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Abstract15

We use a particle-tracking model to simulate several one-dimensional bi-16

molecular reactive transport experiments. In this numerical method, the17

reactants are represented by particles; advection and dispersion dominate18

the flow of particles, and molecular diffusion dictates, in large part, the re-19

actions. The reactions are determined by the probability that reactant par-20

ticles occupy the same volume over a short time interval, which is dictated21

by diffusion and leads to significant, mixing-limited reaction rates. The nu-22

merical model is based on the calculated probabilities of particle collisions,23

and as such lacks empirical parameters except for the user-defined number24

of particles. This number is theoretically tied to the concentration statistics25

and can be estimated if information about concentration autocovariance is26

gathered in an experiment. The simulations compare favorably to two phys-27

ical experiments. In one, the product concentrations were measured at the28

end of a column at different times (the breakthrough curve); the other mea-29
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sured the distribution of reactants and products within a translucent column30

(snapshots). In addition, one experiment used reactants with a well-mixed31

thermodynamic rate coefficient 107 times greater than the other. The higher32

rate can be considered an essentially instantaneous reaction. When com-33

pared to the solution of the classical advection-dispersion-reaction equation34

with the well-mixed reaction coefficient, the experiments (and the particle-35

tracking simulations) showed on the order of 20% to 40% slower reaction36

attributed to poor mixing. In addition to model performance, the advantage37

of the Lagrangian model in this study is the lack of empirical parameters or38

assumptions.39

Keywords: Lagrangian Particle Method, Chemical Reactions40

PACS: 02.50.Ey, 02.50.Ga, 02.70.Ns, 05.10.Gg41

1. Introduction42

Reactive transport in porous media takes place in a range of environmen-43

tal processes, such as water chemistry evolution [1, 2] and chemical/biochemical44

remediation of contaminated groundwater [3, 4, 5, 6, 7]. However, the spread-45

ing and reaction of reactive species as they migrate in the porous media is not46

only difficult to measure [8, 9, 10, 11, 12, 6], but simulations across a range47

of scales, from pore scale to field scale (e.g., [8, 13, 14, 15, 2, 16]), reveal that48

the overall reaction rate is subject to a scale effect [13, 17, 7, 18]. An un-49

derstanding developed through experimental observations (e.g., [3, 4]) that50

incomplete mixing leads to reduced reaction rates or even different governing51

differential equations at larger scales [19, 20, 21]. Different conceptual models52

have been proposed to characterize reactive transport process [22, 6, 10, 23],53

and a variety of laboratory experiments (e.g.,[3, 4, 16]) and field-scale stud-54

ies (e.g., [24, 25, 26, 27, 28]) have been conducted in order to either test55

the validity of existing models or to obtain effective parameters for practical56

problems, like groundwater remediation modeling.57

One common approach to simulate Fickian transport and reaction in58

porous media is using the advection-dispersion-reaction equation (ADRE)59

∂Ci/∂t = −∇ · (uCi −D∇Ci)− ri (1)

where Ci(x, t) is a deterministic concentration, u(x, t) is the Darcy scale60

pore water velocity, D(x, t) is the hydrodynamic dispersion tensor most com-61

monly modeled as linear with velocity magnitude, and ri(x, t, C1, C2, ...) is62
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the reaction rate of species i. The reaction rate, a crucial term in ADRE,63

is commonly estimated from batch tests under perfect mixing conditions of64

the same reaction [3, 19, 18, 29, 30, 7]. When this reaction rate is used in65

(1) to predict miscible displacement and reaction in column- and field-scale66

tests, the true reaction rate is typically overestimated by significant amounts67

[19, 21, 31, 14]. This points to several deficiencies of the ADRE, including68

these (not mutually exclusive) factors: i) the deterministic concentration ne-69

glects small-scale fluctuations [3, 4, 29, 32]; ii) the reactants are assumed to70

be well-mixed, which is unusual under natural conditions [19, 32, 23], and71

iii) the dispersion term is forced to account for both the spreading and the72

dilution, or mixing, of the species [33, 34].73

In real and synthetic tests, the spreading rate can surpass the mixing74

rate [14, 35, 36, 37, 38, 39]. Cirpka and Kitanidis [33] and Cirpka et al.75

[40, 41] point out that the bulk of actual mixing is often limited to transverse76

