Gravitomagnetism and Spinor Quantum Mechanics

PDF Version Also Available for Download.

Description

We give a systematic treatment of a spin 1=2 particle in a combined electromagnetic field and a weak gravitational field that is produced by a slowly moving matter source. This paper continues previous work on a spin zero particle, but it is largely self-contained and may serve as an introduction to spinors in a Riemann space. The analysis is based on the Dirac equation expressed in generally covariant form and coupled minimally to the electromagnetic field. The restriction to a slowly moving matter source, such as the earth, allows us to describe the gravitational field by a gravitoelectric (Newtonian) potential ... continued below

Physical Description

12 pages

Creation Information

Adler, Ronald J.; /Stanford U., HEPL /San Francisco State U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC; Varani, Elisa & /Unlisted September 14, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We give a systematic treatment of a spin 1=2 particle in a combined electromagnetic field and a weak gravitational field that is produced by a slowly moving matter source. This paper continues previous work on a spin zero particle, but it is largely self-contained and may serve as an introduction to spinors in a Riemann space. The analysis is based on the Dirac equation expressed in generally covariant form and coupled minimally to the electromagnetic field. The restriction to a slowly moving matter source, such as the earth, allows us to describe the gravitational field by a gravitoelectric (Newtonian) potential and a gravitomagnetic (frame-dragging) vector potential, the existence of which has recently been experimentally verified. Our main interest is the coupling of the orbital and spin angular momenta of the particle to the gravitomagnetic field. Specifically we calculate the gravitational gyromagnetic ratio as g{sub g} = 1 ; this is to be compared with the electromagnetic gyromagnetic ratio of g{sub e} = 2 for a Dirac electron.

Physical Description

12 pages

Source

  • Journal Name: Phys.Rev.D85:025016,2012; Journal Volume: 85; Journal Issue: 2

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-15003
  • Grant Number: AC02-76SF00515
  • DOI: 10.1103/PhysRevD.85.025016 | External Link
  • Office of Scientific & Technical Information Report Number: 1050857
  • Archival Resource Key: ark:/67531/metadc843112

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 14, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • June 20, 2016, 9:12 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Adler, Ronald J.; /Stanford U., HEPL /San Francisco State U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC; Varani, Elisa & /Unlisted. Gravitomagnetism and Spinor Quantum Mechanics, article, September 14, 2012; United States. (digital.library.unt.edu/ark:/67531/metadc843112/: accessed April 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.