

Fermentation and Electrohydrogenic Approaches to Hydrogen Production

Pin-Ching Maness, Shiv Thammannagowda, and Lauren Magnusson National Renewable Energy Laboratory

Bruce Logan Penn State University (Subcontract)

2010 Annual Merit Review and Peer Evaluation Meeting, 10 June 2010, Washington, D.C.

NREL/PR-560-48069

Project ID #: PD038

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- Project start date: FY05
- Project not funded in FY06
- Project end date: 2018
- Percent complete: N/A

Budget

Funding received in FY09:
\$400K (include \$40K subcontract)

Funding allocated for FY10:
\$230K (include \$60K subcontract)

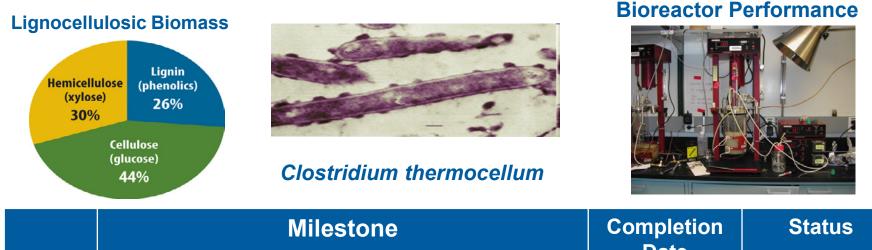
Barriers

•Production barriers addressed

- H₂ molar yield (AR)
- Waste acid accumulation (AS)
- Feedstock cost (AT)

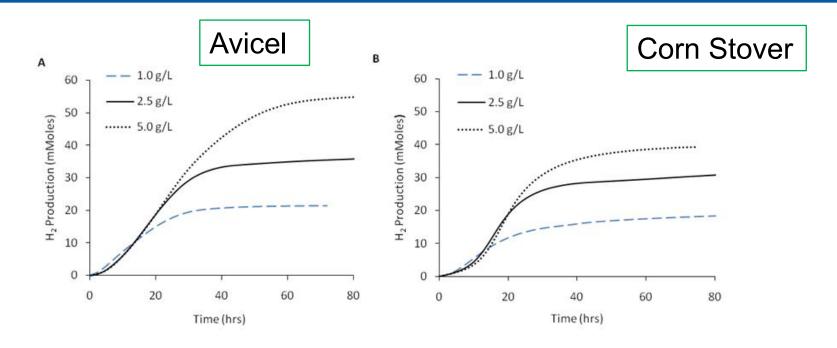
Partners

- Dr. Bruce Logan, Penn State University
- Drs. David Levin and Richard Sparling, University of Manitoba, Canada (Genome Canada Program)


Relevance

- Objective: Develop direct fermentation technologies to convert renewable, lignocellulosic biomass resources to H₂.
 - Determine effects of substrate loading on rates and yields (Task 1)
 - Develop genetic tools to improve H₂ molar yield (Task 2)
 - Develop continuous flow microbial electrolysis cell (MEC) reactor to improve H₂ molar yield (Task 3).
- **Relevance:** Address directly feedstock cost and H₂ molar yield barriers to improve techno-economic feasibility.

Characteristics	Units	2013 Target	2010 Status
Yield of H ₂ from glucose	Mole H ₂ /mol glucose	4	1.6 - 2.0
Feedstock cost	Cents/lb glucose	10	12


Objectives/Approach/Milestone Task 1: Bioreactor Performance

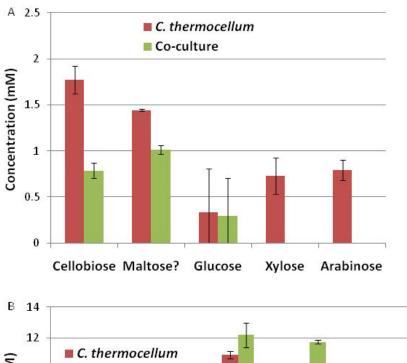
- Objective: Address feedstock cost and optimize the performance of scaled-up bioreactors for H₂ via fermentation.
- Approach: Use corn-stover lignocellulose and cellulosedegrading bacteria to address feedstock cost.

