
Cover Page

U.S. Department of Energy Office of Science

Coordinated Fault Tolerance for
High-Performance Computing

Placeholder page for Coversheet

Table of Contents

1 Research Summary 1
1.1 Motivation . 1
1.2 Research Approach . 1
1.3 Accomplishment Highlights . 2

2 Technical Approach and Research Accomplishments 3
2.1 The FTB API Specification . 3
2.2 The FTB software - The CIFTS FTB API Implementation 4
2.3 Other FTB API Implementations . 5
2.4 Improving Fault Tolerance in Software Components . 6

2.4.1 The Message Passing Interface Libraries . 6
2.4.2 Checkpoint/Restart Library . 9
2.4.3 Network and Hardware Monitoring . 11
2.4.4 Math Libraries . 11
2.4.5 Applications . 13
2.4.6 Resource Managers and Job Schedulers . 16
2.4.7 Autonomics for Leadership-Class Machines . 17

3 Outreach Efforts 21

4 Summary and Future Extensions to CIFTS 21

5 CIFTS related Publications and Presentations 25

6 Other Literature Cited 32

i

1 Research Summary

1.1 Motivation

The main purpose of the Center for the Improvement of Fault Tolerance in Systems has been to conduct
research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other
system software. While fault tolerance has been an integral part of most high-end computing (HEC) system
software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes.
Visibility and response to faults has typically been limited to the particular hardware and software subsys-
tems in which they are initially observed. Little fault information is shared across subsystems, allowing little
flexibility or control on a system-wide basis, making it practically impossible to provide cohesive end-to-end
fault tolerance in support of scientific applications.

As an example, consider faults such as communication link failures that can be seen by a middleware
or network library but are not directly visible to the job scheduler, or consider faults related to node failures
that can be detected by system monitoring software but are not inherently visible to the resource manager.
If information about such faults could be shared by the middleware/network libraries or monitoring soft-
ware, then other system software, such as a resource manager or job scheduler, could ensure that failed
nodes or failed network links were excluded from further job allocations and that further diagnosis could be
performed.

From a broad perspective, our work to meet our goal of end-to-end fault tolerance has focused on two
areas: (1) improving fault tolerance in various software currently available and widely used throughout the
HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault
tolerance and understanding how to design and implement interfaces for integrating fault tolerance features
for multiple layers of the software stack—from the application, math libraries, and programming language
runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

1.2 Research Approach

With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came
to be called) project, our aim has been to understand and tackle the following broad research questions, the
answers to which will help the HEC community analyze and shape the direction of research in the field of
fault tolerance and resiliency on future high-end leadership systems.

• Will availability of global fault information, obtained by fault information exchange between the
different HEC software on a system, allow individual system software to better detect, diagnose,
and adaptively respond to faults? If fault-awareness is raised throughout the system through fault
information exchange, is it possible to get all system software working together to provide a more
comprehensive end-to-end fault management on the system?

• What are the missing fault-tolerance features that widely used HEC system software lacks today that
would inhibit such software from taking advantage of systemwide global fault information?

• What are the practical limitations of a systemwide approach for end-to-end fault management based
on fault awareness and coordination?

• What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination
of responses on a leadership-class system?

• What standards, outreach, and community interaction are needed for adoption of the concept of fault
awareness and coordination for fault management on future systems?

1

Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach.

• Our central goal was to design and implement a light-weight, scalable infrastructure with a simple,
standardized interface to allow communication of fault-related information through the system and
facilitate coordinated responses.

This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API
specification, together with a reference implementation and several experimental implementations on
top of existing publish-subscribe tools.

• We enhanced the intrinsic fault tolerance capabilities representative implementations of a variety of
key HPC software subsystems and integrated them with the FTB.

Targeting software subsystems included: MPI communication libraries, checkpoint/restart libraries,
resource managers and job schedulers, and system monitoring tools.

• Leveraging the aforementioned infrastructure, as well as developing and utilizing additional tools,
we have examined issues associated with expanded, end-to-end fault response from both system and
application viewpoints.

From the standpoint of system operations, we have investigated log and root cause analysis, anomaly
detection and fault prediction, and generalized notification mechanisms. Our applications work has
included libraries for fault-tolerance linear algebra, application frameworks for coupled multiphysics
applications, and external frameworks to support the monitoring and response for general applications.

• Our final goal was to engage the high-end computing community to increase awareness of tools and
issues around coordinated end-to-end fault management.

Our outreach activities covered a broad spectrum, including technical papers and presentations, demon-
strations, numerous community-oriented discussion venues, hosting of students as summer interns,
and interactions with HPC vendors.

1.3 Accomplishment Highlights

Following are some of the highlights of the CIFTS project:

1. A series of public releases of the FTB API specification, beginning with version 0.5 in June 2008, and
culminating in the draft version 1.0 specification.

The FTB API specifications have been accompanied by releases of the reference implementation of
the FTB. The FTB implementation works in IBM Blue Gene, Cray, and Linux cluster environments,
and is released under the BSD license.

2. The three most widely deployed implementations of the Message Passing Interface (MPI) standard,
MPICH2, MVAPICH2, and Open MPI, have been enhanced to integrated with the FTB, and support a
common set of fault-related events. Additionally, all three libraries have significantly improved their
support for checkpoint/restart.

3. With support from the CIFTS project, the Berkeley Lab Checkpoint/Restart (BLCR) package has
been significantly enhanced, integrated with the FTB, SLURM, and TORQUE, as well as all three
MPI implementations (as mentioned above). BLCR has also been ported to several new platforms
and added to several Linux distributions.

2

4. The FT-Linear Algebra library has been FTB-enabled as a prototype, and the development of a fault
tolerance version of the ScaLAPACK is underway which uses algorithm-based fault tolerance to pro-
vide applications an effective alternative to traditional checkpoint/restart.

5. A variety of system monitoring tools and libraries have been FTB-enabled to make hardware fault
information available via the FTB, including the Reliability, Availability and Serviceability (RAS)
systems of Cray and IBM Blue Gene systems, the Intelligent Platform Management Interface (IPMI),
Ganglia, and Syslog.

6. We have make significant advances in the ability of system operators to navigate, understand, analyze,
and act upon the large volumes of RAS log data that is often associated with larger supercomputer
installations.

7. Leveraging the FTB and other capabilities developed within the project, we have demonstrated novel
application-level resilience capabilities. One example integrates specific services and capabilities
within a framework for coupled multiphysics simulations, while the other provides a an external “Fault
Correlation Framework” (FCF) which can provide monitoring and resilience services for generic ap-
plications with little or no modifications.

2 Technical Approach and Research Accomplishments
From a technical perspective, the CIFTS framework consists of the FTB API specification and the soft-

ware that use this FTB API, as shown in Figure 1. The FTB API can be used by system software ranging
from operating systems and job schedulers to math libraries, file systems, and high-level user applications.
In addition to existing software, third-party developers can set up automatic scripts, diagnostic routines,
fault-information analysis engines, and logging systems that can be FTB-enabled to communicate with
other FTB-enabled software.

2.1 The FTB API Specification

The FTB API is a publish-subscribe framework that describes the interface that can be used by any HEC
system software to publish and obtain fault information from the system. The FTB API interface consists
of a dozen routines that allow system software to connect to and disconnect from the FTB, publish fault
events, and subscribe and unsubscribe to these fault events based on a set of filters. As an example: the
FTB API provides a routine called FTB Connect to be used by every FTB client to initialize itself and
connect to the FTB system. The FTB client must specify various details including the namespace in which
it plans to publish its events. Namespace is an important concept in the FTB API specification. The FTB
API specification imposes no restrictions on the fault information that an FTB client can publish. While the
FTB API specification provides the interface to publish/subscribe to fault events, the semantics of the fault
events are independent of FTB API specification and must be understood and defined by a software prior to
using the FTB interface. To this end, the FTB API incorporates an event namespace, portions of which are
reserved for the different FTB-enabled software programs. In the FTB framework, prior to publishing any
event the FTB client must specify the namespace where it plans to publish its fault events. Similarly, FTB
clients wishing to receive events need to ensure that they have registered their interest to receive events in
the correct namespace.

The CIFTS team released the FTB API version 0.5 in June 2008. Based on community and vendor
feedback, we are currently working on the FTB API version 1.0. Versions of the FTB API specification can
be found on the CIFTS website [4].

3

System

Monitoring
Software

System

Management

Hardware

File Systems

Job
Scheduler /
Resource
Manager

Advanced
Networks

libraries

&

Check−
pointing

Software

HPC

Middleware

Applications

Diagnostic
Tools

Event
Analysis

Universal
Logger

Operating

Automatic
Actions

Linear
Algebra

Libraries

System

Networking
Fault Tolerance Backplane

Figure 1: CIFTS Framework

2.2 The FTB software - The CIFTS FTB API Implementation

The “FTB software” is an implementation of the FTB API specification developed by the CIFTS team.
The FTB software was first publicly released in Sept. 2008. Currently based on the FTB API version 0.5,
the FTB can be viewed as an asynchronous messaging backplane that allows communication of fault events
among the different HEC software systems.

The FTB physical infrastructure is based on a distributed architecture, as shown in Figure 2. The FTB
framework comprises a set of distributed daemons, called as FTB agents. These agents incorporate the bulk
of the FTB logic and manage the bookkeeping as well as communication of events throughout the FTB
system.

The FTB agents, on startup, connect and organize themselves into a tree-based topology. The initial
topology construction takes place with the assistance of the FTB bootstrap server which provides informa-
tion that helps every FTB agent determine its parent FTB agent and position in the topology tree. During its
lifetime, if an agent loses its parent, it can connect itself (and its children and its attached FTB clients) to a
new parent in the topology tree, making the topology tree self-healing with a certain level of fault tolerance.
The bootstrap server can also be made fault tolerant to a certain extent by keeping track of the topology in-
formation and specifying redundant bootstrap servers. The FTB agents subsequently connect to the existing
agent topology tree when they startup. The FTB clients, on startup, connect to a local FTB agent by using
FTB routines (as described in the FTB API specification). Alternatively, in the absence of a local FTB agent,
the FTB client connects to a remote FTB agent by enlisting the assistance of the FTB bootstrap server. Once
a connection is established, the FTB client can publish events and subscribe to receive events using the FTB
Client API.

The FTB agents keep track of all registered FTB clients. The agents also keep track of all FTB client
subscription requests, along with the subscription criteria. They perform incoming event matching against
subscription criteria and send events to the correct destinations and clients. In addition, they keep track
of their tree topology and metadata associated with maintaining connections and routing information. In

4

FTB Agent

FTB Agent

FTB Agent

FTB Agent

Connect

FTB client

Subscribe

Connect

Publish event

FTB client

FTB Agent

Bootstrap

Figure 2: The FTB Architecture

summary, the majority of the FTB logic lies with the FTB agent.
Details about the design of the FTB implementation can be found in [38].
Details on CIFTS and the FTB software implementation have been a focus of several talks and presen-

tations [30–37] given during this project.

2.3 Other FTB API Implementations

To reach out to other communities, in addition to the CIFTS FTB software, the CIFTS team studied
and ported the FTB API version 0.5 to other existing commodity communication middleware. The CIFTS
team noted that significant effort had been made to standardize and implement communication APIs in areas
such as service availability and enterprise message exchange and that highly reliable commodity implemen-
tations were already available. The CIFTS team found that FTB implemented based on this middleware
provides not only reliable event exchange capability but also seamless integration with the applications
that utilize the communication middleware, thereby spreading the CIFTS concept to the community. The
CIFTS team particularly chose the following two widely accepted communication specifications and their
implementations.

• SAF Application Interface Specification (AIS).

• Advanced Message Queueing Protocol (AMQP).

The Service Availability Forum (SAF) [115] was established to foster creation of highly available net-
work infrastructure products, systems and services. An implementation of FTB was made with the Event
Distribution Service (EDSv) of SAF’s Application Interface Specification. The EDSv consists of an Event
Distribution Server (EDS) and Event Distribution Agent (EDA). Event messages are published and received
through local EDAs that connect to the central EDS. A message routed from the EDS is delivered only when
the attribute attached with the message passes through a filter set by the subscriber. Utilizing the attribute
filters of EDSv, the CIFTS team made the FTB APIs available for applications that run on systems where

5

a EDS is in operation. For an implementation of the Application Interface Specification, openSAF [113],
which is available under the LGPLv2.1 license, was selected.

The Advanced Message Queuing Protocol (AMQP) [141] is an open standard application layer protocol
for message-oriented middleware. Although AMQP originated in the financial sector, it has gained applica-
bility to a broad range of middleware domains. The heart of the AMQP service framework is an exchange,
which receives messages from publishers and routes them to message queues depending on predefined rules
attached to the queues. A message queue is created dynamically by a subscriber. The CIFTS team imple-
mented the FTB API by defining publish/subscribe as bindings between the exchange and message queues,
especially by matching routing keys using the topic exchange method. Two open-source implementations of
AMQP—openAMQ [108], which is licensed under GPLv3 and managed by iMatix, and Qpid [112], which
is licensed under the Apache license version 2 and managed by Apache, RedHat, and various contributors—
were selected to implement the FTB API.

Additional information on these designs can be found on the CIFTS wiki [5].

