Application of Triple Coincidence for the Detection of Small Amounts of Special Nuclear Materials

PDF Version Also Available for Download.

Description

We constructed a device that measures two {gamma}-rays and one neutron from spontaneous fission and any resulting multiplication chains. It extends the associated particle technique based upon correlated counting of the multiplicity of gamma-rays and neutrons released in spontaneous- or neutron-induced fission. There are two advantages in incorporating a third detector in the design over the standard two-detector version. First, we found that random uncorrelated events dominate the background of coincident counting with a gamma-ray- and neutron-detector. These might be suppressed by requiring an additional coincidence. Second, the time history of gamma-ray emission between the two gamma-ray detectors is related ... continued below

Creation Information

DIOSZEGI, I.; Salwen, C. & and Forman, L. June 12, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We constructed a device that measures two {gamma}-rays and one neutron from spontaneous fission and any resulting multiplication chains. It extends the associated particle technique based upon correlated counting of the multiplicity of gamma-rays and neutrons released in spontaneous- or neutron-induced fission. There are two advantages in incorporating a third detector in the design over the standard two-detector version. First, we found that random uncorrelated events dominate the background of coincident counting with a gamma-ray- and neutron-detector. These might be suppressed by requiring an additional coincidence. Second, the time history of gamma-ray emission between the two gamma-ray detectors is related to multiplication in the target media. Multiplication in highly enriched uranium is much greater than in depleted uranium.

Source

  • 11th International Conference on Applications of Nuclear Techniques (CRETE11 Conference); Crete, Greece; 20110612 through 20110618

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--95366-2011-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 1025479
  • Archival Resource Key: ark:/67531/metadc843272

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 12, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 25, 2016, 2:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

DIOSZEGI, I.; Salwen, C. & and Forman, L. Application of Triple Coincidence for the Detection of Small Amounts of Special Nuclear Materials, article, June 12, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc843272/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.