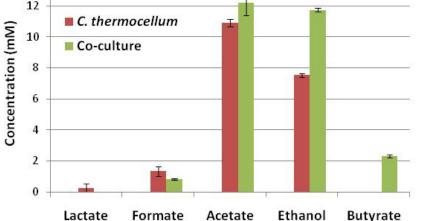
	Milestone	Date	Status
3.2.1.1	Determine effects of substrate loading on rates and yield of $\rm H_2$	1/10	Completed
3.2.1.2	Determine the optimal avicel solid retention time on rates and yield of H_2 in <u>fed-batch</u> reactor	5/10	In progress

Task 1 – Technical Accomplishments Substrate Loading - H₂ Production Profiles

- The residual cellulose contents were quantified via acid hydrolysis (H_2SO_4) .
- Determined *C. thermocellum* cell formula of C₅H₈O₂N, consistent with published data in two different bacteria.

Cell formula enables more accurate determination of H_2 molar yield and carbon mass balance by accounting for carbons used toward cell growth.

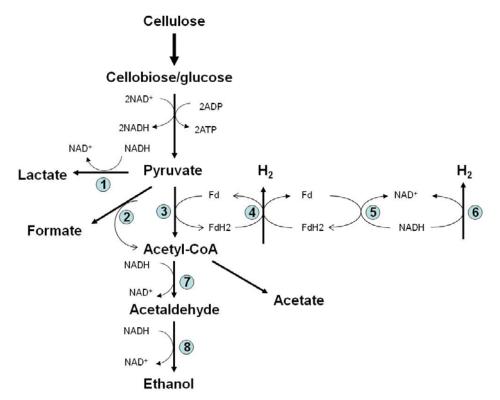

Task 1 – Technical Accomplishments Effect of Substrate Loadings on Rates and Yields


- H₂ production rates and molar yields varied with carbon loadings.
 - Higher carbon loading leads to faster rate of H₂ production
 - Lower carbon loading leads to higher H_2 molar yield.
 - The outcomes guide <u>fed-batch</u> bioreactor with daily feeding of 2.5 g/L.

Substrate	G/L	Rate (mmol H ₂ /L/hr)	H ₂ Molar Yield	Carbon Balance (%)
Avicel	1	0.58	3.2	74
Avicel	2.5	0.89	2.1	70
Avicel	5	0.98	1.6	70
Corn stover	1	0.51	2.8	70
Corn stover	2.5	1.06	2.0	94
Corn stover	5	1.21	1.2	51

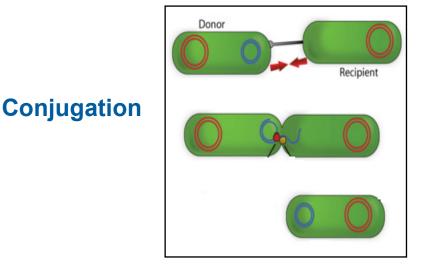
Completed Milestone "Determine effect of substrate loading on rates and yields of H_2 " (1/10).

Task 1 – Technical Accomplishments H₂ from Milled, Untreated Corn Stover Using a Co-Culture

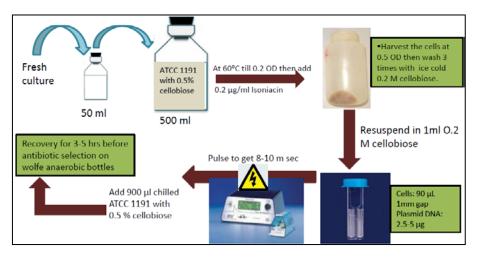

- Established a co-culture of *Clostridium thermocellum* and a *Clostridium* consortium (enriched from sewage sludge), the latter adapted to utilize xylose.
- *C. thermocellum* hydrolyzed cellulose to cellobiose and hemicellulose to xylose, the latter utilized by the consortium.