dispersion and diffusion, which is orders of magnitude lower than longitudinal77

dispersion.78

In practical applications, to account for the over-estimated reaction in79

ADRE, a constant (< 1), called the effective reaction coefficient, is com-80

monly applied to the reaction rate [4, 29, 19, 42]. Unfortunately, the co-81

efficient value is difficult to determine and varies from case to case (and82

scale to scale) [19, 30]. In a series of numerical and laboratory experiments83

using simple bimolecular reactions (A + B → C), Kapoor et al. [30] first84

showed numerically that incomplete mixing following Taylor dispersion in a85

single tube would have suppressed reaction rates. Raje and Kapoor [3] con-86

structed a glass beads-filled column and showed that the reactant product87

was approximately 40% less in the column than what was predicted by (1) in88

one-dimension (1D). Gramling et al. [4] also ran column experiments under89

different velocities. All of Gramling et al.’s experiments were similar, with90

overall product production of approximately 20% less in the column than91

predicted by (1). Because the reaction suppression was independent of ve-92

locity, one can infer that the dispersion term was not correctly accounting for93

mixing. The mixing deficiency was a property of the scale and the medium,94

but not hydrodynamic dispersion. Another salient point that may be gleaned95

from these studies is the effect of dimensions on simulation. The projection96

of concentrations in 3D to fewer dimensions has the effect of averaging the97

perturbations that may arise from “fingers” of preferential fast flow and/or98

pockets of slow flow that maintain highly unmixed conditions. Using lower99

dimensions (which may be required for computational efficiency; or may in-100
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deed be the only information available from a field scale tracer test) transfers101

this information into smoothed average concentrations and a higher effective102

dispersion coefficient, but does not translate into the well-mixed reactions103

implied by these two effects. Similarly, Cao and Kitanidis [43] indicated that104

the solute is never fully mixed at the fringes of a plume even after large105

diffusion times.106

These observations require alternative methods to separately account for107

mixing, reaction, and transport [44, 31, 18]. One approach is a Lagrangian108

particle tracking (PT) method. The PT method simulates chemical reactions109

through probabilistic rules of particle collisions, interactions, and transfor-110

mations [1, 20, 45]. The general Lagrangian framework has given rise to111

several algorithms that represent smaller-scale physics in different ways. For112

example, the smoothed particle hydrodynamics method simulates any given113

PDE on moving particles that serve as basis functions instead of on a fixed114

finite difference or finite element grid. [46, 9, 31]. Because the basis particles115

follow velocity characteristic curves, they honor the velocity fields that can116

engender poor mixing. The core of the method, however, is the assumption117

that, at some smaller scale, the chosen PDE for reaction is the correct one.118

Another Lagrangian model makes no assumption about the form of the119

governing equation for reaction. Instead, Benson and Meerschaert [20] cal-120

culate the probability that any two particles will be co-located in any time121

interval. This probability is given by the small-scale transport physics, mean-122

ing that any transport mechanism (e.g., Fickian, continuous time random123

walks, telegrapher equation) is allowed. This probability is combined with124

the probability that two particles, upon co-location, will react: this second125

probability is the well-mixed reaction rate scaled appropriately by the num-126

ber of particles. Our method is an extension of the Gillespie [47] method,127

which uses a well-mixed assumption to calculate the probability of particle128

co-location. After calculating the total reaction probability, each particle pair129

is allowed to react by comparison with a randomly drawn number. Under130

certain test cases, the behavior of this model can transition between well-131

mixed and diffusion-limited reactions, and corresponds, upon upscaling, to a132

different transport and reaction equation [48].133

Another approach proposed by Edery et el. [1] simulates particle motion134

within a continuous time random walk (CTRW) framework. The anoma-135

lous components of transport and reaction are ascribed to the non-Fickian136

aspects of motion that would be shared by a conservative tracer. To simu-137

late reactions, those authors define a key parameter, called the “prescribed138
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effective reaction radius,” which is used to determine whether a reaction be-139

tween particles will happen or not. We shall denote this parameter RE. If140

particles are within the RE, they will react; otherwise, no reaction occurs141

[1, 32]. This radius, like the effective reaction coefficient in the ADRE, is not142

easy to determine, or it is arbitrary to some degree [23]. Within this radius,143

all particle pairs have the same probability of reaction, losing some of the144

physical reality that closer pairs are more likely, but not destined to react.145

