 (631) 344-3097

 Fax:
 (631) 344-4067

 E-Mail:
 pesposit@bnl.gov

Ms. Susan Foster RIKEN BNL Research Center Building 510A Brookhaven National Laboratory Upton, NY 11973-5000 USA

(631) 344-5864 (631) 344-2562 sfoster@bnl.gov

Homepage: http://www.bnl.gov/riken

Progress in High-p_⊤ Physics at RHIC

March 17-19, 2010

Li Keran

Nuclei as heavy as bulls Through collision Generate new states of matter. T.D. Lee 用月

Copyright©CCASTA

Speakers:

- M. Anselmino D. de Florian D. Hasch A. Metz M. Purschke R. Seidl B. Surrow
- D. Boer W. den Dunnen J. Jalilian-Marian Z-E. Meziani J. Qiu J. Soffer S. Taneja

Z. Citron A. Deshpande K. Karatsu P. Nadolsky R. Sassot H. Spinka M.Tannenbaum B. Cole A. Dumitru J. Koster J-C. Peng C. Schill G. Sterman S. Wissink H.Crawford R. Fersch M. Liu M. Ploskon M. Schlegel M. Stratmann F. Yuan

Organizers: A. Bazilevsky, L. Bland and W. Vogelsang