Culture	H ₂ (mM)			
C. thermocellum	10.53 +/- 6.19			
Co-culture	13.23 +/- 4.70			

Address feedstock cost and <u>direct</u> biomass utilization of both cellulose and hemicellulose.


Objectives/Approach/Milestone Task 2 – Develop Genetic Methods for Metabolic Engineering

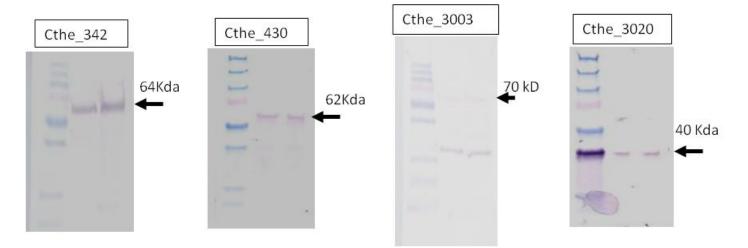
- Objective: Improve H₂ molar yield (mol H₂/mol hexose) via fermentation.
- Approach: Redirect metabolic pathways to maximize H₂ production via the development of genetic methods.



	Milestone	Completion Date	Status
3.2.2	Elucidate role of hydrogenase in C. thermocellum	6/10	In progress
3.2.5	Produce one genetic transformant in C. thermocellum	8/10	In progress

Task 2 – Technical Accomplishments Developing Tools for Genetic Transformation

Electroporation



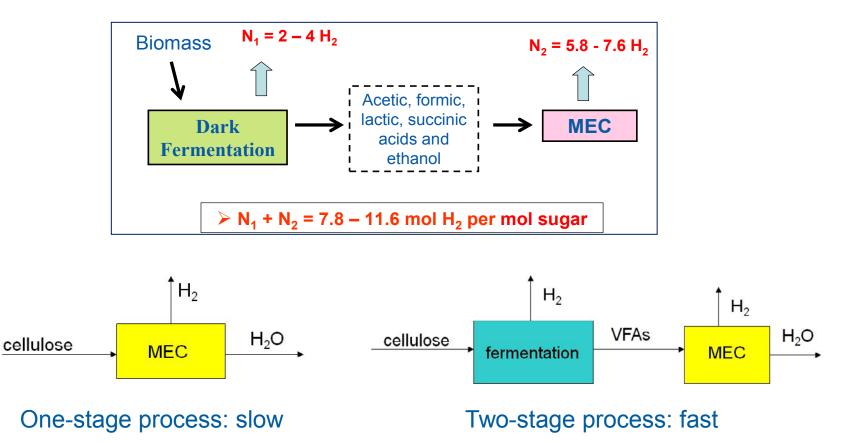
- We tested a proprietary protocol developed by the Oak Ridge National Lab using pIKM1 and pHV33 plasmids; the results were not successful.
- We conducted transformation and tested various parameters using a new electroporator that delivers high voltage to the cells.
- Work is under way to prepare protoplast and explore plasmid DNA methylations for both electroporation and conjugation.

Progressing toward Milestone "*Produce one genetic transformant in C. thermocellum*" (8/10).