Edery et al. [1] simulated the experiment profile concentrations from [4] and146

showed that their simulations match experiments well by using 0.5 cm for147

RE, but this value does not work well to match the experiment results from148

[3].149

Other approaches (models) have also been proposed, such as fractional150

ADEs [49, 21, 50, 51], time dependent reaction rate coefficients [2, 52], per-151

turbation models [29], and multi-rate mass transfer [53, 54, 15]. These models152

can be calibrated to simulate the reactive transport successfully by reproduc-153

ing anomalous flux-averaged breakthrough curves [5, 23]. Edery et al. [32]154

noted that both the Fickian form of their method and the time-dependent155

reaction method cannot match the tails of the spatial concentration profiles156

of experiments. To characterize the tail edges of the product plume, some157

assumptions have been made about the transport process, such as space158

and/or time-fractional-order PDEs and tempered superdiffusion and subdif-159

fusion terms added to the RE method [51]. Edery et al. [11, 32] emphasized160

the advantage of truncated power law (TPL) - PT, which makes particles161

essentially motionless for extended periods of time. On the whole, as indi-162

cated by Tartakovsky et al. [23], these approaches require additional effective163

parameters, which can only be obtained from calibration with experimental164

data. In this study, we test the assumption that the bulk of the experimental165

observations can be explained by the application of simple, physically-based166

rules of transport and reaction within a Lagrangian framework.167

Therefore, in this study, we simulate bimolecular reactive transport using168

the PT method from Benson and Meerschaert [20] without making additional169

assumptions or implementing complex numerical techniques. Advection and170

Fickian hydrodynamic dispersion dominate the transport of particles through171

the glass beads, and as they move, molecular diffusion dictates their reaction.172

The reaction probability purely depends on the thermodynamic rate of the173

chemical reaction and the distribution of particles in both space and time.174

An advantage of this simulation method is that no extra parameters (e.g.,175

effective reaction coefficient, reaction radius) are needed. Another novel as-176
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pect of the technique is the inclusion of the KD-tree algorithm (see Bentley177

[55]) that greatly increases the computational efficiency of this Lagrangian178

reaction methods when analyzing potential reaction pairs.179

2. Summary of Column Experiments180

Because of their physical and chemical simplicity (which allows an exam-181

ination of the interplay of transport and reaction), we consider the experi-182

ments conducted by Raje and Kapoor [3] and Gramling et al. [4], who con-183

ducted experiments on transport of bimolecular reaction through columns.184

These data have been widely used to test models are widely regarded as185

benchmarks of reactive transport in porous media [11, 32, 52, 51]. Raje and186

Kapoor [3] used a spectrophotometer to obtain the outflow concentrations187

of product from the transport and reaction of 1,2-naphthoquinone-4-sulfonic188

acid (NQS) and aniline (AN) in a column filled with glass beads. Their re-189

sults were presented as breakthrough curves (BTC) of reaction product from190

the end of the column. Gramling et al. [4] took images of colorimetric re-191

action between aqueous CuSO4 and EDTA4− within a translucent chamber192

packed with cryloite sand to observe the concentration distribution of reac-193

tion product within the column at different locations. The setup of these194

experiments were similar. Peclet numbers of both experiments were high but195

Reynolds numbers were sufficiently low to ensure laminar flow; dispersion196

was estimated to dominate over diffusion in spreading of the reactant fronts.197

The transport and reaction domains were quasi one-dimensional and initially198

saturated with one species. At t = 0, the other reactant was introduced at199

the inlet with constant concentration and injection rate.200

Before performing the column experiments, reaction rate constants were201

obtained with high degrees of confidence from well-mixed batch experiments;202

dispersion and diffusion coefficients were also determined with high confi-203

dence from non-reactive tracer tests. The parameters from the two experi-204

ments under different flow conditions are summarized in Table 1.205

3. Methodology of Particle Transport206

Bimolecular reactions can be written as A + B ⇋ C. Product C can207

either precipitate, transport in the same manner as other consituents or de-208

generate to A and B spontaneously at backward reaction rate kb. For a well-209

mixed system, the reaction rate can be expressed as rA = rB = d[A]/dt =210
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Simulation Gramling et al. Raje and Kapoor
Length (cm) 30 30 30 18 18

