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1 Introduction
Recent work by Carvalho, Johannes, Lopes and Polson [1] and Carvalho, Lopes, Polson and
Taddy [2] introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte
Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models.
The basis of SMC techniques involves representing the underlying inference problem as one
of state space estimation, thus giving way to inference via particle filtering. The key insight
of Carvalho et al was to construct the sequence of filtering distributions so as to make use of
the posterior predictive distribution of the observable, a distribution usually only accessible in
certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and
resample steps characteristic of many SMC methods, thereby alleviating to a large extent many
problems associated with particle degeneration. Furthermore, Carvalho et al point out that for
many conjugate models the posterior distribution of the static variables can be parametrized in
terms of [recursively defined] sufficient statistics of the previously observed data. For models
where such sufficient statistics exist, particle learning as it is being called, is especially well suited
for the analysis of streaming data do to the relative invariance of its algorithmic complexity with
the number of data observations 1. Through a particle learning approach, a statistical model can
be fit to data as the data is arriving, allowing at any instant during the observation process direct
quantification of uncertainty surrounding underlying model parameters.

Here we describe the use of a particle learning approach for fitting a standard Bayesian semi-
parametric mixture model as described in Carvalho, Lopes, Polson and Taddy [2]. In Section 2
we briefly review the previously presented particle learning algorithm for the case of a Dirichlet
process mixture of multivariate normals. In Section 3 we describe several novel extensions to the
original implementation of Carvalho et al that allow us to retain the computational advantages of

1By this I mean the amount of processing per observation does not depend on the total number of observations,
whereas a single iteration of MCMC for a semiparametric model often scales in proportion to the total number of
observations
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particle learning while improving the suitability of the methodology to the analysis of streaming
data and simultaneously facilitating the real time discovery of latent cluster structures. Section
4 demonstrates our methodological enhancements in the context of several simulated and clas-
sical data sets, showcasing the use of particle learning methods for online anomaly detection,
label generation, drift detection, and semi-supervised classification, none of which would be
achievable through a standard MCMC approach. Section 5 concludes with a discussion of future
directions for research.

2 Particle Learning for Dirichlet Process Mixtures
Dirichlet process mixture (DPM) models are appealing for the fact that they do not require the
specification a priori of the number of components in the mixture. This makes the DPM the
current de facto choice for flexible density estimation.

2.1 Dirichlet Process Mixtures
The most common nonparametric model in the Bayesian literature is by far the Dirichlet process
mixture of multivariate normals. For an observation xt , the model is specified as follows:

xt |µt ,Σt ∼ N (µt ,Σt ) (1)
(µt ,Σt )|G ∼ G (2)

G|α0,G0 ∼ DP (αoG0) (3)
αo ∼ Gamma(e , f ) (4)

where the Dirichlet process base measure G0 is usually the conjugate Normal Inverse Wishart
prior for (µt ,Σt ). For convenience we will use θt to denote (µt ,Σt ). Early foundational work
by Ferguson (1974) showed that the marginal distribution of θt given the preceding θ1 . . .θt−1
has a Polya Urn / Chinese Restaurant Process representation,

θt |{θ
∗
j }

n∗

j=1,{n j }
n∗

j=1,α0,G0 ∼
α0

α0+ t − 1
G0+

1

α0+ t − 1

n∗
∑

j=1

n jδθ∗j (5)

where {θ∗j }
n∗
j=1 denote the unique component specific parameters from amongst θ1..θt−1 and

{n j }n
∗

j=1 indicate the number of preceding observations associated with the given component
(introducing the previously mentioned latent configuration variable ki for each observation i ,
we have n j =

∑

i∈1:t−1 1ki= j ). The Dirichlet process is therefore well suited for use as a prior
distribution on the mixing distribution of the mixture model, guaranteeing an unknown but
countable number of mixture components.

Letting x1, x2, . . . , xt−1 denote an ordered sequence of observations, we will be interested in
the posterior predictive distribution of observation xt as a function of the already observed
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x1, x2, . . . xt−1, specifically, a function of the data maps the already observed data to a set of suffi-
cient statistics for each θ∗j . Since each component in the mixture model is a multivariate normal
kernel, the set s j = {

∑

i :ki= j xi ,
∑

i :ki= j x ′i xi , n j } provides sufficient statistics for each θ∗j . Thus
given {s j }n

∗

j=1 we have

p(xt |{s j }
n∗

j=1,α0,G0) =
∫ ∫

. . .
∫

N (xt |θt )p(θt |{θ
∗
j },{n j },α0,G0)×

n∗
∏

j=1

p(θ∗j |s j ,α0G0)dθt dθ
∗
1 . . . dθ∗n∗ (6)

This cumbersome integral simply averages over the uncertainty surrounding (1) from which
mixture component the the new xt is to be drawn (viz., the Polya urn structure of the random
distribution), and (2) the location and shape of that mixture component based on the current
normal inverse Wishart posterior involving the sufficient statistics for the component. Letting
G0(θ) =N IWν(θ|µ0,γ ,Σ0) (with E(Σ) = Σ0/(ν − 2)), the expression simplifies to

p(xt |{s j }
n∗

j=1,α0,G0) =
∫

N (xt |θ)
¨

α0

α0+ t − 1
N IWν(θ|µ0,γ ,Σ0)+

n∗
∑

j=1

n j

α0+ t − 1
N IWν+n j

 

θ|µ j ,
γ

1+ γn j

,Σ j

!







dθ (7)

or

=
α0

α0+ t − 1
Stν

�

xt |µ0,
1+ γ

ν
Σ0

�

+

n∗
∑

j=1

n j

α0+ t − 1
Stν+n j

 

xt |µ j ,
1+ γn j + γ

(1+ γn j )(ν + n j )
Σ j

!