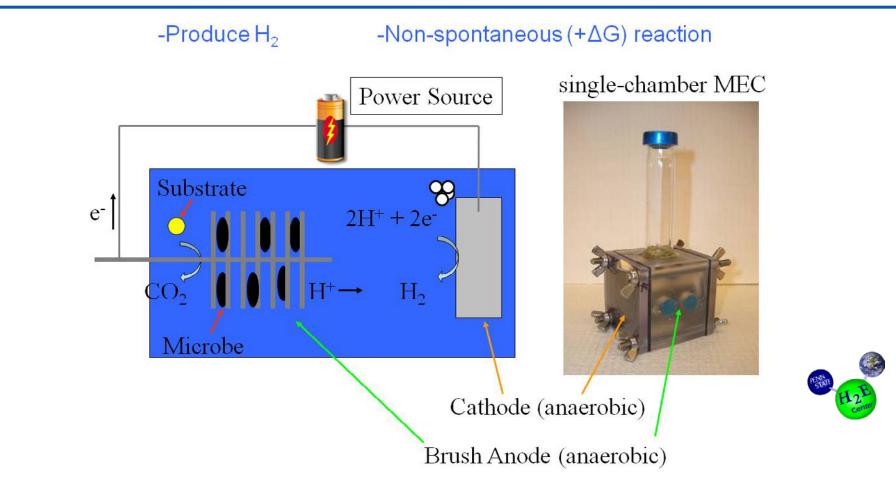
Task 2 – Technical Accomplishment Elucidate Roles of Hydrogenases

Gene Locus	Enzyme	Putative Function
342, 430, 3003 (HydA3)	Three FeFe-hydrogenases	H ₂ metabolism
3020	NiFe-hydrogenase	H ₂ metabolism

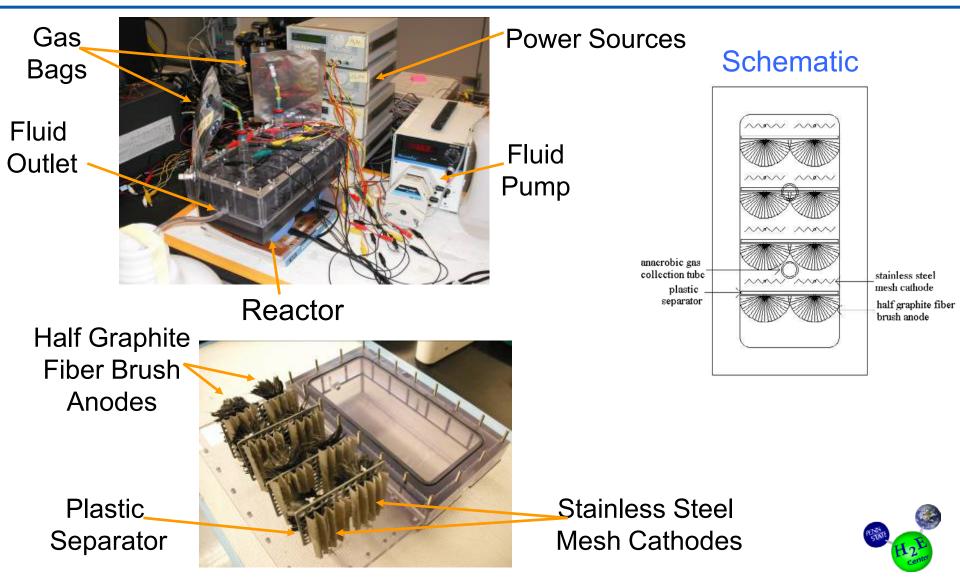
- Protein western blot revealed that HydA3 is not expressed amongst the four hydrogenases.
- Elucidating functions allows manipulations of growth conditions and/or hydrogenase genes to enhance H₂ production.


Meeting toward Milestone "Elucidate role of hydrogenase in C. thermocellum" (6/10).