2.4 Improving Fault Tolerance in Software Components

This section focuses on software that currently is part of the CIFTS infrastructure and integrates with
the Fault Tolerant Backplane. In addition to the integration details, we also briefly discuss the research and
design advancements made to this software in order to enable it to work in coordinated fault management
environments.

2.4.1 The Message Passing Interface Libraries

The Message Passing Interface (MPI) is one of the most important programming models in high-
performance computing. MPICH2, [117], Open MPI [135], and MVAPICH2 [134] are three of the most
popular MPI implementations that heavily dominate the high-performance computing space [116]. The
three teams in the CIFTS project have focused on three areas:

1. Standardizing faults information and conditions under which these faults are published by the respec-
tive MPI implementations.

2. Improving the fault tolerance and resiliency of the respective software.

3. Integrating the specific MPI implementations with the FTB.

The rest of this section discusses the progress made in these three areas.

Standardized FTB Events for MPI Implementations With input from MPI users and developers the
CIFTS team standardized fault events to be subscribed to and published by MPI libraries and runtime sys-
tems. The FTB MPI Standardized Events document version 1.0 [100] was released in November 2010 at the
International Conference for High Performance Computing, Networking, Storage and Analysis (SC’2010)
and describes a dozen fault events and their relevant attributes that are relevant to all MPI implementations.
These fault events are categorized as (1) error events, such as failed, unreachable, or aborted processes or
failed migration or checkpoint/restart operations; (2) warnings, such as transient communication errors; and
(3) information events, such as notification of completed checkpoints or process migrations.

The MPICH, MVAPICH, and Open MPI groups have integrated FTB into their MPI implementations
and are compliant with the FTB MPI Standardized Events document version 1.0.

Fault Tolerance in MPICH2 The MPICH2 team, as of Feb 2010, provides fault tolerance support for
MPICH2. This support is available in the MPICH2 software since version 1.3 [117]. Fault tolerance in
MPICH2 is provided through a checkpoint/restart mechanism which is based on the Berkeley Lab Check-
point/Restart software. We have taken advantage of features in BLCR that allows us to take a checkpoint

6

of every process on a node all at once. This allows preservation of shared-memory channels between the
processes. Checkpointing is integrated with MPICH’s Hydra process manager which publishes FTB events
reporting the progress of the checkpoint operation.

The MPICH2 team has also worked with the Fault-Tolerance Working Group of the MPI Forum to
develop a fault-tolerance model and API for MPI. This work has resulted in a proposal being presented to
the MPI Forum [26], as well as two posters [21, 54] and a technical report [22].

FTB Integration in MPICH2 As of MPICH2 version 1.3.1, MPICH2 supports all fault events listed in
FTB MPI Standardized Events document version 1.0. In MPICH2, fault events are either published by the
MPI library itself or by the Hydra process manager.

We have presented several presentations [7–10] and demonstrations [20,23] showcasing the capabilities
of FTB-enabled MPICH2 with other FTB-enabled software. In particular, we showcased [23] detection of
failed communication processes on a cluster–fault information about which was communicated by MPICH2
through FTB. This information was obtained by the FTB-enabled COBALT job scheduler, which removed
the failed network links (and nodes connected to them) from the resource pool.

Fault Tolerance in MVAPICH/MVAPICH2 (MPI on InfiniBand) Several fault tolerance features have
been added to the MVAPICH and MVAPICH2 software, under the CIFTS initiative, to make it highly avail-
able and resilient for deployment on leadership class machines and to increase its usefulness in coordinated
fault management environments. Following is a description of some of the more important fault tolerant
features, that are now available in the MVAPICH/MVAPICH2 software.

End-to-End Reliable Data Transmission in MVAPICH: The MVAPICH team has designed and incor-
porated an end-to-end reliable data transmission protocol in the MPI layer. This design is able to detect error
using CRC encoding and retransmit erroneous data upon a corrupted packet. This feature is available in the
current MVAPICH distribution.

Automatic Path Migration (APM) Support in MVAPICH2 for InfiniBand Networks: InfiniBand pro-
vides a hardware mechanism, Automatic Path Migration (APM), which allows user transparent detection and
recovery from network fault(s). We have designed a set of modules [6], namely: (a) an Alternate path speci-
fication module, (b) a Path loading request module and (c) a Path migration module, which work together to
provide network fault tolerance for user-level applications. This support has been added to MVAPICH and
MVAPICH2 software and is available in their respective distributions.

Reactive Process-Level Fault-Tolerance in MVAPICH2: MVAPICH2 has built-in support for coordi-
nated process-level checkpoint/restart, a most widely deployed reactive fault-tolerance strategy. We have
designed a complete checkpoint/restart framework with a set of coordination protocols [95] to guarantee
the channel consistency of InfiniBand and intra-node shared memory channels during a checkpoint cycle.
The BLCR library is used to create a system-level snapshot of each MPI process. Basic Checkpoint/Restart
is well known for its IO bottleneck while saving process snapshots to shared file system. We have pro-
posed a set of optimizations to tackle this constraint. A group-based checkpointing strategy is designed [96]
that schedules the parallel processes to take checkpoint in smaller groups to reduce IO contentions during
checkpoint writing. As multi-core processors are getting common for HPC systems, we worked out a novel
I/O aggregation mechanism [71] to speedup checkpoint operations by reducing the concurrent IO overhead.
Further enhancements with dynamic buffering have been carried out in [70] that use a small amount of
buffer pool to accelerate checkpoint operations further. These schemes have been evaluated in conjunc-
tion with a new staging I/O framework and modern Solid State Disks (SSD) to provide a high-performance
Checkpoint-Restart solution [72].

Proactive Process-Level Fault-Tolerance in MVAPICH2: In addition to the reactive Checkpoint/Restart
strategy, we have implemented a proactive fault-tolerance scheme in MVAPICH2 to migrate processes on a
failing node to a healthy spare node upon a failure prediction so as to bypass the IO bottleneck of a cluster-
wide checkpoint. We have proposed a file-based migration design [102] that creates checkpoint files of the

7

processes on the migration source node and move the files via different transports to the target node to restart
the processes. The team has made significant enhancements in data transmission at [101] to directly pump
process image through a RDMA data pipeline from migration source node to the target node without any
file system IO overhead.

FTB Integration in MVAPICH/MVAPICH2 Support for FTB has been present in the MVAPICH2 soft-
ware since version 1.4, which was publicly released in Nov. 2009. The current MVAPICH2 1.7 software
supports the FTB API version 0.5 and is compatible with the FTB version 0.6 software. The MVAPICH2
software connects to the FTB backplane to subscribe and publish fault-related information. The current
version of MVAPICH2 software supports all fault events described in the FTB MPI Standardized Events
document version 1.0. MVAPICH2 subscribes to different kinds of FTB faults. Upon receipt of information
about impending faults, MVAPICH2 can intelligently choose to take preventive proactive actions, such as
systemwide full checkpoint to guard the current computation progress, or can perform a process-migration
to evacuate the failure-prone node.

These capabilities of FTB-enabled MVAPICH have been demonstrated at several international confer-
ences [68,69]. In particular, we demonstrated [69] how MVAPICH can effectively migrate the TACHYON [140]
application process when it obtains fault information, published by the FTB-enabled InfiniBand monitoring
networking library [66], through the FTB infrastructure.

The research results have been implemented in the MVAPICH/MVAPICH2 software and published
[6, 38, 60, 70–72, 95, 96, 101, 102] and presented [7–10, 73–89] at several venues.

Fault Tolerance in Open MPI
The Open MPI team has added several new fault tolerance features to Open MPI. These enhancements

include improvements and optimizations to the checkpoint/restart framework, such as reduced checkpoint
times; improved extensions and mechanisms to the Open MPI runtime to support better fault recovery
techniques; and integration of Open MPI with the FTB to exchange fault information.

Checkpoint/restart framework and service in Open MPI:
We have added support for a variety of interconnects including TCP/IP, shared memory, InfiniBand, and

Myrinet. A unique feature of this research is the ability to reconfigure interconnect pairings for improved
performance on restart [51,52,56]. Support has been added for checkpoint/restart-enabled transparent proac-
tive process migration, and reactive automatic recovery [61, 64]. The proactive process migration feature
allows end-users to move processes away from predicted failure locations and planned system outages [53].
The reactive automatic recovery feature provides end-users with a transparent, automatic recovery mech-
anism when an unexpected process failure occurs [58, 59]. We have also improved the checkpoint stable
storage mechanisms to support centralized and staged techniques. Staging checkpoint files to stable stor-
age overlaps the writing of checkpoint files with application execution, ultimately leading to a significant
reduction in application performance overhead. As part of the staging technique, we have added caching
and compression of checkpoint files. Caching checkpoint files improves automatic recovery time by refer-
encing a local copy of a checkpoint when available. Compression often reduces the size of the checkpoint
files and results in a reduction in the time to checkpoint and disk space required to do so. The team has
also added support for checkpoint/restart-enabled parallel debugging in Open MPI that can dramatically
shorten the debugging cycle [55]. Software developers can save hours or days of time spent debugging by
checkpointing and restarting the parallel debugging session at intermediate points in the debugging cycle.
We have also introduced a variety of checkpoint/restart application interfaces through the Open MPI Exten-
sions interface. These interfaces provide applications with the opportunity to guide the checkpoint/restart
related operations to best suit the application requirements. In addition to a checkpoint and a restart inter-
face, interfaces to migrate processes within an MPI communicator and receive notification of the progress
of a checkpoint has also been exposed. Currently the Open MPI project’s checkpoint/restart functionality
depends primarily on the BLCR project. BLCR provides Open MPI with a system-level, transparent, single-

8

process checkpoint/restart service. Collaboration in this project stabilized existing interfaces and enabled
experiments with new interfaces. One such interface collaboration is the hook interface provided to support
checkpoint/restart-enabled parallel debugging.

Open Runtime Environment (ORTE) in Open MPI: The underlying runtime support layer of Open
MPI, known as ORTE, has undergone considerable development by the Open MPI team members dur-
ing the course of the CIFTS project, focusing primarily on improving scalability and reliability. We have
participated in some of the ORTE code rework and refactoring through the development of the Runtime
Services Layer (RSL) interface. The RSL interface proved to be invaluable in highlighting interface issues
in ORTE that have since been addressed. We have added support for process fault recovery into the Er-
ror Management (ErrMgr) framework [56]. The fault recovery extensions allowed us to add support for
checkpoint/restart-enabled, transparent proactive process migration and reactive automatic recovery. The
new framework also supports MPI applications that choose to run through a process failure by stabilizing
the runtime environment and continuing execution [50].

Fault Tolerance Practice in Open MPI and the MPI Standard:
The Open MPI team at Indiana University is an active participant in the recently reconvened MPI Fo-

rum [49,52,57,63]. We assisted in the standardization process for MPI 1.3 (July 2008), MPI 2.1 (September
2008), and MPI 2.2 (September 2009). We are currently assisting with the current MPI 3.0 standardization
effort. In addition, we are participating in a number of MPI 3.0 working groups, each charged with investi-
gating interface and wording adjustments to better support current and next-generation HPC applications.

FTB Integration in Open MPI FTB support in Open MPI supports the FTB API version 0.5 specification
to exchange fault-related information with the FTB. Often, the MPI implementation is among the first to
detect faults in a running parallel application. Upon fault detection (or suspicion), Open MPI can relay the
information about the fault to other components over the FTB or act on the faults locally. Additionally,
Open MPI may listen to events from other FTB-enabled components and handle these events depending on
the type of the fault or the action requested. For example, Open MPI can initiate a coordinated checkpoint
of the running parallel processes on receiving the corresponding event from a FTB-enabled job scheduler.
The FTB support in Open MPI is implemented as a component of the Notifier framework in ORTE. The
Notifier framework exports information, warnings, and errors related to Open MPI-detected problems to one
or more Notifier components which are selected at runtime. Leveraging the infrastructure provided by the
OPAL (Open Portable Access Layer) SOS interface, Open MPI can control the way in which these events
are reported. Fault events can be reported to multiple Notifier components, including the FTB, and then acted
upon appropriately by calling the necessary internal library routines. Further, OPAL SOS provides Open
MPI the opportunity to filter, aggregate, or coalesce events according to severity and others parameters.

Fault tolerance in Open MPI using FTB has been presented [7–10] as well as demonstrated [61, 62]
during several conferences and workshops. We demonstrated resilient execution of a ray-tracing application
developed using POV-Ray. The application ran to completion despite a node failure by handing over the
pending computational tasks to healthy processes [61]. One of the other demos involved proactive migration
of MPI processes due to predicted failures. Impending failures were predicted by monitoring FTB for
fault information. We also demonstrated reactive fault tolerance in Open MPI, where a MPI job sustained
execution despite failures owing to the resilient runtime [62].

2.4.2 Checkpoint/Restart Library

BLCR, the Berkeley Lab Checkpoint/Restart library [123] for Linux is the one of the most prominent
software available for system-level checkpointing. Several high-level libraries including MPI use it to ensure
certain degree of fault tolerance in their software.

During the CIFTS project, the BLCR team integrated the BLCR with the FTB, made several improve-
ments to BLCR to optimize checkpointing costs and successfully integrated it with a variety of Linux distri-

9

butions and packages. The following provides a brief summary of the work done.