(8)

where µ j =
µ0+γn j x̄ j

1+γn j
and Σ j =Σ0+

∑

i :ki= j (xi− x̄ j )
′(xi− x̄ j )+

n j

1+γn j
(x̄ j−µ0)

′(x̄ j−µ0). Note that

both of these expressions involve terms that can be computed from the sufficient statistics s j .
The key idea behind particle learning is now to regard the remaining uncertainty surrounding
the mapping of data to sufficient statistics as a state space estimation problem, to be handled via
filtering in the following way.

2.2 The PL Algorithm
Carvalho et al described a particle learning algorithm for a Dirichlet process mixture model as
follows.

1. Initialize a particle cloud based on observation x0. Each identical particle consists of the
state z0 = {α0,µ0,Σ0, s0 = (x0, x ′0x0, 1)}, where α0,µ0,and Σ0 are assigned some initial value.
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2. After observing xt , resample with replacement from among the current particles with
weights proportional to Equation 8.

3. For the newly sampled set of particles, propagate each particle by first assigning observation
xt to one of the existing mixture components with probability proportional to

n j

α0+ t − 1
Stν+n j

 

xt |µ j ,
1+ γn j + γ

(1+ γn j )(ν + n j )
Σ j

!

or to a new mixture component with probability proportional to

α0

α0+ t − 1
Stν

�

xt |µ0,
1+ γ

ν
Σ0

�

.

This amounts to the standard Gibbs step for sampling the configuration variable kt . Hav-
ing sampled this configuration variable for the particle, update the particle’s sufficient
statistics as appropriate.

4. For each particle, perform standard Gibbs updates for α0, µ0, Σ0 (see Appendix).

This can be interpreted in terms of sequential importance sampling with resampling. The aim
of any filtering algorithm is to provide successive, approximate draws from the current posterior
distribution of the hidden state variable (zt ). Suppose then that we have a Monte Carlo approx-
imation to p(zt−1|x t−1). Upon observation of xt , our goal is to produce samples from p(zt |x t )
(the superscript denotes all observations up to and including time t ). First, we rewrite p(zt |x t )
as

p(zt |x
t ) =

∫

p(zt |zt−1, x t )p(zt−1|x
t )dzt−1.

We can obtain a Monte Carlo approximation to this integral if (1) we are able to obtain samples
from p(zt−1|x t ); and (2) we are able to evaluate p(zt |zt−1, x t ). Regarding (1), note that

p(zt−1|x
t ) = p(zt−1|xt , x t−1)

=
p(xt |zt−1, x t−1)p(zt−1|x t−1)

p(x t |x t−1)
(by Bayes rule)

∝ p(xt |zt−1)p(zt−1|x
t−1) (since p(xt |zt−1, x t−1) does not depend on x t−1)

Thus if samples from p(zt−1|x t−1) are available, samples from p(zt−1|x t ) can be obtained by
importance sampling, using a weight function equal to the predictive distribution p(xt |zt−1). In
the setting of Dirichlet process mixtures, this predictive distribution is simply that described by
Equation 8. After performing this resampling step, each particle represents a uniformly weighted
draw from p(zt−1|x t ). Now regarding (2), the distribution p(zt |zt−1, x t ) is simply the current
posterior distribution of the hidden state. This is evident when the distribution is rewritten as
p(zt |zt−1, x t ) ∝ p(xt |zt , zt−1)p(zt |zt−1) = p(xt |zt )p(zt ) (conditional on zt , the distributions do
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not depend on zt−1). Here p(zt ) denotes the joint prior distributions on the various elements of
the hidden state vector zt . Therefore, therefore, using the Monte Carlo samples from p(zt−1|x t ),
we have the following expression for the Monte Carlo estimate of p(zt |x t ):

E M C
zt−1
(p(zt |x

t )) =
∑

i

p(zt |z
(i)
t−1, x t )w(z (i)t−1

=
1

N
p(zt |z

(i)
t−1, x t )

Thus, to sample from this distribution, we simply sample from the current posterior distribu-
tions implied by each particle. For the class of models considered here, this involves the al-
location of observation xt to one of the existing mixture components, and the α0, µ0 and Σo
parameters associated with the Dirichlet process.

3 Advantages of Inference via Particle Learning
Particle learning affords several major advantages over MCMC-based inference for certain do-
mains of application, especially those pertaining to the analysis of streaming data and the use of
the DPM as a clustering tool. Here we describe these advantages along with several computa-
tional enhancements that improve upon the basic algorithm.

3.1 Data Stream Representations
Since particle learning, unlike MCMC, does not assume a fully observed data set, and since the
previously observed data impacts the model fit only through the sufficient statistics, it is not
strictly necessary to retain an observation after the associated resample and propagate steps have
been completed. In terms of implementation and application this means that that data object
need not be a static file representing observations over a finite time interval, as is usually the
case in applied statistics. Rather, the data can be represented as a stream directly (as by an open
connection to a port), and the duration of the analysis can be unknown and/or indefinite. Note
however that for indefinite observation, measure must be taken to prevent numerical overflow
that can occur as t grows arbitrarily large. This is discussed below in the section on drift detec-
tion.

3.2 Automatic Anomaly Detection
The key advantage of a sequential approach is obviously its amenability to sequential data.
Whereas MCMC and EM-based methods are only able to produce uncertainty statements re-
garding the data as observed in its entirety, the particle learning approach is unique in its ability
to express the state of uncertainty at a particular instant in the observation process. This makes
particle learning ideal for the analysis of streaming data for which the goal is the online discovery
of the structure and trends characterizing the data, and deviations thereof. For example, suppose
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we are observing an incoming data stream and want to be alerted when an anomalous observa-
tion arrives. A direct measure of the degree of anomaly of a given observation is the proportion
of particles in the current cloud for which that observation caused the creation of a new mixture
component during the propagate step. For each particle, recall that the probability associated
with adding a new mixture component to accommodate xt is

π(i)t ∝







α(i)0

α(i)0 + t − 1
Stν

�

xt |µ
(i)
0 ,

1+ γ

ν
Σ(i)0

�







Then πt =
1
N

∑

i π
(i)
t is the Monte Carlo estimate of this probability of anomaly, averaged over

the uncertainty surrounding the underlying hidden states. Note that this measure reflects the
degree of anomaly of an observation only at the time of its arrival. It may be the case that an
anomaly, by this measure, simply marks the first occurrence of what becomes a heavily weighted
mixture component. However that recognition is inherently retrospective, and at the time of ar-
rival all that can be said is the degree to which the observation is sufficiently distinct from all that
preceded it. First arrivals can be separated from true anomalies later in the observation process
by inspection of the persistence and weight of the components founded by the observation.