Rate Constant (M−1s−1) 2.3× 109 2.3× 109 2.3× 109 4.38× 102 4.38× 102

Flow Rate (mL/s) 0.0445 0.267 2.5 - -
Pore Velocity (cm/s) 0.0121 0.0832 0.670 0.096 0.070

Dispersion Coeff. (cm2/s) 1.75× 10−3 1.45× 10−2 1.75× 10−1 3.17× 10−2 2.31× 10−2

Diffusion Coeff. (cm2/s) 7.02× 10−7 7.02× 10−7 7.02× 10−7 4.6× 10−6 4.6× 10−6

Concentration (M) 0.02 0.02 0.02 5.0× 10−4 2.5× 10−4

Table 1: Experimental parameters.

−kf [A][B]+kb[C], where we denote concentrations of A and B by the brack-211

eted quantities. In some circumstances, the backward reaction rates are not212

accounted for in the experiments by assuming the reaction is irreversible or213

deducted from the forward reaction rate; in this case, the change of a reactant214

concentration within a given time can be quantified as d[A]/dt = −kf [A][B].215

As mentioned in the introduction, our model extends the method of Gille-216

spie [47], who shows that the PT Langevin equation of reaction contains a217

probability that is composed of two terms. One term embodies the ther-218

modynamics of reaction given perfect mixing. The second represents the219

probability of two particles being co-located. Thus, the probability of re-220

action should be a function of distance between A and B particles and the221

diffusive movement at the small (pore) scale. The closer they are to each222

other, the higher the reaction probability will be [56]. This concept is dif-223

ferent from the Edery et al. [1] model, which uses the effective radius RE224

to characterize the mixing in a binary sense—the reaction proceeds if the225

separation of a pair of A and B particle are within a fixed radius. Ben-226

son and Meerschaert [20] derived the probability density for colocation as227

v(s) =
∫
fA(x)fB(s + x)dx, where fA(x) and fB(x) denote the densities of228

the motions of A and B particles away from their current positions, s is the229

initial particle separation distance. For a time step ∆t, the Gaussian local230

diffusion has variance 2Dm∆t, and the colocation density is a convolution of231

two of these Gaussians, which is also Gaussian but with variance 4Dm∆t,232

where Dm is molecular diffusion. For computational efficiency, they approx-233

imated the Gaussian with a piecewise linear “tent” function with the same234

variance [20]:235

v(s) = max

{
0,

−|s|
24Dm∆t

+ (24Dm∆t)−1/2

}
. (2)

As discussed in detail previously [35, 57, 58], and following the Fickian236
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BTC of the conservative components, we simulate each particle’s advection-237

dispersion process through the domains using the Langevin equation238

X(t+∆t) = X(t) + u∆t+ Z ·
√
2D∆t, (3)

where Z is a standard Normal random variable, D = αLu, αL is dispersivity,239

u is average linear flow velocity. For cases here D is a constant. As oth-240

ers do, for speed we use a shifted and scaled uniform [0,1] random variable241 √
24D∆t(U(0, 1) − 1/2) for the last term [19, 20]. Generally, molecular dif-242

fusion is a negligible component of dispersion for high Peclet number flow243

[3, 4, 19]. Equation (3) describes the flow of particles in the column. The244

selection of ∆t is based on two criteria: 1) the time interval is relatively245

small compared with the time that solutes flow through the column, so that246

the reaction probability (described below) can be much less than unity to247

fulfill mathematical definition of a probability; 2) the simulated results of248

non-reactive tracer agree with the analytical solution in general. Employing249

this method, the transport of two species without reaction in a column was250

simulated (Figure 1) to compare with the analytical solution of the advection-251

dispersion equation and the observation of a conservative tracer transport252

test in [4] .253

Molecular diffusion plays an important driving role at the pore-scale. Var-254

ious studies (e.g., [4, 30, 15]) revealed that the distribution of reactants and255