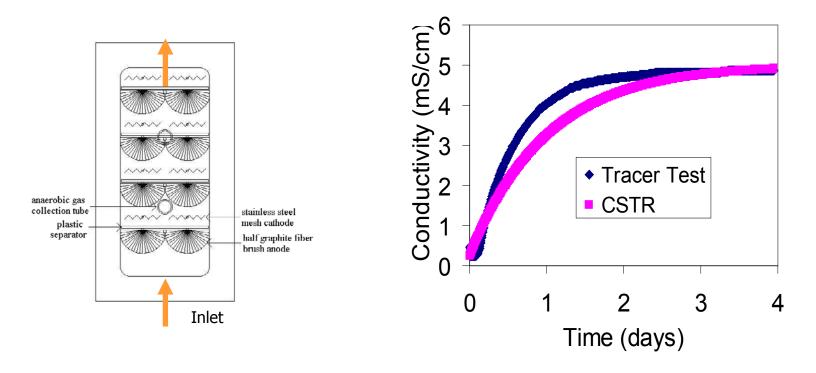
Objectives/Relevance


Task 3 – Electrochemically Assisted Microbial Fermentation

Objective: Improve H₂ molar yield (mol H₂/mol hexose) by integrating dark fermentation with microbial electrolysis cell (MEC) reactor to convert waste biomass to additional H₂.

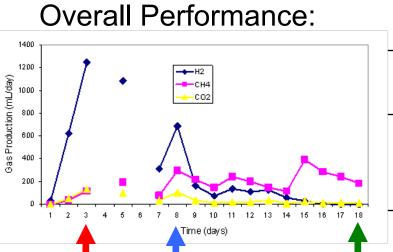

Approach/Milestone

Subtask 3: Electrochemically Assisted Microbial Fermentation



	Milestone	Completion Date	Status
3.2.3	Perform hydraulic test of synthetic effluent	4/10	Completed

Task 3 – Technical Accomplishments 2.5 L Continuous Flow MEC


Task 3 – Technical Accomplishments Hydrodynamics of MECs

- Tracer conductivity increased more *quickly* than CSTR.
- Some short circuiting to outlet.
- May need to improve liquid flow using baffles.

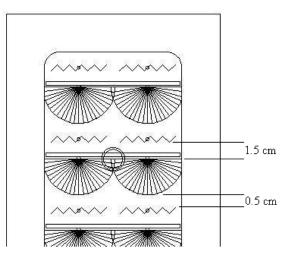
Completed Milestone "Perform hydraulic test of synthetic effluent" (4/10)

Task 3 – Technical Accomplishments MEC Performance

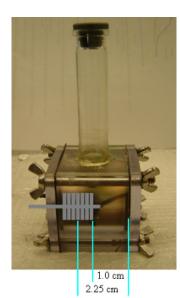
Energy	Recover	ry Consid	dering C	only H ₂ :
Q	Day	η _E	η _s	η _{E+S}
(m³/m³/d)		(%)	(%)	(%)
0.53	Day 3	140	130	68
0.30	Day 8	80	49	30
0.0001	Day 18	0.004	0.03	0.016

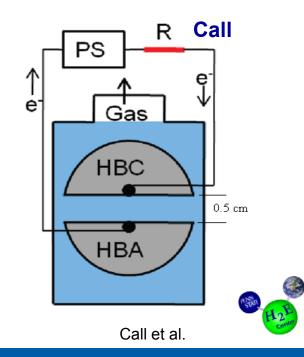
Current density: ~72 A/m³

Energy Recovery Considering H₂ and CH₄:


Day	W _{H2}	W _{CH4}	W _{H2+CH4}	η _E	η _s	η _{E+S}
	(kJ)	(kJ)	(kJ)	(%)	(%)	(%)
Day 3	15	4.3	19	190	170	87
Day 8	8.0*	10.8*	19	190	120	71
Day 18	0.004	6.7	6.7	67	56	30

*Higher heat of combustion for CH₄ (891 kJ/mol vs. 286 kJ/mol for H₂) allows for more energy recovery from a smaller volume


Task 3 - Technical Accomplishments Scalability: Comparison Based on Cathode Current


	Appl.	Electrode	Maximum	Cathode	Current	Current
	Voltage (volts)	Spacing (cm)	Current (A)	Surface Area (m²)	Density (A/m²)	Density (A/m³)
This Study	0.9	1.5	0.18	0.15	1.18	74
Selembo et al.	0.9	1	0.0032	0.0018	1.83	100 ±4
Call et al.	0.6	0.5	0.0054	0.023	0.24	194 ±1

This Study

Selembo

Collaborations

• Task 1 (Bioreactor):

Drs. Ali Mohagheghi, Melvin Tucker, and Nick Nagle, National Bioenergy Center at NREL (Biomass pretreatment and characterization).

