Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients

PDF Version Also Available for Download.

Description

This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the ... continued below

Physical Description

PDF-file: 82 pages; size: 4 Mbytes

Creation Information

Kalchev, D April 2, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the computed solution used to evaluate some functional(s) of interest that then determine if the coefficient sample is acceptable or not. The MCMC process is hence computationally intensive and requires the solvers used to be efficient and fast. This fact that at every step of MCMC the resulting linear system changes, makes an already existing solver built for the old problem perhaps not as efficient for the problem corresponding to the new sampled coefficient. This motivates the main goal of our study, namely, to adapt an already existing solver to handle the problem (with changed coefficient) with the objective to achieve this goal to be faster and more efficient than building a completely new solver from scratch. Our approach utilizes the local element matrices (for the problem with changed coefficients) to build local problems associated with constructed by the method agglomerated elements (a set of subdomains that cover the given computational domain). We solve a generalized eigenproblem for each set in a subspace spanned by the previous local coarse space (used for the old solver) and a vector, component of the error, that the old solver cannot handle. A portion of the spectrum of these local eigen-problems (corresponding to eigenvalues close to zero) form the coarse basis used to define the new two-level method of our interest. We illustrate the performance of this adaptive two-level procedure with a large set of numerical experiments that demonstrate its efficiency over building the solvers from scratch.

Physical Description

PDF-file: 82 pages; size: 4 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LLNL-TR-553254
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/1047794 | External Link
  • Office of Scientific & Technical Information Report Number: 1047794
  • Archival Resource Key: ark:/67531/metadc843160

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 2, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • Dec. 6, 2016, 6:46 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kalchev, D. Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients, report, April 2, 2012; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc843160/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.