reaction at the pore scale may be dominated by molecular diffusion, which256

for typical transport conditions proceeds relatively slowly. Moreover, in re-257

cent studies, both Edery et al. [32] and Tartakovsky et al. [23] noticed that258

the slow diffusion of the reacting species into and out of plume boundaries259

determines the reaction rate and the slow diffusion processes are a primary260

reason why averaged concentration models over-predict the amount of reac-261

tion. In this study, the PT model employed assumes that molecular diffusion262

controls the probability of reaction. Raje and Kapoor [3] noted that it is263

molecular diffusion that alters the pure advection picture by causing actual264

overlap or mixing of reactant masses that leads to the reaction. Addition-265

ally, Cao and Kitanidis [43] and Edery et al. [32] point out that diffusion266

can smooth irregularities due to velocity fluctuations at pore scales.267

3.1. Initial and Boundary Conditions268

As specified in the experiments, one reactant (assigned as B) initially269

saturates our numerical column; some amount of the other reactant (called270
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Figure 1: Verification of particle tracking concept for non-reactive transport. The red
dots are breakthrough curve measurements of CuEDTA2− at 1023 seconds from [4]. The
blue and black solid lines are analytical solutions of ADE for two species flowing through a
column in which one species saturates the column initially, and the other enters at constant
concentration from the upstream (x = 0) end. The red and magenta lines with error bars
represent the simulations using PT method (equation (1)).

9



A) flows into the column continuously with constant flux. This implies that271

B particles are initially distributed within the column domain randomly and272

uniformly, while A particles flow into the domain at some constant rate.273

The initial and boundary conditions can be assumed as: CB(x, 0) = B0 and274

CA(x, 0) = 0 for x ≥ 0 (species B occupies the domain uniformly and no275

A species initially); CA(0, t) = C0 for t ≥ 0 (Constant concentration of A276

species input at the upstream end); CA,B(L, t) = 0 for t ≥ 0 at the column277

end L (species flow out through the outlet).278

At every time step, each A particle is selected sequentially to see if it will279

react. The KD-tree algorithm finds those B particles that are sufficiently280

close, and the probability of colocation is calculated, one B particle at a281

time. This probability is combined with the thermodynamic probability to282

find the total probability of reaction [20] using283

P (react) = kf∆tΩ[B]0v(s)/N0 (4)

where the mass of each particle is given by one-dimensional column volume Ω284

times the initial B concentration divided by the initial number of B particles285

(N0). This probability is compared with a random number between 0 and 1,286

which indicates whether a reaction occurs or not. If the probability of the287

reaction is larger than the random number, the two particles are removed288

from the domain and a C particle is placed randomly between the intitial289

A and B locations. If not, the next B particle is tested. If all potential290

B particles are exhausted, the next A particle is selected. This process is291

performed for each time step and for every A particle that is in the domain.292

For instantaneous reaction cases where kf is extremely large, one would293

have to choose prohibitively small time steps to satisfy the mathematical294

definition of the probability (< 1) in (4). In simulating the instantaneous295

reaction, the probability is assumed to be unity when two particles begin296

in the same location. In other words, for two particles (one A and one B)297

that occupy the same location (s = 0), they would react immediately (the298

probability to react is 1). To calculate the resulting effective kf and ∆t that299

can be used, calculate the known density of the tent function for initially300

coincident particles v(s = 0) =
√
24D∆t and set the probability in (4) to301

unity (P (react) = 1), leaving:302

kf (∆t)1/2 = N0(24D)1/2/(Ω[B]0). (5)

All of the parameters are known except kf and ∆t, therefore, this equation303
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gives a constraint on the combination of effective kf and ∆t that may be304

used for an instantaneous reaction.305

Computation of the distances between every A and B particle is costly if306

a large number of particles are simulated. Classically, the computation time307

is a quadratic function of particle numbers times a linear function of time308

steps. To improve computation efficiency, only particles within a range of309

distance are calculated. We apply the KD-tree technique of Bentley [55] as310

implemented by Tagliasacchi [59], which restricts the searching objective to311

be within a range or a radius near the searching center. The computation312

time now goes likeN log(N) instead ofN2, whereN is the number of particles313

present at a given time. Thus the computational efficiency is significantly314

increased without reducing the accuracy.315

4. Results and Discussion316

In total, we simulated two sets of experiment runs by Raje and Kapoor317

[3] and six sets of experiments conducted by Gramling et al. [4]. Because318

initial locations and movements of particles are associated with random num-319

bers in the PT method, the model results have concentration fluctuations.320

Physically, the fluctuations are directly linked to the incomplete mixing; as321

specified by Bolster et al. [48], when fluctuations of reactants are large rela-322