Design Optimizations and Improvements to BLCR The BLCR team has made several improvements
to BLCR targeted at reducing the time and space costs normally associated with system-level checkpoints:
(1) coalescing of small I/O requests into larger ones yields greater I/O efficiency; (2) in-kernel compression
of checkpoint data reduces transfer times and storage requirements; (3) incremental checkpointing reduces
transfer times and storage requirements by recording only the state that has changed since the previous
checkpoint; (4) memory-exclusion hints enable user-space code (such as an MPI implementation) to exclude
“unimportant” memory from the checkpoint (such as empty receive buffers in an MPI implementation); (5)
“live-migration” moves a still-running process from one compute node to another without need for any
intermediate storage; and (6) in-place rollback allows the recovery step to return an existing process to state
recorded in an earlier checkpoint without the overhead of destroying the process and creating a new one.
These six features will be available in a BLCR release planned for Nov. 2011, to coincide with the SC’11
conference.

BLCR-based Checkpoint/Restart Support in MPI Implementations The collaboration fostered by this
project, between the BLCR development team and the development teams of the three main open-source
implementations of MPI, led to several items of mutual benefit. Of particular note are (1) the work done by
the MVAPICH team at Ohio State University to accelerate checkpoint I/O using buffering and (2) the hook
interface used by Open MPI’s parallel debugger support. In the first case, the work done by the MVAPICH
team [70–72, 96] influenced a rewrite of the I/O code within BLCR that will appear in the next BLCR
release and deliver the level of I/O performance “out of the box” that currently requires use of a buffering
agent such as that implemented by the MVAPICH team. In the second case, the work done by the Open MPI
team at Indiana University (IU) on integrating MPI and checkpoint/restart with a parallel debugger identified
a need to allow the debugger support to interact with the checkpointing and restarting mechanism in ways
not previously envisioned by the BLCR team. Together with the debugger experts, IU and LBNL designed
and implemented the appropriate interfaces in BLCR to allow the required interactions [55].

FTB integration in BLCR The FTB-enabled version of BLCR has been publicly available since Jan.
2009. Support for FTB API version 0.5 was introduced in BLCR version 0.8. The current release of BLCR
works with the 0.6 release of FTB, generating events for every checkpoint and restart request, providing in-
formation on the success or failure of each, and allows other components (including autonomics) to become
aware of failures that may not otherwise be reported beyond a library return code. Based on feedback from
the CIFTS collaborators, the next release will also include performance information in its events, allowing
other components to identify bottlenecks or degradations in I/O performance. The FTB integration work in
BLCR led to significant improvement in the level of useful detail provided by error and warning messages.
Future work will include this information in FTB events.

Community Adoption and Ports of BLCR Cray, with support by LBNL, ported BLCR to the “CNL”
kernel used on the Cray XT series and added BLCR support to their MPI runtime and job launcher. This
work enables full-scale production use of BLCR on Cray XT systems. LBNL ported BLCR to the 32-bit
and 64-bit PowerPC architectures running Linux, which will allow future deployment of BLCR on IBM
Blue Gene systems using Linux-derivative kernels (such as ZeptoOS). To support BLCR in virtualized
environments, LBNL ported BLCR to x86 and x86-64 systems running the Xen hypervisor. A contributed
port to the ARM architecture enables use of BLCR in embedded and low-power environments.

The BLCR team has given several presentations [41, 43, 44, 46, 48, 97], Birds-of-a-Feather sessions [7–
10], and round-table seminars [40,42,45,47] on this research at various international conferences and other
venues.

10

2.4.3 Network and Hardware Monitoring

InfiniBand has emerged as an open-standard interconnect for designing next-generation high-performance
clusters. Similarly, Intelligent Platform Management Interface (IPMI) [111], which is a set of standard inter-
faces to monitor and manage the health of a computer system, has been gaining wide popularity. Fault data
from networks and tools such as InfiniBand and IPMI is invaluable for other software running on a system
that can use this data to proactively prevent catastrophic faults or make educated fault recovery decisions.
The Ohio State University (OSU) team has designed and developed two independent software products to
obtain this fault information from InfiniBand and IPMI and make it available to other software, through the
FTB infrastructure.

FTB-IB: FTB-enabled InfiniBand Monitoring Software The FTB-InfiniBand monitoring software
(FTB-IB) [66] logically consists of FTB-IB agents, which run locally on a node and monitor the InfiniBand
network and publish information of faults and abnormal activities via the FTB API. The FTB-IB software
is designed by using the Asynchronous Event Handler provided by the IB Verbs library, which is part of the
Open-Fabrics Enterprise Distribution [136] software. Other system software that require fault notifications
can use the FTB infrastructure to subscribe to them. The FTB-IB software publishes fault information related
to InfiniBand adapter availability/unavailability, activation status of InfiniBand ports, status of InfiniBand
adapter local ids and protections keys, and information on subnet manager changes.

The OSU team designed and developed the FTB-IB software and publicly released v1.0 of this software
in Nov. 2008. FTB-IB version 1.0 of the software is based on the FTB API version 0.5. The FTB-IB software
has been presented and demonstrated several times at international conferences and venues [68, 69].

FTB-IPMI: An FTB Interface for Intelligent Platform Management Interface The Intelligent Platform
Management Interface (IPMI) [111] is a standard interface to manage a computer system independently of
the operating system. The IPMI specification has been implemented by many hardware vendors. As long
as the system is connected to a power source, IPMI allows out-of-band monitoring of the hardware and
software status of a system and remote actions (such as system reboot)—even in cases of operating system
crashes.

The FTB-IPMI is an FTB interface for the IPMI. The FTB-IPMI efficiently monitors a set of compute
nodes using the IPMI interface and publishes fault events using the FTB when a problem is detected. The
FTB-IPMI software relies on the GNU FreeIPMI library [110], which supports and implements IPMI for
a wide range of hardware and provides a rich set of system sensor information. FTB-IPMI monitors the
sensor information provided by the FreeIPMI library, analyzes this information for severity status, converts
any fault information that is categorized as a “warning” or a “failure” to the FTB messages, and publishes
it to the FTB. These FTB events can be caught by any other FTB-aware component to detect and/or predict
failures.

The OSU team has completed the design and implementation of the FTB-IPMI software [67]. The
software currently is in testing and evaluation stages at large scale. FTB-IPMI will be released in August
2011.

2.4.4 Math Libraries

Numerical libraries and dense linear algebra operations are a critical building block of many prominent
science applications. Many chemistry or physics application are decomposed in a variety of problems that
end up being treated by solving large dense linear systems of the form Ax = B. Even algorithms that
are based on sparse linear algebra usually rely on the help of a dense linear algebra package to provide the
computational kernels applied to the dense blocks. ScaLAPACK [131] is one of the most prominent linear
algebra packages targeting the current paradigm of massive distributed-memory HPC systems. Among the
kernels provided by the ScaLAPACK libraries, several key routines have been identified as needing to be

11

refitted to become fault tolerant, because they represent a major portion of the compute time (hence are at
higher risk of being impacted by failures, with the worst consequences on computation loss as a result).
The LU factorization, which has good numerical stability but is costly, is often used to solve dense linear
systems. The QR factorization is practical for overdetermined systems or for computing eigenvalues. The
matrix-matrix multiply is also a common occurrence in production codes.

In this section, we present the design of the fault-tolerant versions of these algorithms and discuss
how they benefit from their integration with the FTB layer. The FTB-enabled FT-LA software has been
demonstrated at several conferences [13–16], and is a prominent example of a real use case for the FTB
system.

Algorithm-Based Fault-Tolerant Routines The FT-LA software package is a dense linear algebra library
that features algorithm-based fault-tolerant routines. Two releases of increasing quality have been distributed
to the public on the FT-LA website [1]. With our CIFTS partners, FT-LA has been used, during the SC
Bird-of-a-Feather sessions, to illustrate the benefits algorithms can harness from the coordinated recovery
approach and to spark interest in the applied mathematics community. FT-LA provides checksum-based
fault-tolerant algorithms, an approach that works well with standard BLAS3 kernels such as matrix-matrix
multiplication or LU/QR decomposition. The original matrices are preconditioned to generate a set of larger
matrices including redundancy data. During the computation, the checksum blocks are kept consistent with
the data touched by the algorithm by applying the same numerical operation [118, 128]. In many cases,
that means that the problem is solved with the usual algorithm, but applied on the entire matrix including
the redundant checksum blocks. Should some failures occur, the FT-MPI [124] runtime rebuilds a working
communicator and replaces the missing node with a new resource. The missing information can be rebuilt
by applying a reduction on the data set stored on surviving processes. Since the fault-tolerant algorithm
is similar to the original one, applied to a slightly larger data set, and since the recovery procedure can be
expressed with a single reduction, the overall scalability is very good. We have investigated three algorithms.
The GEMM kernel, which represents the matrix-matrix multiply, is a straightforward application of the core
idea. Since the multiplication operation is associative and commutative, the algorithm can simply be applied
to the redundant matrix. For the QR and LU factorization, the panel operation is not as simple to handle. The
panel operation is not commutative (mainly because of partial pivoting), requiring a hybrid approach that
relies on protecting the update portion of the matrix with ABFT checksum, and the final result (the output
of the panel) with a one-time, CRC-based checkpoint. After the completion of a panel, the total checksum
for the block column is computed and stored in the same memory that once was used for holding ABFT
checksums, as no further updates will be made to this data. More informations on these algorithms can be
found in the related publications [24, 25].

FTB Integration in FT-LA Based on the efforts in implementing the checksum-based fault-tolerant algo-
rithms, we also focused on defining and implementing scenarios allowing for a fault-tolerant linear algebra
library to benefit from cooperation with other components of the system. Technically, the integration of
FTB in FT-LA is divided into two parts: the event schema and the library integration. First, we defined
a generic event schema, depicting all the events generated by fault tolerant linear algebra libraries. These
include events such as the ability to recover from failures, time to completion depending on the number of
available spare resources should a failure occur, and notification of successful or unsuccessful recoveries.
Efforts have been deployed to have the event-set exported by FT-LA to interact with the job scheduler.

We defined a set of events to monitor and react proactively to the prediction of future failures, in collab-
oration with autonomics components presented in previous sections. Those events have been integrated into
the set of events handled by the FT-LA library. When a failure prediction is made for a particular node, the
FT-LA library transfers the entire resource dataset to a replacement spare node pointed to by the migration
message. This approach has several advantages compared with algorithm-agnostic proactive migration. No
checkpointing is involved, and thus no performance detrimental I/O activity. The migration is built by using

12

MPI and therefore benefits from the maximum bandwidth. Another strong benefit is that only the threatened
data are transferred, which is not the case for the classical coordinated checkpoint approach. Technically,
at the end of the current computing phase, the entire dataset of the threatened node is transferred to the
replacing process. When the migration is complete, the suspect node aborts, letting the replacement pro-
cess step in as the new current incarnation of that particular rank. The only coordination required from the
other processes is the update of their communicators. No other collective operations, computation, or data
movements are involved for non-migrating processes.

Automatic Fault Tolerance in Linear Algebra Software Recently, benchmarking the performance of su-
percomputers has become difficult. The High Performance Linpack benchmark (HPL [120]), developed at
the University of Tennessee, is the authoritative benchmark used to provide the performance data of the
Top500. In recent results, HPL has seen its runtime expanding to several tens of hours (as an example, the
runtime of then-#1 machine, Jaguar, was 17 hours), a fact that lies in the mathematical properties of the
LU matrix factorization this benchmark features. The peak flop performance is achieved for the largest of
matrix sizes and consequently the longest runtime. With HPL now being a long-running job, the probability
of a failure is high. Though one can see failures disturbing the harvest of HPL results as a defect of the
benchmark, another way of considering this fact is that the benchmark actually measures the usability of
the platform. However, a better approach would be to have a fault-tolerant HPL benchmark to measure the
effective performance achieved when factoring in the time spent dealing with the inherent unreliable nature
of large systems. In the case of the HPL benchmark, transforming the algorithm in the same way that has
been done in FT-LA is not an option. The HPL algorithm is the performance reference point, and changing
it would be extremely detrimental to the comparative and statistical value of results over the years. Conse-
quently, we investigated non-algorithmic ways of providing fault tolerance for the HPL benchmark. As a
preliminary step, we designed an automatic fault-tolerant mechanism inside Open MPI [17]. Our approach
is uncoordinated, in order to allow for nonfailed processes to continue progressing while the recovery takes
place and to minimize the checkpointing noise. Inside Open MPI, we implemented an finely tuned version of
the pessimistic sender-based message logging protocol [19]. Every non-deterministic event is recorded on a
stable node. When a failure occurs, the recovering process follows this recorded history, which enforces the
global consistency of the recovery process. The typical performance penalty of using uncoordinated mid-
dleware based recovery has been high in the past. We investigated several model and technical alterations
to address those performance issues in order to reach a level of performance compatible with the task of
evaluating the leadership class computing facilities [12, 18]. Two fronts have been pursued: (1) decreasing
the cost of recording nondeterministic events, a goal achieved by introducing a better modeling of messages
closer to the reality of zero-copy, nonblocking MPI messages and matching, and (2) by investigating differ-
ent approaches to store in-transit messages, those that the restarting processes need to receive during their
recovery.