3.3 Nonstationary Mixtures and Drift Detection
A natural generalization of the stationary mixture model is the nonstationary mixture model, in
which the locations and shapes of the mixture components are allowed to change over time. For
example, suppose that the observed data stream represents a mixture of an unknown number
of separate sub-streams (for example, suppose the data arises from a mixture of autoregressive
processes). It might be seen as something of an abuse of mixture modeling techniques to employ
them in such settings rather than to directly model the data as a mixture of, say, dynamic linear
models [13]. Such an approach is worth investigating. However, the standard mixture model
framework can be adapted to the nonstationary setting so easily that it should serve well as a
first approximation to a mixture of time series model.

The strategy is simply to introduce a decay factor λ to be applied when updating the sufficient
statistics of a component. For example, if during a propagate step an observation xt is assigned
to a mixture component j , the vector s j of sufficient statistics for component j is updated as
follows:

s j = [λn j + 1 , λ
∑

x j + xt , λ
∑

x ′j x j + x ′t xt]

For all other components, the vector of sufficient statistics is degraded as:

s j ′ = [λn j ′ , λ
∑

x j ′ , λ
∑

x ′
j ′

x j ′]

In these expressions, the second and third entries in the vector of sufficient statistics are the sum
of x and sum of x-transpose-x for observations assigned to the component.
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The effect of this decay factor is to force the mixture model to weight more heavily recent
observations. In this way, nonstationary mixture distributions can be emulated. This capability
will be especially important for facilitating drift detection, as well preventing numerical overflow
errors associated with maintaining sufficient statistics for arbitrarily long periods of observation.
Most families of ensemble classifiers assume that the distribution of features that distinguish
one subtype from another are static. If the underlying distributions of these features are in
fact nonstationary, eventually the classifier’s training will become irrelevant. Moreover, such
classifiers have no mechanism for detecting when those underlying distributions have drifted
sufficiently that retraining is necessary. One intended application of the methodology described
here is to facilitate retraining schedules for other classifiers by detecting substantial changes to
the underlying mixture distribution, and producing new labels for unlabeled data which can be
provided to other classifiers for retraining purposes, or possibly used in place of the now obsolete
classifier.

3.4 Window-based Particle Rejuvenation
Although the basic particle learning algorithm does not require the retention of past observa-
tions, it can be useful to rejuvenate resampled particles periodically. In the sequential Monte
Carlo literature, rejuvenation usually refers to the mechanisms by which particle degeneracy (i.e.
the loss of heterogeneity of the cloud) is prevented. For the particle-learned DPM, we may wish
to perform some additional MCMC steps to reassign of observations amongst mixture compo-
nents, or to split or merge existing mixture components in a particle. To do so requires the values
of those past observations, and the configuration variables indicating to which component the
observation is currently associated. Rather than retain all past observations and configuration
variables, we have implemented a sliding window scheme whereby the most recent N observa-
tion and configuration variables are retained. The size of the window can be specified at run time,
and adjusted according to computational/memory limitations. By retaining only a fixed number
of observations at a time, we are able to balance the utility of particle rejuvenation without re-
quiring a significant augmentation of the state space represented by each particle. In the context
of nonstationary mixtures, the decay factor provides a natural guide for choosing the window
width, given that the effective number of observations represented by the mixture model will be
1/(1−λ). As will be demonstrated below, split/merge steps, such as those described in Jain and
Neal [9] and Dahl [3] will be especially useful in the nonstationary setting (see Appendix).

3.5 A Solution to the Label Switching Problem
Although originally intended for density estimation, Bayesian semiparametric mixture models,
and in particular the Dirichlet process mixture model, have gained much popularity in recent
years as methods for performing model-based clustering. Inference on mixture models is usually
accomplished by augmenting the parameter space with a set of latent indicator variables by which
an observation is associated with a single component in the mixture. These indicator variables
can be regarded to indicate cluster membership. It might be hoped that by conducting inference
on these indicator variables using standard Bayesian technologies such as MCMC we may able
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to quantify uncertainty surrounding the underlying cluster structure. However, there are sig-
nificant technical challenges to using these indicator variables to make probabilistic statements
about cluster membership. As discussed in Merl and West [11], these challenges arise from what
is known as the label switching problem (see also Stephens [12]). Label switching arises from
the invariance of the model likelihood to permutations of the order of mixture components. In
practical terms, label switching precludes statements such as “observation i has probability of being
in cluster j” because the term “cluster j” has no persistent meaning over the course of the MCMC.

In the PL setting, it becomes possible to ascribe labels to mixture components because the
components are now uniquely identified even while the location and shape of the component
remains uncertain. One such label is the index of the observation that caused the creation of
the component. As successive observations arrive and particles are propagated, the location
and shape of each component founded by a particular observation will differ from particle to
particle, however the interpretation of the component will be retained. This labeling strategy is
facilitated by the sliding window rejuvenation scheme described above, which serves to increase
the potential for consensus across particles regarding the first observation to be associated with
a new component. We can then evaluate the probability that an observation will receive one
of the current labels by averaging the particle-specific label probabilities. This will be described
below.