Task 2 (Genetic Methods):

- Dr. David Yang at ORNL
- Drs. Mike Himmel and Shiyou Ding at NREL
- Drs. David Levin and Richard Sparling at the University of Manitoba, Canada (funded by Genome Canada Program). NREL is an international collaborator in the Genome Canada Grant award to co-develop genetic tools for pathway engineering in *C. thermocellum*.

• Task 3 (MEC):

Dr. Bruce Logan, Penn State University (microbial electrolysis cells to improve H_2 molar yield).

Proposed Future Work

Task 1:

- Repeat 1 and 5 g/L substrate experiments (both avicel and corn stover) for carbon consumption and H_2 molar yield (FY10).
- Begin fed-batch bioreactor with daily feeding of avicel at 2.5 g/L (FY10 /11).
- Scale up and optimize fermentation using co-culture and untreated biomass (FY10 /11).

Task 2:

- Continue to optimize transformation protocols in house and via collaboration (FY10 /11).
- Investigate the effects of plasmid DNA methylations and protoplast formation on *C. thermocellum* transformation (FY10/11).
- Test different sources of *C. thermocellum* for the presence of HydA3 hydrogenase and its role on H_2 production (FY10).

Task 3:

- Design new tubular cathodes for MECs that allow for recirculation of liquid in the tubes (FY10).
- Build the reactor with the tubular cathode (FY10).
- Conduct tests first on performance with respect to gas retention, internal resistance, and liquid separation of the anode and cathode chamber, and H₂ production (FY10/11).

Summary

Task 1:

- Determined effects of substrate loading on H₂ molar yield and rates.
- Low carbon loading leads to high molar yield, whereas high carbon loading leads to faster rate.
- Established a co-culture (*C. thermocellum* and a *Clostridium* consortium) and improved substrate utilization (both hemicellulose and cellulose).

Task 2:

- Obtained plasmid tools and tested a proprietary protocol developed by ORNL, albeit not successful.
- Continue to optimize protocols (both electroporation and conjugation) to develop genetic methods and broaden collaboration with others in the field.
- In probing functionality, we discovered that one of the FeFe-hydrogenases (HydA3) is mutated in *C. thermocellum*.

Task 3:

- Performed hydraulic test and achieved steady H₂ performance in the reactor using a continuous flow system.
- Achieved up to 0.53 m³/m³-d at a cathode surface area of 0.15 m²/m³.
- Current slightly lower than expected based on cathode surface area; this could be improved by reducing electrode spacing.

Supplemental Slides

Response to Reviewers' Comments

- The H₂ production rate in this project is very slow and needs to be increased dramatically in order for this project to be viable.
 - The production needs to be economical. It is a goal that production rate is increased, but this must be done in a cost-effective manner. The fermentation will be tested in a fed-batch mode so that microbes are adapted to degrade cellulose, with the intent to increase H₂ production rate.
- This project requires a relatively expensive feedstock.
 - An ultimate goal is to use high-energy crop in lieu of corn stover. Techno-economic analysis (conducted by DTI) based on corn stover (including feedstock cost) projects a final H₂ selling price of \$4.33/kg H₂, or \$2.09/kg H₂ if co-product sale is included. Both prices are within the economic range for renewable H₂. Moreover, NREL has had initial success fermenting untreated yet finely milled corn stover to bypass pretreatment, thus decreasing feedstock cost.
- Hydrogen gas produced is not pure; therefore purification technologies will be required...the compression cost will be high.
 - Gas separation and compression is not unique to this work. H_2 production via electrolysis or steam methane reforming requires gas separation and compression; the former yields a mixture of H_2/O_2 and the latter H_2/CO_2 . Moreover, H_2 -CO₂ gas separation is a well-proven commercial process.
- Over the past year, the team presented on 11 occasions, which would consume a significant amount of time. It is recommended that they limit their conference attendance to the most prestigious conferences in order to better utilize their funds and time.
 - Subcontract (Logan) did not use DOE funds for travel to report NREL-PSU collaboration.
 Whenever DOE work is reported, DOE was acknowledged. The NREL travel included postdoc, not just the PI. Moreover, several presentations are either local or paid for by the organizer.