2.4.5 Applications

Ultimately, the two primary “customers” of an infrastructure for fault awareness and coordinated re-
sponse are the applications running on HPC systems and the people operating those systems. While ap-
proaches such as math libraries with algorithm-based fault tolerance built into them provide a largely “drop-
in” approach to provide resilience to some applications, others require that more be done within the appli-
cation itself in order to provide useful fault tolerance. Work on applications in CIFTS has focused primarily
on exploring new FT-related capabilities that are enabled by a more detailed awareness of external fault
information. In this sense, we are trying to look beyond the simple checkpoint/restart (CR) capability that is
the de facto standard solution to application resilience today.

One class of application that is growing in importance scientifically is coupled multiphysics simulations,
integrating components representing several types of physics into a single simulation. One such application

13

is the Integrated Plasma Simulator (IPS), developed by the SciDAC Center for Simulation of RF Wave In-
teractions with Magneto-hydrodynamics (SWIM) fusion project. The ORNL CIFTS team collaborated with
SWIM project researchers from ORNL and IU to demonstrate how the IPS can use external fault information
to enable more intelligent responses to problems the simulation might experience and to consider the char-
acteristics of the application that enable this approach. This work was presented at the 2011 International
Conference on Computational Science [11, 98].

The IPS framework provides a whole-application checkpoint/restart capability, through which all com-
ponents in the simulation are periodically checkpointed. If just one task fails, all components must be rolled
back to the last checkpoint in order to recover and continue the simulation. A lighter-weight alternative
is “task re-execution” (TR), in which only the failed task is rerun. We believe this kind of more localized
fault recovery will be increasingly desirable as computers and applications scale out and therefore expe-
rience faults more frequently. New faults during fault recover operations are particularly challenging to
handle correctly and robustly, and localizing the recover operations is a straightforward way of reducing
those issues. Task re-execution itself is relatively straightforward but does have a disadvantage: “blind”
re-execution may waste computer resources depending on the nature of the fault. Through the CIFTS FTB,
the application can be connected to the computer system’s monitoring subsystem to gain better awareness
of what is actually going on in the system and consequently make better decisions about task re-execution.
Several simple cases illustrate the approach:

• Many faults take a node out of service. In this case, task re-execution is likely to succeed if and only
if sufficient resources are still available to launch the task.

• Out-of-memory errors or segmentation faults are examples of faults that can cause tasks to fail without
taking a node out of service. While the resources remain available, the nature of these errors is such
that TR is unlikely to succeed. In the out-of-memory case, it may be possible to adapt the application
to work around the fault by relaunching the task with fewer MPI processes per node in order to allow
more memory per process. Segmentation faults, on the other hand, are most commonly errors in the
application software that need to be addressed by a developer. In this case, promptly aborting the
simulation may be the most efficacious choice.

• Failures or severe performance degradation in I/O subsystems (due to a RAID rebuild, for example)
are examples of faults that might not immediately cause a running task to fail (until it needs to do I/O
on the failed file system). In this case, it may be desirable to preemptively kill affected tasks and (if
possible) restart them on another file system.

Besides demonstrating the concept of “intelligent” task re-execution, another important aspect of this
work is an analysis of the capabilities and (application) characteristics required to enable this kind of re-
silience:

• A hardware monitoring or “reliability, availability, and serviceability” (RAS) subsystem on the exe-
cution platform, which provides definitive information about faults occurring in the system

• The FTB, which provides a general connection between the hardware monitor (or other services) and
the application

• Services within the Integrated Plasma Simulator application framework, including

– An event service, which distributed fault events from the FTB to relevant services within the IPS

– A resource manager, which uses fault information to track the availability of computer nodes
within its allocation

14

– A task manager, which implements policies for handling faults (e.g., re-executing failed tasks)
based on configuration parameters and live fault information

– A data manager, which supports task re-execution (e.g., resetting the contents of the component’s
working directory).

• The loosely coupled nature of IPS applications greatly simplifies the implementation of TR capabil-
ities. (Each IPS task is a separate mpiexec, and data is exchanged via files.) Applications that use
MPI between tasks would require a degree of fault tolerance within the MPI implementation. Like-
wise, more tightly coupled simulations would require careful consideration to ensure that task-level
re-execution is feasible.

Relatively few current applications are built in frameworks like IPS that make it relatively easy to provide
key services to facilitate application resilience. An alternative approach is to develop a simple environment
that can wrap around an application, with little or no modification to the application itself. This approach
has recently been explored in another CIFTS activity at ORNL, which has resulted in a presentation and
publication already [90, 92], with a second paper in preparation. The focus of this work has been on pro-
viding mechanisms which are easily accessible to application users to guide the desired responses to fault
situations (“policy management”) and an examination of application “health” indicators that can easily be
extracted with little or no modification to the application and used to monitor application progress.

In this work, we have developed a Fault Coordination Framework (FCF), which integrates a policy
manager, system monitor, application monitor, and task launcher using the CIFTS FTB as the communica-
tion mechanism. We use SEC (Simple Event Correlator) for the policy manager and Ganglia for the system
monitor; the application monitor and task launcher are small, purpose-built codes. We used a molecular
dynamics (MD) application to demonstrate the operation of the framework, although the FCF is application-
independent apart from the application monitor.

The application is monitored by extracting diagnostic information from its output. For the MD appli-
cation, we extract the (wall-clock) time per simulation step, and the computed temperature and energy of
the molecular system. The user can supply policies that succinctly express conditions under which these
diagnostic values are considered anomalous (e.g., a step that takes significantly longer than the average step,
or values or changes in the temperature or energy that exceed reasonable amounts). Such conditions can
arise, for example, because of data corruption or slowing from failing system components. The applica-
tion monitor can also detect application failures for other reasons (e.g., segmentation fault or floating-point
exception), and the system monitor can likewise detect hardware faults. The user may supply policies that
trigger on any of these conditions, and dictate the desired response. Typical responses might be as simple as
restarting from the most recent healthy checkpoint, if sufficient resources are available to the job, or aborting
the simulation if not; through SEC, arbitrarily complex actions are possible by calling out to user-supplied
scripts.

Our studies illustrate the benefits of systemwide fault awareness to applications in terms of the ability to
differentiate among the many different kinds of faults that an application can experience, thereby permitting
a more targeted and therefore more effective response. Our work with the Integrated Plasma Simulator
suggests a set of services that would be necessary for application frameworks to consider providing in
order to facilitate the implementation of resilience strategies beyond checkpoint/restart. The development
of the Fault Coordination Framework suggests an alternative path, in which a similar set of services can be
provided external to the application, while still allowing straightforward user control of the identification of
and response to faults.

15

2.4.6 Resource Managers and Job Schedulers

Resource managers and job schedulers (collectively referred to as RM/JS, henceforth) , play an important
role in systemwide coordinated fault tolerance. This role is based on the fact that RM/JS software typically
has centralized information pertaining to all jobs and all users using the system, as well as all resources
in the system. Thus, resource managers and job schedulers typically are viable candidates to receive and
react to fault information. Live fault information can prove to be of immense use to RM/JS software, which
can make on-the-fly decisions about scheduling and migrating jobs based on the current resource and system
state. Live recovery information about formerly faulty but now recovered resources can allow job schedulers
and resource managers to manipulate resource pools and change job allocation characteristics to improve
the overall usability and efficiency of the system. Published information about potential migration, changed
resource allocations, or changed job allocation times can, in turn, help other software such as applications
and MPI make educated and optimal decisions at their end.

During the course of this project, we investigated two prominent resource managers and job schedulers:
SLURM and COBALT. The sections below describe our experiences and results with this software.

Experiences with SLURM SLURM [132] is a popular, open-source resource manager and job scheduler
developed by Lawrence Livermore National Laboratory. SLURM is actively managing resources on many
of the Top500 supercomputers including the Tianhe-1A supercomputer at NUDT and the Tera-100 at CEA.
SLURM is designed to support heterogeneity of resources, be portable and extensible through its use of a
sophisticated plugin system, and tolerate system failures including node failures executing its own control
functions. It continues to be actively developed to support new architectures, interconnects, authentication
mechanisms, and job scheduling policies.

We extended SLURM by adding a new notifier plugin to report events to FTB. Notifications related
to monitoring of resources, scheduling of jobs, and failure events internal to SLURM are supported. The
SLURM controller daemon (slurmctld) publishes these events to FTB through its various hooks using
the notifier plugin. FTB-aware components interested in these events thus can track resource changes,
job status, and SLURM failures. SLURM can then be controlled externally through its command-line
tools, a library interface, or an external scripting language. FTB integration of SLURM provided us an
insight into commonly occurring resource and job failures, which led to the initial efforts in FTB fault event
standardization pertaining to RM/JS.

In addition to the supported failure and status events, we plan to add support for FTB event notifications
related to resource usage and accounting, QoS parameters and overall job statistics. This information is
invaluable in improving the cost-effectiveness of the machine and making intelligent decisions about man-
agement of the available resources. With the planned addition of dynamically resizable jobs and resource
pools using hot-spares in SLURM, we intend to extend it to listen for event notifications from other FTB-
aware components to offer more tightly coupled fault tolerance.

Experiences with COBALT The COBALT [109] resource manager is an open-source resource manager
that is used on a large number of Blue Gene/L and Blue Gene/P systems, including the “Intrepid’ system
at Argonne. COBALT supports several pieces of functionality in management systems, such as scheduling,
queue management, hardware resource management, and process management [142].

FTB integration with COBALT was first demonstrated at Supercomputing 2007 [23]. This FTB-enabled
version of COBALT subscribed to MPICH2 faults events and recovery events from diagnostic engines,
analyzed those faults events, and was capable of taking reactive actions and publishing FTB events indicating
the action taken. In particular, we have demonstrated [23] how, on receiving MPICH2 communication failure
and node failure faults, COBALT could remove the faulty node from the hardware resource management
pool, thus preventing the use of the faulty nodes for further job allocations. These FTB fault events could
also be caught by diagnostic engines, which could then run diagnostic tests on the faulty node and publish

16

a recovery message via FTB, once the recovery was completed. On receiving the recovery FTB messages,
COBALT could add the node back into the resource pool. Similar functionality could be achieved when
COBALT is integrated with the fault predictor and aggregator tools (described in Section 2.4.7, [104, 105])

Further planned FTB fault event integration includes adding support in COBALT to co-relate fault mes-
sages coming from different software on the same node to a single root-cause and, using that information
to make a decision, adding FTB notification events indicating reservation time status, working with task
managers to replace faulty allocated nodes on the fly, and notifying users and administrators (with the help
of autonomic scripts) of the status (e.g., job started, job completed, allocation time exceeded, job killed) of
their jobs.

2.4.7 Autonomics for Leadership-Class Machines

The ability to analyze system event data in real time and interpreting the results for easier fault analysis,
diagnosis, and prediction forms the central piece of autonomics and is deemed indispensable as the scale and
the complexity of HEC systems increase. From the inception of the project, the CIFTS team has believed
that leveraging autonomic computing infrastructure would allow instantaneous dissemination of information
about imminent faults, thus contributing significantly to systemwide fault awareness. Noting, however, that
autonomics in leadership-class machines was still in a premature stage, the CIFTS team focused on a wide
spectrum of what could constitute autonomics in such high-end systems.

Transforming RAS Event Data to Better Understand Fault Patterns To recognize impacts and impli-
cations of faults is the first step to the fault awareness. To this end, the CIFTS team has focused on un-
derstanding system failures through analysis of reliability, availability, and serviceability (RAS) event data
generated by leadership computers such as the CRAY series or the IBM Blue Gene series. The volume and
complexity of RAS event logs have reached the point where the manual review of this data is error-prone
and inefficient. In addition, the highly irregular nature of event logs adds another dimension of ambiguity in
extracting information from the data. For these reasons, CIFTS efforts have been targeted on two efforts:

• Preprocessing log entries to extract syntactic structure of the data for fault analysis

• Sifting correlations or relationships between different RAS event types to aid fault analysis

Although RAS event logs provide a rich source of information about system status, they cannot be
directly used for analysis because of their highly unstructured and redundant nature. Despite the crucial role
of preprocessing, previously existing techniques were often ad hoc and mainly concentrated on maximizing
rates of compression. Although these techniques achieved high compression rates, they removed important
failure event patterns and their traces. Also, they did not consider the fact that a single failure may be
reported by multiple components in the system. Processing of such events often resulted in identifying
spurious patterns that often led to wrong induction.

To address the above issues, we developed a RAS event log preprocessing methodology [106] that not
only cleans the data but also extracts relevant event types and their occurrences, thus assigning syntactic
structures to the data for fault analysis and modeling. The technique is performed in three tightly coupled
steps: (1) event categorization using regular expressions, (2) spatiotemporal event filtering that considers
context of events (event start and end times, location, count, etc.), and 3) causality-driven filtering that
integrates correlated events found by association rule mining. The methodology was applied to two sets of
logs that are collected respectively from Cray XT4 at Oak Ridge National Laboratory [94] and Blue Gene/L
at San Diego Supercomputing Center. In particular, performance of most failure prediction models [27]
were found to improve by up to 174% with a compression rate of more than 90%.

In addition, our expertise built during the course of the log processing effort led us to win “The Cray
Log Analysis contest” at WASL’08 [107].

17

Tools for Context-Driven Root Cause Analysis and Anomaly Detection Events described in RAS logs
are irregular in their occurrences. Around the time of a failure, an avalanche of events is generated portray-
ing different views of the failure observed from different components. Although large, the entire set of logs
generated during the span of this period are mostly redundant leaving only a fraction of data relevant for
analysis. However, sifting such spurious events is by no means tractable without proper aid. When multiple
components are the source of a failure, the root cause is best identified by tracing a stream of highly corre-
lated events. However, such correlations are hard to capture unless temporal intervals, when the correlations
stand out, are carefully predetermined.