3.6 Adaptive Classifiers
Traditionally, model based clustering has focused solely on the problem of generating labels for
unlabeled data, and interpretation of cluster membership has remained a task for the practitioner.
This is at odds with the supervised learning methods of the machine learning literature, in which
labeled data is used to train a classifier, which is then validated by its prediction accuracy. A
fundamental weakness of such classifiers is their inability to adaptively update their prediction
rules, as to re-characterize the rule associated with a particular known type, or to add a new rule
for a previously unseen type, without significant retraining. Meanwhile, a fundamental weakness
of model based clustering has been the inability to ascribe cluster labels of any type, let alone
cluster labels representing both known and unknown types.

Having now apparently resolved the labeling problem, we can begin to devise training schemes
using PL. We can think of this training process as a way to generate an informed prior distribu-
tion for our mixture model, or more specifically, an informed particle cloud from which starting
point subsequent analyses can be initialized. One possible procedure is as follows.

1. Given a training set {x}t1 ,{x}t2 , . . . ,{x}tJ , where each {x}ti is a set of observations associ-
ated with a known type ti , fit a separate DPM to each collection of {x}ti .

2. Construct a new particle cloud in which each particle p contains a collection of compo-
nents culled from the preceding step as follows:

(a) For each known type ti

(b) For each label ` generated during the analysis of {x}ti
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(c) Randomly choose a component j with label ` from amongst all particles in this anal-
ysis containing a component with label `.

(d) “Inject” {s j } (the sufficient statistics associated with that component) into p, but re-
label this component ti .

3. Begin PL analysis of unlabeled data {y}.

Note that under this approach, by injecting each new particle with a randomly sampled com-
ponent for each label, we are able to retain uncertainty regarding the location and shape of
components associated with the labels generated for each known type.

As analysis proceeds, for each observation yt with unknown type, we can calculate the prob-
ability of yt associating with an component labeled with one of the known types, while allowing
for the possibility that yt represents the first arrival of a previously unseen type. Over the course
of analysis, the characterization of the distributions associated with the known types will be up-
dated in light of new observations, and new labels will be generated to characterize new types.
In this way, PL can serve as the basis for an adaptive classifier, combining the benefits of a formal
statistical model with the interpretability of supervised classifier.

3.7 Parallelization
It is worth mentioning that even more so than MCMC, particle methods are trivially paral-
lelized. In an optimal scenario2, we would have a 1:1 ratio of particles to processing units. After
the arrival of a new observation, the value of that observation is distributed to each particle so
that the resampling weight of the particle can be calculated. All these calculations are indepen-
dent, and can be performed in parallel. Though a central thread is required to collect the weights
and perform the resampling, the process of repopulating the processing units with resampled
particle is efficient since the state space of each particle is bounded and generally relatively small.
All propagate steps can then be performed in parallel as well. Thus given a sufficient number of
processing units, it will be possible to reduce between-observation latency to the point that real
time analysis can be achieved. Even given a modest number of processing units, desired laten-
cies can be achieved by combining parallel computing with approximate inference strategies as
described in Appendix C.

We are also currently investigating opportunities for exploiting graphics processing units
(GPUs) to further enhance within particle computation, the matrix operations associated with
which would be especially well suited to the strengths of modern GPUs. Several recent technical
reports have indicated that such an approach could confer significant advantages to filtering-based
algorithms (see [7] and [10]).

2Technically there is a “more optimal” scenario in which each particle is associated with n∗ processing units such
that even its own internal weight and propagate calculations could be parallelized.
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4 Simulations

4.1 1-D Simulation
Figure 1 shows the fitted density obtained by performing PL-based inference on data simulated
from a simple 3-component mixture of normals. The estimated density function shown is eval-
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Figure 1: Histogram of simulated data, overlayed with fitted density.

uated using the final state of the particle cloud:

p(xne w |xT ) ≈
1

N

N
∑

i=1

p(xne w |{s (i)j }
n∗(i)
j=1,α

(i)
0 ,G(i)0 )

Here the (i) subscript or superscript indicates the value associated with particle i (each particle
has its own set of component sufficient statistics s j , DP scale parameter α0, and DP base measure
G0). The goodness-of-fit evidenced here is standard for DP mixtures.

Although the exchangeability of observations is a fundamental assumption of most mixture
models, here we have assumed that there is an important structure to the sequence of arrivals.
The simulated observations are sorted such that initially, all observations are generated from the
same component. Around time 300, observations begin to arrive that were generated from the
second component, and around time 1000 observations begin to arrive from the third compo-
nent. At this point, the exchangeability assumption still holds in that the fitted mixture model is
invariant to reorderings of the sequence of observations, but the labeling and anomaly detection
schemes described above will exploit the observed ordering. Figure 2 depicts this arrival pattern,
along with the probabilities of anomaly for each observation. The probability of anomaly is
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Figure 2: Simulated stationary data streams, with probability of anomaly for each observation.

naturally defined by the proportion of particles in which the observation causes a new mixture
component to be created. These probabilities show spikes at observations 0, 300, and 1008 (the
spike at observation 0 simply indicates that the particle cloud was initialized with all particles
containing a single component labeled 0), and thus clearly delineate the first arrivals of observa-
tions from a yet-unseen mixture component.