tive to their mean concentration we expect the existence of isolated ‘islands’323

in which little or no reaction can occur, and thus the product concentration324

is usually lower than any prediction by a model with complete mixing. In325

the work by Bolster et al. [48], the islands arise due to initial areas that326

have imbalances (fluctuations) in the initial reactant distributions. These327

areas become islands that are enriched in one reactant as the other is re-328

acted to depletion, and reactions can only progress by diffusion to the island329

edges. In these column simulations, the fluctuations are thought to arise330

from non-uniformity in the pore-scale flow field [3].331

The results presented here are from an ensemble of one hundred simula-332

tions using the means and standard deviations for each simulation (Figures333

2, 3, and 4). In addition, we reproduce the results of Figure 6a in Gramling334

et al. depicting the the cumulative mass of product formed in one experi-335

ment and simulated mass from the particle tracking method, as well as the336

analytical simulation of total mass in a well-mixed system (Figure 5).337

Data from the two experiments were collected in different ways. Raje and338

Kapoor [3] measured the product concentrations at the outlet of the column at339
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Figure 2: Simulations of experiments from [3], breakthrough curves for two experiments.
Black squares are observations from the experiments, blue lines with error bars (mean
values and plus/minus one standard deviation) are simulations using the PT method. a)
Run 1: initial concentration of 0.5 mM, pore velocity = 0.096 cm/s. b) Run 2: initial
concentration of 0.25 mM, pore velocity = 0.07 cm/s.
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Figure 3: Simulations of the first series of experiments from [4], product concentration
distributions at different times. Red dots are measurements, blue lines with error bars are
simulations using the PT method. The symbols (diamond, square, and triangle) are the
mean values of one hundred runs; the error bars are the standard deviations of those runs.
As pointed out by Gramling et al., the analytic solution of the 1D ADRE would have a
peak concentration at all times of C/C0 = 0.5.
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Figure 4: Simulations of the second series of experiments from [4], product concentration
distribution from experiments at different flow rates. Red dots are measurements, blue
lines with error bars (mean values and standard deviations of ten runs) are simulations
using the PT method. a) measurements at 1114 seconds at the flow rate of 2.7 ml/min;
b) measurements at 157s from experiments with flow rate of 16 ml/min; c) measurements
at 20.23 seconds with a flow rate of 150 ml/min. As pointed out by Gramling et al.,
the analytic solution of the 1D ADRE would have a peak concentration at all times of
C/C0 = 0.5.
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Figure 5: Total mass produced as a function of time for a flow rate of 2.7 mL/min in
[4]; The solid line represents the complete mixing theoretical model results, the points are
measurements, and the dashed line denotes the results from our PT model.

different times, and presented the results in the form of breakthrough curves.340

Those authors also simulated the experiments using a well-mixed 1D finite-341

difference solution of the ADRE and showed that the simulated product peak342

concentration was about 40% higher than the measured concentration. Their343

two experiments used different concentrations of reactants, [A] = [B] = 0.25344

M and 0.5 M. We use initial numbers of particles in the PT simulations of345

1000 and 2000, respectively. All other parameters were the same as those346

reported from experimental data, as shown in Table 1.347

Gramling et al. [4] ran two series of experiments. One series had a sin-348

gle flow rate, and the product was tracked as it traveled across the column;349

the other series recorded the product concentration profiles at roughly the350

same place in the column under three different flow rate regimes. All the351

product concentrations measured in their column experiments were approx-352

imately 20% less than those predicted by an analytical well mixed solution.353

The first series of observations at different times had the same model pa-354

rameters (e.g., flow velocity, dispersion coefficient, diffusion coefficient, time355

step length, etc.) except for total simulation time. For the second series of356
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three experiments using different flow rates, our simulations used different357

time step sizes following the time step rules described above. For our simu-358

lations of these two series (six datasets), the initial particle number is 600.359