To address this issue, we developed a RAS event navigation tool called RAS data Analysis through
Visually Enhanced Navigation (RAVEN) [91]. RAVEN visually overlays various types of RAS events on
a physical system map. Using these, correlations between different event types, in terms of both their
counts and locations, at a given time. RAVEN was initially designed to assist users with tracing event
patterns through context-driven navigation of RAS logs. By displaying the number of occurrences of an
event type observed during a select time interval on the system map (which is the physical layout of the
system), RAVEN provides a compact and intuitive representation of event snapshots and has proved useful
in understanding faulty situations and identifying root causes of some system failures. More importantly by
superimposing the displacement of user applications on top of event snapshots, events or event patterns [29]
specific to a certain user application can be captured.

In many cases, entries in RAS logs describe events that have pairwise relations. For example, most
Lustre log messages report failed I/O attempts between object storage servers and object storage clients.
Likewise, error messages reported by the Basic End to End Reliability (BEER) protocol at the Portals layer
describe failed communication attempts between compute nodes. If unusually large numbers of these mes-
sages are concentrated on very few nodes, those nodes are almost certainly in an abnormal state. Lustre
messages viewed closely from a pairwise context may disclose problematic object storage targets. If data
is further examined with additional context, more descriptive clues can be drawn. For example, if the set
of nodes addressed by BEER messages is allocated to a single application, the fault is likely caused by the
application rather than other components in the system. User applications that are not properly tuned for the
intended scale tend to impose unforeseeable negative impacts. These typically involve excessive communi-
cation patterns between the nodes occupied by the application or ill coordinated checkpoint attempts. Such
an abnormality is difficult to detect unless log event data is analyzed by a context-driven manner. Although
RAVEN can potentially help users understand problematic situations through context-aware navigation, it
is impractical to browse through the whole duration of the application run. For this reason, it has been
suggested that the tool would bear more practical value by being able to pinpoint some time periods when
faults are most probable. To this end, we developed a framework [93] that adopts the concept of entropy
to denote time periods when either the entire system or a certain application seems to be out of its normal
behavior pattern. More specifically, entropies are measured by mapping each compute node where the event
occurs into the application occupying the node. Roughly speaking, an entropy value denotes how evenly the
occurrences of the events observed within the current time window are scattered across all user applications.
For continuous monitoring [28], entropies are measured by aggregating all events that occurred within a
time window (i.e., a time interval of fixed length that spans from the present time to a certain time in the
past). The CIFTS team is currently working with National Center for Computational Science to deploy the
framework on the Jaguar leadership computer.

IBM BG/P Fault Analysis and Prediction Engines The CIFTS framework and FTB infrastructure were
also used for gathering, understanding and analyzing failure patterns based on RAS fault event and job logs
and predicting future impending faults on the Argonne Intrepid system.

Most research on fault prediction is based on examining fault events during the observation window and
predicting whether a fatal event. In addition, most prediction research focuses solely on RAS logs found on

18

large systems. This research is not sufficient for petascale systems for the following reasons:

1. Large systems such as Intrepid have several thousands of components. Thus, predicting the “location”
of the potential fault becomes a critical requirement. The efficiency of corrective actions such as
process migration or checkpointing is heavily dependent on predicting the correct location of the
fault.

2. In addition to the location, knowing the “lead time” (i.e., time interval preceding the time of failure
occurrence) becomes important in order to ensure sufficient time to perform a proactive corrective
action such as checkpointing

3. In addition to location and lead time, it is important to understand the relationship between future
faults and their impact on actual jobs. Thus, solely analyzing RAS logs is not sufficient. A “fatal”
RAS log fault might not have any significant impact on user jobs. One needs to understand the RAS
logs in collaboration with other system logs such as the job scheduler logs.

In collaboration with the Illinois Institute of Technology, we developed a FTB-enabled fault analysis
and prediction engine for practical use on a Blue Gene/P system. The engine was designed using a genetic
algorithm [138] method. We analyzed the IBM Blue Gene/P Intrepid system logs, accumulated over eight
months, and refined well-known prediction metrics to include location/lead time metrics.

The BG/P failure analysis and fault prediction engines consist of the following components:

• Rule Analyzer engine: which is currently capable of analyzing historical events to capture the cause-
and-effect relationships between fatal events and their precursor warnings

• Fault Predictor engine: which is currently capable of actively monitoring runtime Blue Gene/P RAS
events and producing a warning when a fatal event will occur; along with the location and lead-time
information

• FTB-enabled Fault Publisher engine: which publishes fault information to the FTB system

Corrective actions could then be taken by software that is FTB-enabled and subscribed to receive this
fault information. For example, the COBALT job scheduler could receive the location of the fault and
exclude the node from further allocations. Our study showed that, using location information provided by
our model during fault prediction, we could reduce the time wasted due to unnecessary checkpointing by
25%–50%, depending on the data size being checkpointed [39, 65, 105].

The current fault analysis and prediction engine is FTB-enabled to publish information about location
and lead time. Detailed analysis of our design can be found in [105]. This work was also presented at
Supercomputing’09 [103].

Information about the impact of potential future faults is currently not FTB-enabled and is the next
logical step for this research. Details on job and RAS log co-relation can be found in [104].

IBM Blue Gene FTB-enabled RAS Event Monitor/Notifier Engines In addition to our research on pre-
processing RAS log entries for their syntactic structure and correlations, we have developed the FTB-enabled
RAS Monitor/Notifier engine [5] that will help system maintainers and administrators filter and glean cer-
tain status information (e.g., the Intrepid administrators typically monitor all RAS events with a “failure”
severity in order to determine current and potential failures) from the RAS database and be notified when
such information becomes available. The availability of such an FTB-enabled engine provides a consistent
and standard way for all administrators to get custom RAS information without having to write individual
custom scripts and tools.

The FTB-enabled RAS Monitor/Notifier engine has two significant components:

19

1. The FTB-enabled RAS Event Monitor: The FTB-enabled RAS Event Monitor continuously tracks the
RAS database on the IBM service nodes. It allows the administrator to specify a custom configuration
file detailing the RAS events that the administrator is interested in monitoring. The FTB event monitor
converts the target RAS event into FTB-compatible event and publishes it via the FTB system.

2. The FTB-enabled RAS Event Notifier: The FTB Event Notifier engine subscribes to the FTB system
to receive FTB events. The engine allows the administrator to specify custom actions against specific
RAS events and criteria; for example, the administrator can choose to be notified via SMS for crit-
ical events and via email for not-so-critical events. Thus, different administrators can specify their
individual criteria and notification mechanisms by using a single tool.

The FTB-enabled RAS Monitor and Notifier engines are generic tools that can be tailored for any
leadership-class system. The engines are split into two components to allow them to be reused on other
systems with logs other than the RAS logs. On Linux clusters, the FTB-enabled Event Monitor can be
customized to read Linux-specific log files and convert log entries to FTB events. The FTB-enabled Event
notifier will not require any modifications.

FTB-enabled Administrative Tools The FTB can be visualized as a rich repository of live fault infor-
mation, at any instant. The CIFTS team has designed a suite of tools that would be of natural use to any
administrator to glean information from the FTB. This suite of tools are packaged as a part of the FTB-0.6
software and can be downloaded from the CIFTS website or wiki [4, 5].

Some of the commonly used tools are described below:

• FTB-enabled Universal Loggers: The FTB-enabled universal loggers are stand-alone tools that sub-
scribe to every FTB event on the FTB infrastructure. These tools are useful for the administrator who
wants to track every fault event on the system. From an implementation perspective, the FTB soft-
ware currently contains two flavors of the tool: (1) a universal logger using asynchronous subscription
mechanisms of the FTB-0.6 software and (2) a universal logger using synchronous or polling-based
subscription mechanisms of the FTB-0.6 software.

• FTB-enabled Watchdog Tool The FTB-enabled watchdog tool is stand-alone software that can be
used to check the presence and working condition of the FTB infrastructure on a system. This tool
publishes events to the FTB system and waits to receive the same events from the system. Multiple
watchdogs can be used in conjunction with one another to find the overall availability of the FTB
infrastructure.

• FTB-enabled Pingpong Tool The FTB-enabled pingpong tool allows administrators to check the avail-
ability of a communication path between FTB software (and corresponding agents) on two distinct
nodes, as well as the round-trip time for FTB communication.

• FTB-enabled All-to-All Tool The FTB-enabled all-to-all tool allows administrators to check the avail-
ability of communication paths on all potential nodes running FTB-enabled software and measure its
communication performance.

FTB-enabled Syslog Software The Syslog protocol [127] has been the de facto industry standard for
logging event notification messages generated by programs. Syslog clients are bundled with almost every
operating system distribution. Nearly all monitoring services running on networked machines have plugins
that interface with Syslog. Given its prevalent usage, several data-mining and analytical tools have been
developed for recognition, aggregation, and correlation of Syslog events. It provides a logging infrastructure
commonly utilized by programs and services across the entire software stack. To leverage the pervasive
presence of Syslog, we developed a FTB-Syslog [5] software that relays event notifications between Syslog

20

and FTB. The software publishes Syslog messages of interest so that other FTB-aware components can
subscribe to them and take relevant actions. Software services that are agnostic of FTB thus indirectly act
as sources of failure event notifications to help in making holistic fault tolerance decisions. Active decisions
made by FTB components are also logged to Syslog for provenance. To filter events of interest from the
Syslog stream, we plan to investigate developing a continuous query language that can help in specifying
precise constraints and range queries on the generated events. This would help in finding surprising patterns
in the incoming data stream, establishing correlation between distinct temporal events and reducing the
overall noise in events published to FTB.

3 Outreach Efforts
The CIFTS team has been involved in various outreach efforts during the CIFTS project. Following is a

comprehensive list of all efforts:

1. The team has designed publicly accessible web resources for dissemination of CIFTS-related re-
search: (1) CIFTS web page [4] provides overall status and progress of the project, (2) the CIFTS
wiki [5] serves as a repository for all detailed documents for all aspects of CIFTS research, including
weekly/other meetings minutes, (3) the CIFTS SVN [2] serves as a repository for code development,
presentations, papers, meetings, and supporting documents, and (4) the CIFTS TRAC [3] is used for
tracking bug fixes, future features, and enhancements. Most of the information related to the project
is readily available to provide transparency and foster collaborations.

In addition, the software that has been FTB-enabled has individual project websites that have also
been used for information sharing.

2. The CIFTS team has over 100 outreach materials in various forms (see bibliography for detailed
CIFTS-related articles and talks). In particular, we have published approximately 30 publications,
presented 40 talks and 5 posters, and conducted Birds-of-a-Feather sessions and round-table discus-
sion sessions every year for the past four years at the IEEE/ACM Supercomputing conference, and
we have given more than 25 demonstrations of our research at various venues. The FTB design pa-
per [38] has been cited two dozen times and by several independent sources, in less than two years.
The community-targeted Birds-of-a-Feather sessions held at the IEEE/ACM Supercomputing confer-
ence [7–10] have been popular, with more than 50 attendees each year.

3. The CIFTS team has encouraged and fostered extensive collaboration between their internal team
as well as with external teams at other institutes. Approximately half a dozen students belonging to
CIFTS institutes and external institutes such as the Illinois Institute of Technology and North Carolina
State University have collaborated as summer interns or research assistants on various aspects of the
CIFTS framework.

4. Members of the CIFTS team have collaborated with several vendors and other research groups. Promi-
nent among them are our collaborations with the SLURM, TORQUE, FEDORA, and DEBIAN teams,
which have resulted in integrating support for FTB-enabled software such as BLCR with their soft-
ware. Equally noteworthy are our collaborations with IBM and CRAY, which have resulted in outlin-
ing clearer goals for end-to-end fault management in future systems as well as defining the new FTB
API 1.0 specification.

4 Summary and Future Extensions to CIFTS
The CIFTS team’s goals have focused on providing end-to-end fault tolerance for applications using

high-end computing systems. Work has encompassed two broad aspects: (1) fault tolerance techniques and

21

enhancements to various software components including MPI, resource managers, applications, and math
libraries and (2) coordination of fault information among various components. The team has identified many
challenges in providing such end-to-end fault tolerance and addressed many of them as demonstrated in the
large number of publications and high-quality software that has resulted from this project.

Nevertheless, the team has identified various issues and challenges that, because of time and budgetary
constraints, have not yet been addressed. Some of these challenges and future extensions to CIFTS are
described in this section.

• Authentication and security: A coordinated framework such as CIFTS allows any system software,
including user applications and libraries, access to systemwide fault information. While users can
subscribe to receive specific information about faults (e.g., fault information only from nodes where
the user job is running), nothing prohibits users from receiving all the fault information emerging
from various parts of the system. Our experiences with CIFTS show that while this gives users more
flexibility in understanding which faults impact their job, it causes a degree of concern for adminis-
trators. Administrators of supercomputing centers and leadership-class machines have traditionally
been hesitant to share systemwide fault information with users. This concern is not without reason.
Extra information, especially about faults, if provided to naive users can cause unnecessary anxiety,
resulting in extra support calls and trouble tickets—which in turn increase the burden on supercom-
puting center personnel. Dissemination of fault information to all users, especially to naive users,
also leads to concerns about the potential negative public perception of a system being unstable or
fault-prone—a situation every supercomputing center wants to avoid.