4.2 Nonstationary Mixtures
The next several simulations demonstrate the ability of the method to accommodate the situ-
ation of nonstationary mixtures through the use of the decay factor and split/merge particle
rejuvenation. For each simulation we show first the results obtained by application of the stan-
dard stationary mixture model (i.e. λ= 1), and then the results associated with λ= 0.99, with a
single split/merge step following each propagate step. The split/merge procedure employed here
is a Metropolis-Hastings step, as described by Dahl [3]. Briefly, this procedure is as follows. Two
observations are sampled uniformly without replacement from among the most recent 1/(1−λ)
observations. Then, for each particle, if those observations are currently assigned to different
mixture components, it is proposed to merge the two components into a single component. If
the observations are assigned to different mixture components, it is proposed to split the single
component into two components, with the new components founded by one of the chosen ob-
servations. All other observations currently assigned to the single component are then assigned
to one of the two new components following the usual propagate step distributions. For each
particle, the Metropolis-Hastings acceptance probability for the move is evaluated, and the state
of the particle is updated appropriately. By choosing the two observations at a global level and
then applying the split/merge procedure to all particles using the same observations, we are able
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to retain the labeling scheme previously described. In the case of a merge, the label of the merged-
component is defined to be the label of the earlier of the two parent components. In the case of
a split, the label of the smaller component (in terms of number of observations assigned to it) is
defined to be the index of the randomly chosen observation that founded the new component.
The label of the larger component is defined to be the same as the label of the parent component.
In this way, when a split or merge occurs, there will be consensus amongst the particles as to the
label of the new component. For more details, refer to the Appendix.

4.2.1 Drifting Data Streams

Figure 3 depicts the simplest type of nonstationary mixture, in which data arises from a single
normal component whose mean is changing over time. Essentially, this data might be exactly
modeled by a standard regression with Gaussian noise. In each panel, the data is color-coded
by its maximum probability label as determined at the time of its arrival, and the predictive
distribution of the data is plotted vertically at regular time intervals. The top panel depicts
the results of fitting a standard, stationary mixture (λ = 1) to the drifting data. As the data
continues to drift, the mixture model framework creates additional components to represent the
increasing spread of the data. The clustering induced by the mixture components in this setting
is clearly misleading, especially compared to the clustering induced under the nonstationary
setting (λ = 0.99). With λ = 0.99, the single mixture component is able to track the drifting
data without the introduction of spurious components, and without monotonically increasing
the variance of the predictive distribution.

4.2.2 Splitting Data Streams

The next simulation (Figure 4) depicts a situation in which a single data stream splits into two
[drifting] data streams. In the top panel, under the assumption of a stationary underlying mix-
ture, the diverging data streams result in a single, high variance component accounting for all
observations. This situation may be seen as a sort of pathological case for the standard mixture
model. The initial sequence of observation (prior to time 300) are adequately and accurately
modeled by a single component. As the divergence begins, the diverging observation continue
to be assigned to the single component, which currently has most of its mass around x = 0. The
continued assignment of the diverging observations to this component results in the strangely
peaked, high variance predictive distribution depicted at t = 749. In contrast, by using a decay
factor of λ= 0.99 and a single split-merge proposal per propagate step, the nonstationary model
(lower panel) is able to recognize the divergence by creating two components that independently
track the continued drift of the new streams without sacrificing predictive variance.

4.2.3 Merging Data Streams

The final simulation (Figure 5) depicts the opposite of the previous, in which a multiple drift-
ing data streams merge together. As before, the stationary model (top panel) cannot accurately
represent the component structure or the predictive variance, while the nonstationary approach
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Figure 3: A drifting data stream. Each data is color-coded by its maximum probability label as
evaluated at its time of arrival. Predictive distributions are shown vertically, as evaluated at regu-
lar time intervals. Under the assumption of stationarity (top panel), the variance of the predictive
distribution increases to accommodate the trend in the data, while the predictive distribution of
the nonstationary mixture (bottom panel) tracks the trend in the data without an increase in
variance.
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Figure 4: A single data stream splitting into two.
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Figure 5: Two data streams merging into one.
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(lower panel) tracks the convergence of the two data streams while maintaining a tight bound on
predictive variance.

4.3 Iris Data
Next we consider a well studied horticultural dataset attributed to Fisher [5] consisting of 150
measurements of sepal length, sepal width, petal length, and petal width, for a collection of irises.
The irises can be classified into one of three types, Iris Setosa, Iris Versicolour, and Iris Virginica,
and each type appears with equal frequency. Figure 6 depicts the triplet scatterplots of the data.
From Figure 6 it is clear that though the Iris Setosa samples might be easily distinguished from
the other other two, distinguishing between Iris Versicolour and Iris Virginica on the basis of
the collected data will be challenging. After using PL to fit the DPM to these data, we evaluated
the cluster membership probabilities for each observation, for each label generated during the
inference process. The probability of label ` for observation xt can be evaluated as

πt
`
∝

1

N

∑

i

∑

j :l j=`

n j

αi
0+T

Stν+n j

 

xt |µ j ,
1+ γn j + γ

(1+ γn j )(ν + n j )
Σ j

!

(9)

Figure 7 shows the probability of each label for each observation. The model essentially suc-
ceeds in distinguishing the Setosa samples, but has difficulty registering the difference between
Versicolour and Virginica. Inspection of the empirical density estimates for of each of the four
dimensions of the observed data, separated into the distinct Iris subtypes, reveals the distribu-
tional similarities between Versicolour and Virginica (Figure 8). Based on the marginal densities,
it is clear that only through training will the mixture model be able to represent the subtle differ-
ences between Versicolour and Virginica.3 We constructed a trained particle cloud as described
above by conducting three separate analyses using 40 of the 50 samples for each iris subtype. Fig-
ure 9 shows the out-of-sample label prediction for the remaining 10 samples of each type using
the trained particle cloud. Thus even modest training with a few samples of each subtype proves
to be sufficient for capturing the subtle differences between Versicolour and Virginica. Figure
10 contains predicted label probabilities for all 150 samples, and can be compared to Figure 7 to
further demonstrate the utility of a training process.

