Defining How a Microbial Cell Senses and Responds to a Redox Active Environment

PDF Version Also Available for Download.

Description

This grant was for four years, and the work was designed to look at the mechanisms of extracellular electron transfer by the dissimilatory iron reducing bacteria Shewanella oneidensis MR-1, and other closely related Shewanella strains and species. During this work, we defined many of the basic physiological and biochemical properties of the Shewanella group, Much of which was summarized in review articles. We also finished and published the genome sequence of strain MR-1, the first of the shewanellae to have its genome sequenced. Control at the transcriptional and translational level was studied in collaboration with colleagues at PNNL and ANL. ... continued below

Physical Description

80 kb

Creation Information

Nealson, Kenneth H. June 22, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This grant was for four years, and the work was designed to look at the mechanisms of extracellular electron transfer by the dissimilatory iron reducing bacteria Shewanella oneidensis MR-1, and other closely related Shewanella strains and species. During this work, we defined many of the basic physiological and biochemical properties of the Shewanella group, Much of which was summarized in review articles. We also finished and published the genome sequence of strain MR-1, the first of the shewanellae to have its genome sequenced. Control at the transcriptional and translational level was studied in collaboration with colleagues at PNNL and ANL. We utilized synchrotron X-ray radiation to image both the bacteria and the metal oxide particles via a technique called STXM, synchrotron X-ray absorption (ref. No.9), and X-ray microbeam analysis. We purified several of the cytochromes involved with metal reduction, and improved gene annotation of the MR-1 genome. The conductive appendages (nanowires) of MR-1 were described and characterized. Comparative genomics and biochemistry revealed that the pathway for the utilization of N-acetyl glucosamine in the various strains of Shewanella exhibited great variability, and had a number of previously unknown genes.

Physical Description

80 kb

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/63427-2 Final Report
  • Grant Number: FG02-02ER63427
  • DOI: 10.2172/1043690 | External Link
  • Office of Scientific & Technical Information Report Number: 1043690
  • Archival Resource Key: ark:/67531/metadc843058

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 22, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 14, 2016, 10 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Nealson, Kenneth H. Defining How a Microbial Cell Senses and Responds to a Redox Active Environment, report, June 22, 2012; United States. (digital.library.unt.edu/ark:/67531/metadc843058/: accessed September 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.