As displayed in Figure 2, 3, and 4, most experimental data are very close to360

the simulated means and nearly all of them are within one standard devia-361

tion. In terms of mass balance, the simulated cumulative mass of production362

is also in close agreement with the measurements, as depicted in Figure 5.363

From this point of view, the simulations match the laboratory observations364

quite closely considering that no parameters are calibrated or fitted beside365

the number of particles used. This latter point we address shortly.366

4.1. Numerical Sensitivity367

To test the robustness of the model, several sensitivity analyses are run368

on different factors. These parameters and processes include boundary con-369

ditions, treatment of essentially instantaneous reactions, and initial particle370

numbers (i.e., initial conditions).371

4.1.1. Boundary Conditions372

One series of runs are related to the initial conditions. This is because373

the column experiment setup has been interpreted in different ways. For374

example, as Figure 5 in [3] showed, Raje and Kapoor [3] interpreted the initial375

condition of their conceptual model as the connection of columns with sharp376

contact. Instead of injecting some number of A particles every time step, A377

particles are assumed to be distributed in a hypothetical column (with the378

same dimensions of the experimental column) at the upstream end. The flow379

domain resembles two columns connected with each other, with each column380

initially saturated with a different reactant. We run simulations with this381

initial condition, the results are virtually identical to the model results shown382

in the Figures 2, 3, and 4.383

4.1.2. Instantaneous Reactions384

In reactive transport modeling, the reaction rate is generally assumed385

to be equal to the value reported from batch experiments [3, 19, 29]. In386

a Lagrangian scheme it has been hypothesized [20, 56] that the reaction387

probability is the product of the theromodynamic probability (including the388

well-mixed rate coefficient) and the probability of particle co-location. When389

one probability is much larger (such as in nearly instantaneous reactions), it390

is not the limiting factor. Cirpka and Kitanidis [33] made a similar conclusion391
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that the rate of mixing of compounds controls the reaction rate as long as392

the reaction process is not limited by slow kinetics.393

This is not a moot point, given the disparate reaction rates in the two394

experiments. The reaction between CuSO4 and EDTA4− had a high reac-395

tion rate [4] of kf = 2.3 × 109 M−1s−1, while the reaction rate between AN396

and NQS was measured with high confidence [3] to be nearly seven orders397

of magnitude lower (kf = 438 M−1s−1). Given these rates and fairly simi-398

lar experimental setups, we might expect that the concentration of product399

CuEDTA2− would be higher than that of ANNQS. On the other hand, if the400

results were similar, we could assume that the well-mixed reaction rate is401

not a limiting factor and that a range of high kf values would give similar402

results. A measure of this given by the Damkohler number, which compares403

the timescales of reaction relative to transport processes (e.g., dispersion,404

diffusion). Dentz et al. [2] claimed that the effective rate can be virtually405

any fraction of the local rate depending on the Damkohler number, and the406

conclusion is consistent with the fact that laboratory measured kinetic rates407

can be orders of magnitudes larger than their field measured counterparts408

(e.g., [60, 61]). The diffusive Damkohler number is a dimensionless ratio of409

diffusion time scale (tD = l2/2Dm) over reaction time scale (tr = 1/A0kf )410

[48, 34, 23], so that Da = tD/tr = A0kf l
2/2Dm, where l is the size of typical411

concentration perturbations [L]. The length l is typically taken as the size of412

a pore, but may be as large as domain size [48, 19, 23]. These authors (e.g.,413

[48, 34, 23]) define l as the typical correlation length of concentration per-414

turbations. Given the range of correlation lengths and the reported values,415

the Damkohler numbers for reactions in experiments of [3] and [4] are many416

orders of magnitude larger than unity, which implies that time scale of diffu-417

sion in both experiments was much longer than those of the reactions. Thus418

the reactions can be deemed as instantaneous. Instead of using an extremely419

high reaction rate constant, we simulate the reaction as an instantaneous420

reaction.421

Various studies have provided quantitative criteria to simulate the re-422

action as instantaneous. For instance, in derivation of transport-controlled423

reaction rates, Sánchez-Vila et al. [62] claimed that for a Da = 100 or larger,424

the system reaches local equilibrium practically instantaneously and results425

using an approximation for reaction rate are almost indistinguishable from426

using an equilibrium reaction rate. From their point of view, to simulate427

the instantaneous reaction, the reaction rate constant can be chosen as long428

as the Damkohler number is larger than 100. Tartakovsky et al. [23] had429
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Figure 6: Simulations of instantaneous reaction with different combinations of reaction
rates and time steps. The combinations of kf and ∆t lead to the maximum probability
as 1, which implies that two particles would react if they occupy the same location. The
combinations are 4.08 and 1 (line with squares); 12.9 and 0.1 (line with diamonds), and
40.8 and 0.01 (line with triangles).