To tackle these big issues, we plan to design authentication frameworks and work on solutions that
can limit which users can subscribe to what kinds of events, originating from what parts of the system.
For example, our authentication frameworks would allow administrators to control dissemination of
RAS [126] fault information so that only a subset of fault information can be sent to other subscribers.
Apart from the technical research challenges, designing such a framework would require us to work
with administrators to understand their specific data-sharing concerns and to work with application
users to understand the minimum level of fault information necessary to make educated decisions.

• Future analysis aggregators and engines: Our runs on production systems like Argonne’s Intrepid Blue
Gene/P system and the ORNL Jaguar CRAY system showed that an immense amount of fault infor-
mation can be produced by FTB-enabled software on a system. We also noticed that fault information
emerging from a single FTB-enabled software source typically was insufficient to identify the root
cause of a problem. For example, a faulty network link problem would cause fault event to be pub-
lished by various software on all nodes connected to the faulty link. Thus, fault information would be
published by the MPI library (which would publish an MPI-specific “communication failure” fault),
by the application (which would publish a generic communication error), by the FTB-enabled Infini-
Band network monitoring library (which would publish an InfiniBand-specific error). Moreover, we
noticed that faults emerge from all levels (low hardware level, sensor level, network level) of a system.
Higher-level libraries and applications cannot be be expected to understand such low-level hardware
and raw network-specific faults.

This presence of varied fault information emerging from different sources requires the presence of
“fault aggregators and analyzers” to be able to (1) obtain systemwide fault information and root-cause
faults and (2) translate the fault information into high-level fault semantics that high-level libraries
and applications can understand and take actions for. Our work with fault analyzers and predictors
[104,105] is a step in this direction. However, research in a field like fault root-cause analysis is broad
and often system-specific, fault scenario-specific, and software-specific.

22

We anticipate a need for detailed depth of research to build such high-level fault engines and analyzers
that can present a better picture of the fault scene at hand. This research will help answer questions
of whether it is even possible to build generic fault information analyzing engines and frameworks,
and, if not, how custom fault-analyzing engines and frameworks can be designed to be scalable and
intelligent enough to adapt to new, future fault situations.

• Scalable and advanced policy management: Ideally, the goal of CIFTS would be to ensure that for
every failure situation, a set of comprehensive actions leading to recovery from the failure take place
with cooperation from all software on the system. Practical implementations of this goal, however,
face various challenges. Because failure scenarios and symptoms can vary and by out of order, it
is difficult to devise a predictable sequence of recovery actions, rules, or policies, especially when
distributed software is involved in the recovery. We have made some progress in this direction with our
work [5] on designing a generic rule/policy-management framework that can handle rules or policies
for a majority of predefined fault situations keeping into consideration all responses from interested
software on a system. Considerable research remains, however, in making the policy management
software scalable for large systems and designing a manageable system for adding rules and policies
for new fault situations.

• Experiences with production large-scale systems: Most high-end computing software can be made
robust through rigorous testing and scalability or efficiency studies. However, some fault management
software belongs to a category of software that can be fortified and made robust only when based on
real experiences on real production-scale systems. This situation is especially true for software such
as CIFTS. We currently see applications failing and can analyze failure information from logs. But
what is needed for CIFTS is a vast amount of experience in running live applications and software
on real large-scale production systems so that we can understand the order and sequence in which
the fault information is detected and received and how it flows in the environment. It is important to
test and understand through real experience the dynamics of which software is present on a runtime
system when faults are received and whether their recovery actions result in the overall stability of the
system.

However, getting prototypes on production systems of large scale can be a challenging task because
of the cost and risk involved. We have had limited success with this goal and this will be our prime
focus as a next step.

• Involvement with fault-tolerant standards in system software: Our experiences with fault tolerance
challenges in the CIFTS framework have enabled us to contribute significantly to the standardization
of fault tolerance in system software—in particular, to the MPI 3.0 Fault Tolerance Standardization
efforts. The CIFTS team will continue working on the state of fault tolerance in important software
such as the MPI programming library.

Other than the MPI library, not many other system software have well-defined fault-tolerant standards
or specifications. Fault tolerance standardization is needed in crucial system software such as job
schedulers, resource managers, applications and supporting libraries such as math libraries. The stan-
dardization of fault events through the CIFTS initiative is a step in this direction. We have had good
success with the FTB fault event standardization for MPI events [100], and we plan to work with the
job scheduler/resource manager, applications and math libraries community to standardize the same.

• Vendor support: The CIFTS project has received strong support from industry vendors such as IBM
and CRAY. The CIFTS work on Cray and IBM Blue Gene/P machines has been published, showcased,
and demonstrated at several conferences and vendor events.

23

The FTB API version 0.5 received considerable feedback from the HPC community and vendors. The
FTB API 1.0, which is under development, incorporates this feedback.

Our next goal is to get formal vendor support for CIFTS for the FTB API 1.0 specification and make
it available on all production systems.

• Broadening the CIFTS coverage: The CIFTS team consists of groups working on projects belong-
ing to the entire spectrum of high-end computing. Over the past few years, we have worked with
various external collaborators and have expanded the scope of CIFTS beyond that of the immediate
team. Our current efforts include the integration of the SLURM job scheduler/resource manager, the
Fault awareness Enabled Computing Environment (FENCE) [99] project, and autonomic tools for
leadership-class computing facilities at Argonne and ORNL.

Our next goal is to expand our collaborations and coverage to include other job schedulers, resource
managers, monitoring software, file systems, and applications.

24

5 CIFTS related Publications and Presentations
[1] Fault Tolerant - Linear Algebra. http://icl.cs.utk.edu/FT-LA.

[2] SVN for Coordinated Infrastructure for Fault Tolerant Systems. https://svn.mcs.anl.gov/
repos/cifts.

[3] TRAC for Coordinated Infrastructure for Fault Tolerant Systems. http://trac.mcs.anl.
gov/projects/cifts.

[4] WEBPAGE for Coordinated Infrastructure for Fault Tolerant Systems. http://www.mcs.anl.
gov/research/cifts/.

[5] WIKI for Coordinated Infrastructure for Fault Tolerant Systems. http://wiki.mcs.anl.gov/
cifts/index.php.

[6] A. Vishnu, A. Mamidala, S. Narravula, and D. K. Panda. Automatic Path Migration over Infini-
Band: Early Experiences. In Proceedings of Third International Workshop on System Management
Techniques, Processes, and Services, held in conjunction with IPDPS 07, 2007.

[7] P. Beckman, D. Bernholdt, D. K. Panda, P. Hargrove, A. Bouteiller, and A. Kulkarni. CIFTS : Coor-
dinated Fault Tolerance for High Performance Computing. BOF on CIFTS, in conjunction with the
ACM/IEEE International Conference for High Performance Computing(HPC), Networking, Storage
and Analysis (SC,10), November 2010.

[8] P. Beckman, D. Bernholdt, D. K. Panda, P. Hargrove, A. Bouteiller, and A. Lumsdaine. CIFTS
: Coordinated Fault Tolerance for High Performance Computing. BOF on CIFTS, in conjunction
with the ACM/IEEE International Conference for High Performance Computing(HPC), Networking,
Storage and Analysis (SC) (SC ’07), November 2007.

[9] P. Beckman, D. Bernholdt, D. K. Panda, P. Hargrove, A. Bouteiller, and A. Lumsdaine. CIFTS
: Coordinated Fault Tolerance for High Performance Computing. BOF on CIFTS, in conjunction
with the ACM/IEEE International Conference for High Performance Computing(HPC), Networking,
Storage and Analysis (SC’08), November 2008.

[10] P. Beckman, D. Bernholdt, D. K. Panda, P. Hargrove, A. Bouteiller, and A. Lumsdaine. CIFTS
: Coordinated Fault Tolerance for High Performance Computing. BOF on CIFTS, in conjunction
with the ACM/IEEE International Conference for High Performance Computing(HPC), Networking,
Storage and Analysis (SC’09), November 2009.

[11] David E. Berholdt. Strategies for Fault Tolerance in Multicomponent Applications. Poster at the
International Conference on Computational Science (ICCS’11), June 2011.

[12] George Bosilca, Aurelien Bouteiller, Thomas Herault, Pierre Lemarinier, and Jack J. Dongarra. Dodg-
ing the Cost of Unavoidable Memory Copies in Message Logging Protocols. In EuroMPI, pages
189–197, 2010.

[13] A. Bouteiller. Introducing the FTB-enabled Fault Tolerant Linear Algebra Library. Demonstration in
the Argonne National Laboratory booth at the ACM/IEEE SC’07 Conference, November 2007.

[14] A. Bouteiller. FTB-enabled Fault Tolerant Linear Algebra Library. Demonstration in the Argonne
National Laboratory booth at the ACM/IEEE SC’08 Conference, November 2008.

25

http://icl.cs.utk.edu/FT-LA
https://svn.mcs.anl.gov/repos/cifts
https://svn.mcs.anl.gov/repos/cifts
http://trac.mcs.anl.gov/projects/cifts
http://trac.mcs.anl.gov/projects/cifts
http://www.mcs.anl.gov/research/cifts/
http://www.mcs.anl.gov/research/cifts/
http://wiki.mcs.anl.gov/cifts/index.php
http://wiki.mcs.anl.gov/cifts/index.php

[15] A. Bouteiller. FTB-enabled Fault Tolerant Linear Algebra Library. Demonstration in the Argonne
National Laboratory booth at the ACM/IEEE SC’09 Conference, November 2009.

[16] A. Bouteiller. FTB-enabled Fault Tolerant Linear Algebra Library - Using Coordination to Improve
Fault Tolerance. Demonstration in the Argonne National Laboratory booth at the ACM/IEEE SC’10
Conference, November 2010.

[17] Aurelien Bouteiller, George Bosilca, and Jack Dongarra. Redesigning the Message Logging Model
for High Performance. Concurrency and Computation: Practice and Experience, 22(16):2196–2211,
2011.

[18] Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack J. Dongarra. Correlated Set Coordina-
tion in Fault Tolerant Message Logging Protocols. Lecture Notes in Computer Science, Proceedings
of the 2011 Euro-Par conference, September 2011.

[19] Aurelien Bouteiller, Thomas Ropars, George Bosilca, Christine Morin, and Jack Dongarra. Reasons
to be Pessimist or Optimist for Failure Recovery in High Performance Clusters. In Proceedings of
the 2009 IEEE Cluster Conference, Sept. 2009.

[20] Darius Buntinas. Standardized MPI FTB events in MPICH. Demonstration at the ACM/IEEE In-
ternational Conference for High Performance Computing(HPC), Networking, Storage and Analysis
(SC’10), November 2010.

[21] Darius Buntinas. Scalable Distributed Consensus to Support MPI Fault Tolerance. Poster presented
at EuroMPI conference, September 2011.

[22] Darius Buntinas. Scalable Distributed Consensus to Support MPI Fault Tolerance. Technical Report
ANL/MCS-TM-314, Argonne National Laboratory, June 2011.

[23] Darius Buntinas and Narayan Desai. FTB-enabled MPICH interaction with COBALT process man-
ager. Demonstration at the ACM/IEEE International Conference for High Performance Comput-
ing(HPC), Networking, Storage and Analysis (SC’07), November 2007.

[24] Peng Du, Aurelien Bouteiller, George Bosilca, , Thomas Herault, and Jack Dongarra. Algorithm-
based fault tolerance for dense matrix factorizations. Technical Report 253, LAPACK Working Note,
July 2011.

[25] Peng Du, Piotr Luszczek, Stanimire Tomov, and Jack Dongarra. Soft error resilient qr factorization
for hybrid system. Technical Report 252, LAPACK Working Note, July 2011.

[26] Fault Tolerance Working Group. Run-though stabilization proposal. svn.mpi-forum.org/
trac/mpi-forum-web/wiki/ft/run through stabilization.

[27] Jiexing Gu, Ziming Zheng, Zhiling Lan, John White, Eva Hocks, and Byung-Hoon Park. Dynamic
Meta-Learning for Failure Prediction in Large-Scale Systems: A Case Study. In Proceedings of the
37th International Conference on Parallel Processing, ICPP ’08, pages 157–164, Washington, DC,
USA, 2008. IEEE Computer Society.

[28] Raghul Gunasekaran, Byung H. Park, David Dillow, Galen Shipman, and Al Geist. Real-Time System
Log Monitoring/Analytics Framework. In Cray Users Group Conference, Fairbanks, Alaska, 2011.

[29] Raghul Gunasekaran, Byung H. Park, Galen Shipman, and Al Geist. Correlating Log Messages for
System Diagnostics. In Cray Users Group Conference, Edinburgh, U.K., 2010.

26

svn.mpi-forum.org/trac/mpi-forum-web/wiki/ft/run_through_stabilization
svn.mpi-forum.org/trac/mpi-forum-web/wiki/ft/run_through_stabilization

[30] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Talk in Argonne National
Laboratory booth at the IEEE/ACM International Conference for High-Performance Computing, Net-
working, Storage and Analysis (SC), November 2007.

[31] R. Gupta. Introduction to CIFTS. Talk at the CCA Forum meeting, July 2007.