Publications

- Lalaurette, E., S. Thammannagowda, A. Mohagheghi, P. C. Maness, and B. E. Logan 2009. "Hydrogen production from cellulose in a two-stage process combining fermentation with electrohydrogenesis." *Intl. J. Hydrogen Energy* 34: 6201-6210.
- Magrini-Bair, K. A., S. Czernik, H. M. Pilath, R. J. Evans, P. C. Maness, and J. Leventhal. 2009. "Biomass-derived, carbon sequestering, designed fertilizers." *Annals Environ. Sci.* 3: 217-225.
- Ghirardi, M. L., S. N. Kosourov, P. C. Maness, S. Smolinski, and M. Seibert. 2009. "Hydrogen Production, algal." *Wiley Encyclopedia of Industrial Biotechnol.* In print.
- Thammannagowda, S., L. Magnusson, J. H. Jo, P. C. Maness, and M. Seibert. 2010. "Renewable hydrogen from biomass." Accepted for publication in *Encyclopedia of Biol. Chem.*
- Logan, B.E. 2010. Scaling up microbial fuel cells and other bioelectrochemical systems. *Appl. Microbiol. Biotechnol.* 85(6):1665-1671.
- Kiely, P.D., G.K. Rader, J.M. Regan, and B.E. Logan. 2010. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. *Biores. Technol.* Submitted .
- Kiely, P.D., D.F. Call, M.D. Yates, J.R. Regan, and B.E. Logan. 2010. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power producing bacteria than abundant genera. *Appl. Microbiol. Biotechnol.* Submitted.

Presentations

"Hydrogen production via the fermentation of lignocellulosic biomass in *Clostridium thermocellum*," presented at the Renewable and Sustainable Energy Institute (RASEI) at the Univ. of Colorado, Boulder, CO October 21, 2009 (S. Thammannagowda).

"An overview of the NREL hydrogen fermentation research," Invited presentation at the kick-off meeting of the Genome Canada Program. Maness is an international collaborator with all expenses paid for by Genome Canada, Winnipeg, Canada, October 22-25, 2010 (P. C. Maness).

Kiely, P.D., E. Lalaurette, G. Radar, and B.E. Logan. "The conversion of cellulose fermentation end products to hydrogen using a defined microbial consortium and a microbial electrolysis cell." International Microbial Fuel Cell Symposium, Gwanju, Korea, June 10-12, 2009 (P. D. Kiely).

Critical Assumptions and Issues

The feedstock cost of lignocellulosic biomass will be reduced significantly to improve the selling price of H₂. The DOE Biomass Program is funding research to improve yields of high-energy crops, increasing cellulose contents, reducing recalcitrance, and improving pretreatment technologies. NREL has yielded preliminary data supporting the fermentation of untreated corn stover.

Genetic toolbox will be developed to improve H₂ production via pathway engineering. Both *Clostridium acetobutylicum* and *Clostridium cellulolyticum* can be genetically engineered, which provides the proof of concept while increasing the likelihood of success for our approach.

Microbial electrolysis cells can be scaled up with reduced cost in anode and cathode materials.