5 Discussion
We have presented several new approaches for Bayesian model based clustering made possible
through particle learning techniques. Although all examples considered were based on a mul-
tivariate normal mixtures, the ideas pertaining to labeling and adaptive classification pertain to
mixtures of any basis distribution. Of particular interest will be the application of these meth-
ods for a mixture-of-mixtures model as described in Merl and West [11]. In that model, the basis
distributions of a nonparametric mixture model are themselves nonparametric mixtures of nor-
mals. Since a mixture of normals can approximate any continuous distribution to an arbitrary

3In fact, previous studies of these data have regarded the latter two subtypes as not linearly separable.
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Figure 6: Triplet scatterplots for the iris data. Iris Setosa samples are shown in red, Iris Versicolor
in green, and Iris Virginica in blue.
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Figure 7: Posterior probabilities associated with each generated label for the observed iris data.

degree of accuracy, the mixture-of-mixtures approach lends itself to classification problems where
the distributions of observations comprising different clusters may be highly non-Gaussian. The
methods described here can also be made to accommodate a variety of non-continuous data types
for which conjugate models are available, such as the multinomial/Dirichlet model for categori-
cal data.

There is an interesting connection to be made between particle learning classifiers and the
standard ensemble classifiers of the machine learning literature. In a sense, the former is an in-
stance of the latter, which each particle representing a single learner amongst an ensemble/cloud
of similar learners. Classification, as described here, is based on a consensus amongst learners.
The key difference between the two has to do with the ease with which the classification rule
can be updated in light of new data. In principle, the process of continuing training is straight-
forward, and a successful demonstration of which would constitute a significant advance in the
field. Above we suggested the application of the methods described here to provide support for
other classifiers by detecting significant changes to the underlying distribution features and fa-
cilitating their retraining by producing labels that capture the effects of these shifts. In fact, it
may be the case that this capacity for constant training and updating will cause the framework
described here to be outrightly preferred to other classifiers in situations where the stability of
the classification rules are in question.

A Updating α0, µ0, and Σ0

Inference may be conducted on hyperparameters α0, µ0, and Σ0 as follows. If the standard
α0 Gamma(e , f ) (E(α0) = e/ f ) prior distribution is assumed, then the data augmentation
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Figure 8: Marginal densities for each dimension of the observed data. Dashed grey density is
based on all observations. Densities for Iris Setosa, Iris Versicolour, and Iris Virginica samples
are shown in red, green, and blue respectively, scaled in proportional to subtype frequency.
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Figure 9: Predicted label probabilities for 10 samples each of Iris Setosa, Iris Versicolour, and Iris
Virginica held out during training. Grey indicates probability of a yet-unseen subtype, while
red, green, and blue indicate probabilities of the Setosa-, Versicolour-, and Virginica-associated
labels respectively.

Figure 10: Predicted label probabilities for all iris samples using trained cloud.
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scheme of Escobar and West [4] can be used to generate samples from the posterior distribution
of α0. Under this scheme, an auxiliary variable ζ is sampled from a Be t a(α0+ 1, t ) distribution,
where α0 is the current value of the parameter, and t is the current number of observations.
Then conditional on ζ , a new value of α0 is sampled from a mixture of Gamma distributions
given by:

pGamma(e + n∗, f − l o g (ζ ))+ (1− p)Gamma(e + n∗− 1, f − l o g (ζ ))

where

p =
e + n∗− 1

t ( f − log(ζ ))+ e + n∗− 1
.

As before, n∗ denotes the current number of mixture components. This sampling procedure is
repeated for each particle, using each particle’s α0 and n∗ values.

Samples from the posterior distribution of µ0 and Σ0 can be obtained using standard conju-
gacy results. Assuming independent prior distributions of

µ0 ∼ N (m0,Φ0)
Σ0 ∼ W i s ha r t (ν0,Λ0/ν0) (E(Σ0) = Λ0)

then the sampling procedure is the following. First, samples of (µ j ,Σ j ) must be produced for
j = 1 . . . n∗ (the mean and covariance matrices for each normal component in the mixture model
are not sampled directly in the algorithm described since it is possible to integrate over their
Normal-Inverse-Wishart posterior distribution). These posterior distributions are given by

(µ j ,Σ j ) ∼ N IWν+n j
(µ′j ,

γ

1+ γn j

,Σ′j )

where

µ′j =
µ0+ γn j x̄ j

1+ γn j

Σ′j = Σ0+
∑

i :ki= j

(xi − x̄ j )
′(xi − x̄ j )+

n j

1+ γn j

(µ0− x̄ j )
′(µ0− x̄ j )

Using these values, the posterior distributions for µ0 and Σo can be sampled as µ0 ∼ N (m′,Φ′)
and Σ0 ∼W i s ha r t (ν ′,Λ′) where

Φ′ =






Φ−1

0 +
n∗
∑

j=1

(γΣ j )
−1







−1

m′ =
�

m0Φ
−1
0 +

∑

j = 1n∗µ j (γΣ j )
−1
�

Φ′
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and

ν ′ = ν0+ n∗(ν + d + 1)

Λ′ =






ν0Λ
−1
0 + ν

n∗
∑

j=1

Σ−1
j







−1

where d is the dimension of the data. As above, this procedure is repeated for each particle, using
each particle’s sufficient statistics in order to sample the set of (µ j ,Σ j ), and conditional on those
values, (µ0,Σ0).

B Dahl’s Sequentially Allocated Split/Merge Steps
A common problem in iterative methods for sampling the latent allocation variables used in
mixture models is that when the allocation variables are sample one at a time, it can be difficult
for the algorithm to effect big changes to the underlying mixture component structure. For
example, in Figure 5, under a one-at-a-time sampling approach, in order to recognize the merger
of the two mixture components, each observation currently assigned to one component would
have to be re-assigned to the other component. Though this would eventually happen under
a one-at-a-time approach, the merger process can be greatly facilitated by considering a single
MCMC step that proposes the complete merge of the two components into a single component.
This can be seen as a type of Metropolis step, proposing a joint update of many parameters rather
than the usual update of a single parameter. Jain and Neal [9] described one such approach for
generating random joint update steps. Dahl [3] presented an alternative that seems preferable
for the application described here for reasons that will become apparent. The basic idea of the
sequential split/merge step is as follows.