[32] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Talk at the Workshop
on Fault Tolerance and Resiliency, In conjunction with Los Alamos Computer Science Symposium
(LACSS), October 2008.

[33] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Talk at the Argonne Na-
tional booth at the IEEE/ACM International Conference for High-Performance Computing, Network-
ing, Storage and Analysis (SC), November 2008.

[34] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Invited talk at University
of Chicago, April 2009.

[35] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Talk at the Argonne Lead-
ership Computing Facility (ALCF), May 2009.

[36] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Invited Talk at Fermi
National Accelerator Laboratory (Fermilab), May 2009.

[37] R. Gupta. CIFTS: Coordinated Infrastructure for Fault Tolerant Systems. Invited Talk at SIAM
Conference on Parallel Processing for Scientific Computing, February 2010.

[38] Rinku Gupta, Pete Beckman, Byung-Hoon Park, Ewing Lusk, Paul Hargrove, Al Geist, Dhabaleswar
Panda, Andrew Lumsdaine, and Jack Dongarra. CIFTS: A Coordinated Infrastructure for Fault-
Tolerant Systems. International Conference on Parallel Processing (ICPP), 0:237–245, 2009.

[39] Rinku Gupta, Harish Naik, and Pete Beckman. Understanding Checkpointing Overheads on Massive-
Scale Systems: Analysis of the IBM Blue Gene/P System. International Journal Of High Perfor-
mance Computing Applications, 25:180–192, May 2011.

[40] P. Hargrove. Berkeley Lab’s Checkpoint/Restart (BLCR). Round Table Discussion at the Lawrence
Berkeley National Laboratory (LBNL) Booth in conjunction with the ACM/IEEE International Con-
ference for High Performance Computing(HPC), Networking, Storage and Analysis (SC’07), Nov
2007.

[41] P. Hargrove. Advanced Checkpoint Fault Tolerance Solutions. Presentation at the HPC Workshop
on Trends, Technologies and Collaborative Opportunities in High Performance and Grid Computing,
June 2008.

[42] P. Hargrove. Berkeley Lab’s Checkpoint/Restart (BLCR). Round Table Discussion at the Lawrence
Berkeley National Laboratory (LBNL) Booth in conjunction with the ACM/IEEE International Con-
ference for High Performance Computing(HPC), Networking, Storage and Analysis (SC’08), Nov
2008.

[43] P. Hargrove. System-level Checkpoint/Restart with BLCR. Presentation at the Los Alamos Computer
Science Symposium (LACSS08), Oct 2008.

[44] P. Hargrove. Berkeley Lab Checkpoint/Restart (BLCR): Status and Future Plans. Dagstuhl Seminar
”Fault Tolerance in High-Performance Computing and Grids”, May 2009.

27

[45] P. Hargrove. Berkeley Lab’s Checkpoint/Restart (BLCR). Round Table Discussion at the Lawrence
Berkeley National Laboratory (LBNL) Booth in conjunction with the ACM/IEEE International Con-
ference for High Performance Computing(HPC), Networking, Storage and Analysis (SC’09), Nov
2009.

[46] P. Hargrove. System-level Checkpoint/Restart with BLCR. Presentation at the TeraGrid 2009 Fault
Tolerance Workshop, Mar 2009.

[47] P. Hargrove. Berkeley Lab’s Checkpoint/Restart (BLCR). Round Table Discussion at the Lawrence
Berkeley National Laboratory (LBNL) Booth in conjunction with the ACM/IEEE International Con-
ference for High Performance Computing(HPC), Networking, Storage and Analysis (SC’10), Nov
2010.

[48] P. Hargrove and E. Roman. Preempting Torque Jobs with BLCR. Presentation at the TORQUE Open
Source Resource Manager Road Map and three key topic workshop in conjuction with the ACM/IEEE
International Conference for High Performance Computing(HPC), Networking, Storage and Analysis
(SC ’10), Nov 2010.

[49] Joshua Hursey. Fault Tolerance in Open MPI. Presentation at the Indiana University booth at the
ACM/IEEE SC06 Conference, Tampa, FL, November 2006.

[50] Joshua Hursey. Process Fault Tolerance in Open MPI. Presentation at Innovative Computing Labo-
ratory (ICL) Friday Lunch Speaker Series, University of Tennessee, Knoxville, Feburary 2007.

[51] Joshua Hursey. Checkpoint/Restart Support in Open MPI. Presentation at Sun Microsystems, Inc.
Tech Talk Series, May 2008.

[52] Joshua Hursey. Fault Tolerance in High Performance Computing: MPI and Checkpoint/Restart.
Presentation at the Indiana University booth at the ACM/IEEE SC08 Conference, Austin, Texas,
November 2008.

[53] Joshua Hursey. A Transparent Process Migration Framework for Open MPI. Presentation at the Cisco
booth at the ACM/IEEE SC09 Conference, Portland, Oregon, November 2009.

[54] Joshua Hursey, Richard Graham, Greg Bronevetsky, Darius Buntinas, Howard Pritchard, and David
Solt. Run-Through Stabilization: An MPI Proposal for Process Fault Tolerance. Poster presented at
EuroMPI conference, September 2011.

[55] Joshua Hursey, Chris January, Mark O’Connor, Paul H. Hargrove, David Lecomber, Jeffre
y M. Squyres, and Andrew Lumsdaine. Checkpoint/Restart-Enabled Parallel Debugging. Proceed-
ings of the European MPI Users Group Conference (EuroMPI), September 2010.

[56] Joshua Hursey, Timothy I. Mattox, and Andrew Lumsdaine. Interconnect Agnostic Check-
point/Restart in Open MPI. In HPDC ’09: Proceedings of the 18th ACM international symposium on
High Performance Distributed Computing, pages 49–58, New York, NY, USA, 2009. ACM.

[57] Joshua Hursey, Jeffrey M. Squyres, Abhishek Kulkarni, and Andrew Lumsdaine. Open MPI Tutorial.
Presentation at the Indiana University booth at the ACM/IEEE SC09 Conference, Portland, Oregon,
November 2009.

[58] Joshua Hursey, Jeffrey M. Squyres, and Andrew Lumsdaine. A Checkpoint and Restart Service
Specification for Open MPI. Technical Report TR635, Indiana University, Bloomington, Indiana,
USA, July 2006.

28

[59] Joshua Hursey, Jeffrey M. Squyres, Timothy I. Mattox, and Andrew Lumsdaine. The Design and
Implementation of Checkpoint/Restart Process Fault Tolerance for Open MPI. In Proceedings of the
21st IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 1 – 8. IEEE
Computer Society, March 2007.

[60] M. Koop, P. Shamis, I. Rabinovitz, and D. K. Panda. Designing High-Performance and Resilient
Message Passing on InfiniBand. In Proceedings of International Workshop on Communication Ar-
chitecture for Clusters (CAC 10), 2010.

[61] Abhishek Kulkarni. Process Resilience in Open MPI using the CIFTS Fault Tolerance Backplane: A
POV-Ray Demonstration. Presentation at the Argonne National Laboratory booth at the ACM/IEEE
SC09 Conference, Portland, Oregon, November 2009.

[62] Abhishek Kulkarni. Fault Tolerance in Open MPI using the FTB. Presentation at the Argonne
National Laboratory booth at the ACM/IEEE SC10 Conference, New Orleans, Louisiana, November
2010.

[63] Timothy I. Mattox. MPI Is Dead? Long Live MPI! Evolving MPI for the Next Generation of Su-
percomputing. Presentations at the Cisco and Indiana University booths at the ACM/IEEE SC07
Conference, Reno, Nevada, November 2007.

[64] Timothy I. Mattox. Research at Indiana University for Reliable Petascale Performance. Presentation
at the Indiana University booth at the ACM/IEEE SC08 Conference, Austin, Texas, November 2008.

[65] Harish Gapanati Naik, Rinku Gupta, and Pete Beckman. Analyzing Checkpointing Trends for Ap-
plications on the IBM Blue Gene/P System. In Proceedings of the 2009 International Conference
on Parallel Processing Workshops, ICPPW ’09, pages 81–88, Washington, DC, USA, 2009. IEEE
Computer Society.

[66] Network-Based Computing Laboratory. WEBPAGE for FTB-IB Project. http://nowlab.cse.
ohio-state.edu/projects/ftb-ib/#FTB-IB.

[67] Network-Based Computing Laboratory. WEBPAGE for FTB-IPMI Project. http://nowlab.
cse.ohio-state.edu/projects/ftb-ib/#FTB-IPMI.

[68] X. Ouyang. Coordinated Checkpoint/Restart support in MVAPICH2: A demonstration with the
NASA Parallel Benchmark Suite. Demonstration in the Argonne National Laboratory booth at the
ACM/IEEE SC09 Conference, November 2009.

[69] X. Ouyang. Proactive Fault-Resilience with Process Migration in MVAPICH2: A demonstration
with Tachyon. Demonstration in the Argonne National Laboratory booth at the ACM/IEEE SC10
Conference, November 2010.

[70] X. Ouyang, K. Gopalakrishnan, T. Gangadharappa, and D. K. Panda. Fast Checkpointing by Write
Aggregation with Dynamic Buffer and Interleaving on Multicore Architecture. In Proceedings of
International Symposium on High Performance Computing (HiPC), 2009.

[71] X. Ouyang, K. Gopalakrishnan, and D. K. Panda. Accelerating Checkpoint Operation by Node-Level
Write Aggregation in Multicore Systems. In Proceedings of International Conference on Parallel
Processing (ICPP), 2009.

29

http://nowlab.cse.ohio-state.edu/projects/ftb-ib/#FTB-IB
http://nowlab.cse.ohio-state.edu/projects/ftb-ib/#FTB-IB
http://nowlab.cse.ohio-state.edu/projects/ftb-ib/#FTB-IPMI
http://nowlab.cse.ohio-state.edu/projects/ftb-ib/#FTB-IPMI

[72] X. Ouyang, S. Marcarelli, and D. K. Panda. Enhancing Checkpoint Performance with Staging IO and
SSD. In Proceedings of International Workshop on Storage Network Architecture and Parallel I/Os
(SNAPI), 2010.

[73] D. K. Panda. Handling Reliability at the MPI layer. BOF on Reliability of High-Speed Networks, in
conjunction with the ACM/IEEE International Conference for High Performance Computing(HPC),
Networking, Storage and Analysis (SC’07), November 2007.

[74] D. K. Panda. Fault-Tolerant/System-Management Issues in InfiniBand. Keynote Talk at the Interna-
tional Workshop on System Management Techniques, Processes and Services (SMPTS), April 2008.

[75] D. K. Panda. Designing Fault Resilient and Fault Tolerant Systems with InfiniBand. Presentation at
the HPC Resiliency Workshop, October 2009.

[76] D. K. Panda. High Performance, Scalable and Fault-Tolerant MPI over InfiniBand: An Overview of
MVAPICH/MVAPICH2 Project. Presentation at Tsukuba University, Japan, October 2009.

[77] D. K. Panda. Supporting Fault-Tolerance in Modern High-End Computing Systems with InfiniBand.
Seminar on Fault-Tolerance in High Performance Computing, Dagstuhl, Germany, May 2009.

[78] D. K. Panda. Designing Fault Resilient and Fault Tolerant Systems with InfiniBand. Presentation at
the SIAM Conference on Parallel Computing, February 2010.

[79] D. K. Panda. Designing High Performance, Scalable and Fault-Resilient MPI Library for Modern
Clusters. Presentation at the Institue of Computing Technology (ICT), Chinese Academy of Sciences,
October 2010.

[80] D. K. Panda. Designing High Performance, Scalable and Fault-Resilient MPI Library for Modern
Clusters. Presentation at the Pacific Northwest National Library (PNNL), February 2010.

[81] D. K. Panda. InfiniBand Software Networking Technologies. Presentation at the Discovery 2015
Workshop, Oak Ridge National Laboratory, July 2010.

[82] D. K. Panda. Networking Technologies for Clusters: Where do We Stand and What Lies Ahead?
Keynote Talk at the International Conference on Parallel and Distributed Systems (ICPADS ’10),
December 2010.

[83] D. K. Panda. Networking Technologies for Exascale Computing Systems: Opportunities and Chal-
lenges. Keynote Talk at the HPC China Conference, October 2010.

[84] D. K. Panda and P. Balaji. Designing High-End Computing Systems with InfiniBand and 10-Gigabit
Ethernet. Presentation at the International Supercomputing Conference (ISC), May 2010.

[85] D. K. Panda, P. Balaji, and M. Koop. Designing High-End Computing Systems with InfiniBand and
10-Gigabit Ethernet. Presentation at the International Conference on the ACM/IEEE International
Conference for High Performance Computing(HPC), Networking, Storage and Analysis (SC’09),
November 2009.

[86] D. K. Panda, P. Balaji, and S. Sur. Designing High-End Computing Systems with InfiniBand and
High-Speed Ethernet. Presentation at the International Conference on the ACM/IEEE International
Conference for High Performance Computing(HPC), Networking, Storage and Analysis (SC’10),
November 2010.

30

[87] D. K. Panda and S. Sur. Designing High Performance, Scalable and Fault-Resilient MPI Library
for Modern Cluster. Presentation at the Ohio Supercomputer Center Booth, at the ACM/IEEE In-
ternational Conference for High Performance Computing(HPC), Networking, Storage and Analysis
(SC’10), November 2010.