1. Randomly (and uniformly) choose two observations, xt and xt ′ .

2. If xt and xt ′ have been allocated to the same mixture component, propose to split that
component into two components, one founded by observation xt and one founded by
observation xt ′ . If xt and xt ′ have been allocated to different components, propose to
merge the two components into a single component.

3. Evaluate the acceptance probability of the split or merge, and accept or reject the move
accordingly.

The key difference between Dahl and Jain and Neal lies in the way the reassignment of allocation
variables occurs during a split. Under Dahl’s approach, each observation currently allocated to
the common component is reassigned to one of the new components. Initially one component
contains only xt and the other xt ′ . The proposed split is determined by cycling through the ob-
servations currently assigned to the common component, successively adding to the component
founded by xt or the component founded by xt ′ . This reallocation step is accomplished by sam-
pling from the usual Polya urn predictive distribution, considering only these two components.
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Thus, the interpretation of this reallocation is simply, how would the observations assigned to this
component have changed if xt and xt ′ had been observed first ? (instead of whatever observation
founded the component).

The Metropolis Hastings acceptance probability of the move is evaluated as
p(k t

ne w |x
t )q(k t

o l d
|k t

ne w )

p(k t
o l d |x

t )q(k t
ne w |k

t
o l d )

,

where k t denotes the set of allocation variables up to time t and q is the proposal probability.
The posterior probability of the a set of allocation variables can be evaluated directly by com-
bining the likelihood of the data under the proposed partition (which follows the usual Polya
urn structure) and the prior probability of the partition induced by the Dirichlet process. The
probability of the proposal is either 1 (for a merge move) or it is obtained as the product of the
successive reassignment probabilities used to generate the split in step 2 above.

For the application presented here, there are two technical considerations. The first has to
do with the situation in which the decay factor λ is less than 1. In this case, reassignment is
performed using only the most recent 1/(1− λ) observations currently in the sliding window.
The second technical detail has to do with how labels are preserved after a split or merge is
accepted. In the examples presented here, we have adopted a relabeling scheme as follows. When
a split is accepted, the larger of the two new components retains the original label, and the other
component is labeled by t or t ′ as appropriate. When a merge is accepted, the new component
retains the label of the earlier of the two components it is comprised of. These relabeling rules
were chosen somewhat arbitrarily, but they have proven useful in practice. Other relabeling
schemes are possible.

C A very fast sequential approximation to the full model
Although the countably infinite mixture model induced by the Dirichlet process prior on the
mixing distribution provides a very popular framework for methodological work on model-
based clustering, practitioners have become increasingly frustrated with the scalability of the
associated inference algorithms. There exist several precedents for adopting adopting fast ap-
proximate inference schemes for mixture models. Han et al [6] discuss one such approach in
the context of online visual tracking systems. Their approach involves sequentially recalculating
the modes of a kernel density estimate upon arrival of a new datum, and consolidating mixture
components so that a single component is associated with each mode. Their approach is appeal-
ing for its sequential (and linear time) nature, but it lacks the ability to accommodate arrivals
from nonstationary mixture distributions. Additionally, since their algorithm is at its core a
kernel density estimation, there is limited opportunity for quantifying uncertainty regarding
the outlierliness of an observation (our preference for formal probability models which regard
the number of components as random quantities to be estimated from the data stems from their
abilities to produce such statements). More recently, Daume III [8] presented a search heuristic
for deriving approximate MAP component assignments for a Dirichlet process mixture model.
This approach appears to perform on par with standard Gibbs samplers in a fraction of the time,
though the authors comment that the algorithm is still not competitive with variational methods
in terms of speed and accuracy. The approach is interesting, but is incapable of accommodating
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streaming data due to its reliance on an upper bound on the marginal likelihood of the remaining
data.

Sequentially learned nonparametric mixture models have many desirable properties in terms
of inference, viz., accommodating nonstationarity while simultaneously facilitating clustering
and anomaly detection. However, in some application spaces it may computationally prohibitive
to maintain an entire particle cloud and achieve the desired between-observation latency in order
that the inference algorithm can remain in lock-step with the arrival of the data. In order to
accommodate such applications, we now describe a much faster, approximate procedure inspired
by the full particle learning algorithm as previously described in Section 2.

C.1 Method
The key ideas of this approach are the following:

• Maintain only one instantiation of the mixture model (as opposed to a cloud of particles
each containing a distinct instantiation of the mixture). This instantiation will represent,
in some sense, the expected mixture distribution at time t conditional on the model state
at time t − 1. This distribution is similar to the distribution that would be obtained in the
full particle learning approach by averaging the distributions of each particle, i.e.

1

N

N
∑

i=1

p(xt |{s j }
n∗i
j=1,α,µ0,Σ0)

• Sequentially update this distribution in order to maximize the predictive probability of
the next observation.

• During update steps, decay the contribution of previous observations towards the suffi-
cient statistics of each mixture component by a factor of λ. This will induce a sort of slid-
ing window model, in which the effective total number of observations is 1

1−λ . Note that
this step is optional, though its inclusion is required for handling arbitrarily long-lasting
data streams.

• Between deterministic update steps, perform random split/merge steps to as described in
Appendix B and [3] using the most recent 1

1−λ observations.

At its core, this appears to describe something similar to one pass of an EM algorithm. Normally
EM would involve many passes through the data, repeatedly updating the configuration variables
for each observation until convergence is reached according to some criterion. One pass of
EM is certainly not guaranteed to produce any sort of reliable estimate of the MAP cluster
assignment. However, the inclusion of the split/merge steps proves to be key. Upon arrival of
a new observation, the fundamental question is, does this observation fall into one of the clusters
observed thus far, or does it constitute the first arrival from a new cluster, or does it change our
opinions about what we are currently calling clusters? The first part of the question is answered
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by the prediction rule for the Polya urn representation of the Dirichlet process mixture. The
second part is answered through splitting and merging existing clusters.