[88] D. K. Panda and S. Sur. Designing High-End Computing Systems with InfiniBand and High-Speed
Ethernet. Presentation at the International Supercomputing Conference (ISC ’11), June 2011.

[89] D. K. Panda, A. Vishnu, and K. Gopalkrishnan. Designing Fault Resilient and Fault Tolerant Systems
with InfiniBand. Invited Poster Presentation at 2009 National Workshop on Resiliency, August 2009.

[90] Byung H. Park. Realization of User-Level Fault Tolerance Policy Management through a Holistic
Approach for Fault Correlation. Talk at the IEEE International Symposium on Policies for Distributed
Systems and Networks (POLICY), 2011, June 2011.

[91] Byung H. Park, Junseong Heo, Kora Guruprasad, and Al Geist. RAVEN: RAS data Analysis through
Visually Enhanced Navigation. In Cray Users Group Conference, Edinburgh, U.K., 2010.

[92] Byung H. Park, Thomas J. Naughton, Pratul Agarwal, David Bernholdt, Al Geist, and Jennifer L.
Tippens. Realization of User-Level Fault Tolerance Policy Management through a Holistic Approach
for Fault Correlation. In IEEE International Symposium on Policies for Distributed Systems and
Networks (POLICY’11), June 2011.

[93] Byung H. Park, Thomas J. Naughton, Al Geist, Raghul Gunasekaran, David Dillow, and Galen Ship-
man. User Application Monitoring through Assessment of Abnormal Behavior Recorded in RAS
Logs. In Cray Users Group Conference, Fairbanks, Alaska, 2011.

[94] Byung H. Park, Z. Zheng, Z. Lan, and A. Geist. Analyzing Failure Events on ORNL’s Cray XT4.
In Poster at the ACM/IEEE International Conference for High Performance Computing(HPC), Net-
working, Storage and Analysis (SC), 2008.

[95] Qi Gao, Weikuan Yu, Wei Huang, and D. K. Panda. Application-transparent Checkpoint/Restart for
MPI Programs over Infiniband. In Proceedings of International Conference on Parallel Processing
(ICPP), 2007.

[96] Qi Gao, Weikuan Yu, Wei Huang, and D. K. Panda. Group-based Coordinated Checkpointing for
MPI: A Case Study on InfiniBand. In Proceedings of International Conference on Parallel Processing
(ICPP), 2007.

[97] E. Roman. Berkeley Lab’s Checkpoint/Restart (BLCR). Presentation at the Discovery 2011: HPC
and Cloud Computing Workshop, Jun 2011.

[98] Aniruddha G. Shet, Wael Elwasif, Samantha S. Foley, Byung H. Park, David E. Bernholdt, and
Randall Bramley. Strategies for Fault Tolerance in Multicomponent Applications. Procedia Computer
Science, 4:2287–2296, June 2011. Proceedings of the International Conference on Computational
Science, ICCS 2011.

[99] X. Sun, Z. Lan, Y. Li, H. Jin, and Z. Zheng. Towards a Fault-Aware Computing Environment. In
Proceedings of High Availability and Performance Computing Workshop, HAPCW, 2008.

[100] The CIFTS Team. FTB MPI standardized events version 1.0: http://www.mcs.anl.gov/research/cifts/.
http://www.mcs.anl.gov/research/cifts/, November 2010.

31

http://www.mcs.anl.gov/research/cifts/

[101] X. Ouyang, R. Rajachandrasekar, X. Besseron, D. K. Panda. High Performance Pipelined Process
Migration with RDMA. In Proceedings of CCGrid 2011, 2011.

[102] X. Ouyang, S. Marcarelli, R. Rajachandrasekar and D. K. Panda. RDMA-Based Job Migration
Framework for MPI over InfiniBand. In Proceedings of Cluser 2010, 2010.

[103] Z. Zheng, R. Gupta, Z Lan, and S. Coghlan. FTB-Enabled Failure Prediction for Blue Gene/P Sys-
tems. Poster at the ACM/IEEE International Conference for High Performance Computing(HPC),
Networking, Storage and Analysis (SC’09), Nov 2009.

[104] Z. Zheng, L. Yu, W. Tang, Z. Lan, R. Gupta, N. Desai, S. Coghlan, and D. Buettner. Co-Analysis of
RAS Log and Job Log on Blue Gene/P. In Proceedings of the 2011 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), IPDPS ’11. IEEE Computer Society, 2011.

[105] Ziming Zheng, Zhiling Lan, Rinku Gupta, Susan Coghlan, and Peter Beckman. A Practical Failure
Prediction with Location and Lead time for Blue Gene/P. In Proceedings of the 2010 International
Conference on Dependable Systems and Networks Workshops (DSN-W), DSNW ’10, pages 15–22,
Washington, DC, USA, 2010. IEEE Computer Society.

[106] Ziming Zheng, Zhiling Lan, Byung-Hoon Park, and Al Geist. System Log Pre-processing to Improve
Failure Prediction. In Dependable Systems and Networks (DSN), pages 572–577, 2009.

[107] Ziming Zheng, Byung H. Park, and Zhiling Lan et al. Winner of the ”The Cray Log Analysis Contest”.
First USENIX Workshop on the Analysis of System Logs (WASL’08), held in conjuction with the
8th USENIX Symposium on OperatingSystems Design and Implementation (OSDI’08), December
2008.

6 Other Literature Cited
[108] Advanced Message Queuing Protocol. http://www.amqp.org/.

[109] Cobalt job management suite. http://trac.mcs.anl.gov/projects/cobalt.

[110] GNU FreeIPMI. http://www.gnu.org/software/freeipmi/index.html.

[111] Intelligent Platform Management Interface. http://www.intel.com/design/servers/
ipmi/.

[112] Open Source AMQP Messaging. http://qpid.apache.org/.

[113] OpenSAF: The Open Service Availability Framework. http://www.opensaf.org.

[114] SLURM: A Highly Scalable Resource Manager. https://computing.llnl.gov/linux/
slurm/.

[115] The Service Availability Forum (SAF)Application Interface Specification. http://www.
saforum.org.

[116] Top 500 Supercomputer Sites. http://www.top500.org/.

[117] Argonne National Laboratory. MPICH2 . http://www.mcs.anl.gov/research/
projects/mpich2/.

32

http://www.amqp.org/
http://trac.mcs.anl.gov/projects/cobalt
http://www.gnu.org/software/freeipmi/index.html
http://www.intel.com/design/servers/ipmi/
http://www.intel.com/design/servers/ipmi/
http://qpid.apache.org/
http://www.opensaf.org
https://computing.llnl.gov/linux/slurm/
https://computing.llnl.gov/linux/slurm/
http://www.saforum.org
http://www.saforum.org
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/

[118] Zizhong Chen, Graham E. Fagg, Edgar Gabriel, Julien Langou, Thara Angskun, George Bosilca,
and Jack Dongarra. Fault Tolerant High Performance Computing by a Coding Approach. In PPoPP
’05: Proceedings of the tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 213–223, New York, NY, USA, 2005. ACM Press.

[119] Flavin Cristian. Understanding Fault-tolerant Distributed Systems. ACM Communications, 34:56–78,
February 1991.

[120] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark: Past, Present and Future.
Concurrency Computat.: Pract. Exper., 15(9):803–820, 2003. DOI: 10.1002/cpe.728.

[121] Wael R. Elwasif, David E. Bernholdt, Aniruddha G. Shet, Samantha S. Foley, Randall Bramley,
Donald B. Batchelor, and Lee A. Berry. The Design and Implementation of the SWIM Integrated
Plasma Simulator. Euromicro Conference on Parallel, Distributed, and Network-Based Processing,
0:419–427, 2010.

[122] Alan Fedoruk and Ralph Deters. Improving Fault-Tolerance by Replicating Agents. In Proceedings
of the First International Joint Conference on Autonomous agents and Multiagent systems: part 2,
AAMAS ’02, pages 737–744, New York, NY, USA, 2002. ACM.

[123] Future Technologies Group (FTG). Berkeley Lab Checkpoint/Restart (BLCR). http://
ftg.lbl.gov/checkpoint/.

[124] G. Fagg and J. Dongarra. FT-MPI : Fault Tolerant MPI, Supporting Dynamic Applications in a Dy-
namic World. In 7th Euro PVM/MPI User’s Group Meeting2000, volume 1908 / 2000, Balatonfred,
Hungary, september 2000. Springer-Verlag Heidelberg.

[125] Edgar Gabriel, Graham Fagg, George Bosilca, Thara Angskun, Jack Dongarra, Jeffrey Squyres,
Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph Castain, David
Daniel, Richard Graham, and Timothy Woodall. Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In Recent Advances in Parallel Virtual Machine and Message Pass-
ing Interface, volume 3241 of Lecture Notes in Computer Science, pages 353–377, 2004.

[126] Gara, A. and Blumrich, M. A. and Chen, D. and Chiu, G. L.-T. and Coteus, P. and Giampapa, M. E.
and Haring, R. A. and Heidelberger, P. and Hoenicke, D. and Kopcsay, G. V. and Liebsch, T. A. and
Ohmacht, M. and Steinmacher-Burow, B. D. and Takken, T. and Vranas, P. Overview of the Blue
Gene/L system architecture. IBM Journal of Research and Development, 49(2.3):195 –212, march
2005.

[127] R. Gerhards. The Syslog Protocol. RFC 5424 (Proposed Standard), March 2009.

[128] Graham Fagg and Edgar Gabriel and Zizhong Chen and Thara Angskun and George Bosilca and
Antonin Bukovsky and Jack Dongarra. Fault Tolerant Communication Library and Applications
for High Performance Computing. Santa Fe, NM, 2003. Proceedings of the Los Alamos Computer
Science Institute Symposium.

[129] William Gropp. MPICH2: A New Start for MPI Implementations. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, volume 2474 of Lecture Notes in Computer Science,
pages 37–42, 2002.

[130] R. Guerraoui and A. Schiper. Software-based Replication for Fault Tolerance. Computer, 30(4):68
–74, apr 1997.

33

http://dx.doi.org/10.1002/cpe.728

[131] J. Choi and Jack J. Dongarra and Susan Ostrouchov and Antoine Petitet and David W. Walker and R.
Clint Whaley. The Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factor-
ization Routines. Scientific Programming, 5:173–184, 1996.

[132] Morris A. Jette, Andy B. Yoo, and Mark Grondona. Slurm: Simple linux utility for resource man-
agement. In In Lecture Notes in Computer Science: Proceedings of Job Scheduling Strategies for
Parallel Processing (JSSPP) 2003, pages 44–60. Springer-Verlag, 2002.

[133] Jiuxing Liu, Weihang Jiang, Pete Wyckoff, Dhabaleswar K. Panda, David Ashton, Darius Buntinas,
William Gropp, and Brian Toonen. Design and Implementation of MPICH2 over InfiniBand with
RDMA Support. International Parallel and Distributed Processing Symposium, 1:16b, 2004.

[134] Network-Based Computing Laboratory. MVAPICH/MVAPICH2: MPI-1/MPI-2 for InfiniBand and
iWARP with OpenFabrics. http://mvapich.cse.ohio-state.edu.

[135] Open MPI Group. Open MPI: Open Source High Performance Computing. http://www.
open-mpi.org.

[136] OpenFabrics Alliance (OFA). OpenFabrics Enterprise Distribution (OFED).
http://www.openfabrics.org.

[137] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays of Inexpensive
Disks (RAID). In Proceedings of the 1988 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’88, pages 109–116, New York, NY, USA, 1988. ACM.

[138] M. Saggar, A.K. Agrawal, and A. Lad. Optimization of Association Rule Mining using Improved
Genetic Algorithms. In IEEE International Conference on Systems, Man and Cybernetics, volume 4,
pages 3725 – 3729 vol.4, oct. 2004.

[139] D.P. Siewiorek. iFault Tolerance in Commercial Computers. Computer, 23(7):26 –37, jul 1990.

[140] John Stone. An Efficient Library for Parallel Ray Tracing and Animation. In In Proceedings of the
Intel Supercomputer Users Group, 1995.

[141] S. Vinoski. Advanced Message Queuing Protocol. IEEE nternet Computing, 10(6):87 –89, 2006.

[142] W. Tang. Improving Job Scheduling on Large Scale High Performance Computing Systems. In Final
Report for Starr Research Fellowship 2009, 2009.

[143] Andy Yoo, Morris Jette, and Mark Grondona. SLURM: Simple Linux Utility for Resource Man-
agement. In Job Scheduling Strategies for Parallel Processing, volume 2862 of Lecture Notes in
Computer Science, pages 44–60, 2003.

34

http://www.open-mpi.org
http://www.open-mpi.org

	Research Summary
	Motivation
	Research Approach
	Accomplishment Highlights

	Technical Approach and Research Accomplishments
	The FTB API Specification
	The FTB software - The CIFTS FTB API Implementation
	Other FTB API Implementations
	Improving Fault Tolerance in Software Components
	The Message Passing Interface Libraries
	Checkpoint/Restart Library
	Network and Hardware Monitoring
	Math Libraries
	Applications
	Resource Managers and Job Schedulers
	Autonomics for Leadership-Class Machines

	Outreach Efforts
	Summary and Future Extensions to CIFTS
	CIFTS related Publications and Presentations
	Other Literature Cited