An informal argument in support of why such an approach should be expected to work is as
follows. Let c t = [c1 c2 c3 . . . ct] denote the component/cluster assignment variables for the first
t observations, and let bc t denote the maximum a posteriori estimate of c t based on the data up
to time t . In other words,

bc t = arg maxc t p(c t |x t ,α,µ0,Σ0)

where x t = [x1 x2 x3 . . . xt]. Upon arrival of the next observation xt+1, one of two things

can happen: either dc t+1 = [bc t ct+1] or it does not. Another way of saying this, by analogy, is
that either xt+1 is the straw that breaks the camel’s back or it is not. Consider the following
factorization of the posterior distribution of c t+1:

p(c t+1|x t+1,α,µ0,Σ0) = p(ct+1|c
t , x t+1,α,µ0,Σ0)p(c

t |x t+1,α,µ0,Σ0).

If the arrival of xt+1 does not change our way of thinking about the cluster assignments of the
first t observations, then the posterior distribution of c t+1 will be maximized by assigning xt
to the component that maximizes p(ct+1|c t , x t+1,α,µ0,Σ0), as is accomplished by the EM step

described above. If the arrival of xt+1 makes it such that dc t+1 involves cluster reassignments for
some of the first t observations (relative to their assignment in bc t ), then with high probability
that reassignment will be discovered by the random split/merge steps. For example, suppose that
data arrives as in Figure 11. Up until t ≈ 250, bc t will involves assigning all observations into one
of two clusters, however at some point it becomes clear that the data (if assumed to come from a
stationary mixture) in fact represent a single cluster. In order to recover the MAP estimate, the
two existing components must be merged to a single component, as will be accomplished by the
split/merge steps.

In full detail, the algorithm is as follows.

1. After the arrival of x1, initialize the sufficient statistics for component 1 with the appro-
priate function of x0 (i.e. s1 = [x1 x ′1x1 1]). At this point, c1 = 1 and trivially bc1 = [1].

2. After the arrival of xt , sample ct as

ct = arg max`

(

α

α+ t − 1
p(xt |µ0,Σ0)δ`=n∗+1(`)+

n∗
∑

i=1

ni

α+ t − 1
p(xt |si ,µ0,Σ0)δ`=i (`)

)

3. If ct = n∗+ 1, initialize a new component with sn∗+1 = [xt x ′t xt 1]. Otherwise update the
sufficient statistics for component ct using the decay factor λ: sct

= sct
λ+[xt x ′t xt 1].

4. Randomly choose i and j from among indices in the range [t−1/(1−λ) . . . t] (i.e. the most
recent 1/(1− λ) observations). If observations i and j are currently assigned to the same
component, propose to split the component into two components, seeded by observations
i and j . If i and j are in different components, propose to merge the two components
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Figure 11: Sample data.
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into a single component. The full details for this sampling step appear in [3]. Evaluate
the Metropolis-Hastings acceptance probability for this move, and accept the move if the
probability is greater than 0.5. Essentially creates a randomized EM step for splitting and
merging components.

5. Repeat steps 2–4 for each new observation.

C.2 Demonstration
In this section we use simple simulations to demonstrate the key features of this approach, and
to compare the approximate results to those obtained using the full PL algorithm. These sim-
ulations are the same as those presented in Section 4 above. In each of the following figures,
we show the data, color coded by label, along with the predictive distribution as evaluated at
several time points over the course of observation. First, we consider 500 observations from
a normal regression model with Gaussian noise. Figure 12 shows the clustering and predictive
densities induced under a decay factor of λ= 0.99. The predictive density successfully tracks the

time

x

0 100 200 300 400 499

−2
0

1
2

−1

Figure 12: Simulated drifting data stream, color coded by cluster as estimated by nonstationary
approximation, with the estimated predictive distributions overlayed.

nonstationary distribution generating the data, and therefore allows recognition of a common
cluster assignment for all observations. The next two simulations demonstrate the utility of the
split/merge steps of the algorithm. These simulations were constructed to represent situations in
which the “true” cluster structure is only revealed in retrospect. In the context of data streams,
this amounts to situations in which the data streams can be seen to drift, split, and merge with
one another over time. Figure 13 shows the results of the algorithm applied to the pathological
merging data shown previously in Figure 11. Using a decay factor of λ = 0.99 and a single ran-
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Figure 13: Simulated merging data streams, color coded by cluster as estimated by nonstationary
approximation with split/merge steps, with the estimated predictive distributions overlayed.

approx (time/obs) full (time/obs)
drift data 2.879s (0.005758s) 242.8s (0.4857s)
merge data 3.863s (0.005151s) 341.9s (0.4559s)
split data 3.960s (0.005280s) 347.5s (0.4633s)

Table 1: Comparison of computation times required for simulation studies. The approximate
method is approximately two orders of magnitude faster than the full method.

dom split/merge step after each observation, the algorithm initially partitions the observations
into two separate streams, before ultimately merging them into a single stream around time 400.
Similarly, Figure 14 shows the results of tracking a single data stream that ultimately splits into
two diverging streams. Visual comparison of these results to those presented in Section 4 indi-
cate that the approximate method performs as well as the full method. In the case of the splitting
data stream, although the split is similarly detected, here the upper substream retains the label of
the original stream. This is reversed from that presented in in Section 4, and simply reflects the
fact that there is uncertainty as to which of the newly spawned mixture components has larger
weight. Compute times required for these analyses, as compared to those required for the full
method, are presented in Table 1, and further emphasize the utility of the approximate method.
These times are associated with single-threaded versions of each algorithm running on one core
of a 2.4 GHz Intel Core 2 processor. The approximate method appears to be nearly two orders
of magnitude faster than the full method.
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Figure 14: Simulated splitting data streams, color coded by cluster as estimated by nonstationary
approximation with split/merge steps, with the estimated predictive distributions overlayed.
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