a similar conclusion. They found that the deterministic solutions of the430

diffusion-reaction equation are all the same if Da > C−1
v0 , where the initial431

coefficient of variation, Cv0 = σA/A0 < 1, where σA is the concentration432

standard deviation. In simulating the experiments of Gramling et al. [4],433

taking a conservative characteristic length value as the size of pore space,434

0.13 cm, a value of reaction rate constant larger than 0.42M−1s−1 satisfies435

the criterion of Da (> 100). We test this by using the reaction rate over an436

order of magnitude larger to satisfy instantaneous reaction “criteria.” Here437

we experimented numerically with different combinations of kf and ∆t for438

the reaction in experiments of Gramling et al. [4], as shown in Figure 6.439

While there is residual effect of increasing the rate coefficient, it appears440

that the thermodynamic part of the probability is not the determining factor441

in this reaction experiment. Similarly, Edery et al. [11] concluded that the442

reactions in the experiments of [4] were more controlled by fluctuations than443

reaction rate.444
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4.1.3. Particle Numbers445

It may appear that, in addition to influencing the simulations, the number446

of particles used to represent the “plumes” of reactants is a free parameter.447

However, Benson and Meerschaert [20] showed that the number of particles448

is directly related to the time of onset of reactant self-segregation in simple449

diffusion systems. This is due to the fact that using more particles means450

that the reactant concentrations are smoother functions of space. Fewer par-451

ticles represent more variability of concentration. Bolster et al. [48] took452

a continuum approach and showed that the variability and growth rate of453

initial concentration fluctuations are responsible for slowed reaction rates. In454

that continuum study, the authors showed that the pseudo-kinetic slowdown455

due to diffusion-limited mixing is directly proportional to the covariance of456

concentration perturbations, which they approximated with a Dirac delta457

function C ′
A(x, 0)C

′
A(y, 0) = σ2

C lδ(x− y), where σ2
C is the early-time concen-458

tration variance and l is the correlation length representative of typical length459

scale associated with concentration perturbations (essentially areas of anti-460

correlated [A] and [B] denoting segregated reactants). They also showed that461

as long as the correlations act over relatively short spatial scales the shape462

of the perturbations (i.e., assuming the delta function instead of a Gaussian)463

is not particularly important. This enables a method to check the number464

of particles that should be used to represent the reactants in the columns:465

it has long been known for conservative solutes that the number of particles466

is inversely proportional to the variance of concentration [63, 64]. There-467

fore, the numbers of particles representing the same amount of mass should,468

in part, dictate the rate of reactions. As a first approximation, consider469

each particle individually as a delta function of concentration with covari-470

ance C ′
A(x, 0)C

′
A(y, 0) = (C2

0Ω/N0)δ(x − y) [65]. Equating the particle and471

continuum concentration covariance gives472

N0 =
σ2
[B]l

d

[B]20Ω
d
. (6)

We can roughly estimate the size and variance of concentration pertur-473

bations using the high-resolution snapshots given in [4]. We use the color474

images, which have integer values of red, green, and blue (RGB) saturations475

from 0 to 255. For a perfectly mixed experiment, any vertical transect of pix-476

els would be the same color and have no variability in any color saturation.477

On the contrary, the measured vertical transects have systematic changes478
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in the variance of the RGB components, from the lowest value far in front479

of the invading fluid (Fig. 7), to the greatest in the zone of equal reactant480

concentrations. Using the fact that V AR(aX) = a2V AR(X) for a constant481

a and assuming for this estimate that the RGB variances are additive, then482

the variance of concentration in the mixing zone can be estimated. The483

range of concentration is on the order of 0 to 0.02, while color saturations484

are on the order 0 to 255, or 104.1 greater. In the area of greatest concentra-485

tion contrasts, the variance of color saturation is on the order of 2000 above486

background noise, so that the variance of concentration is approximately on487

the order of σ2
[B] ≈ 2000/108.2M2. Furthermore, the color fluctuations have488

some coherent structure upon visual inspection (Fig. 7a) that can be deduced489

with a fast Fourier transform (Fig. 7c). Using MATLAB’s FFT routine and490

taking the magnitude of the Fourier components for any (spatial) frequency491

of the color traces in vertical transect, it appears that the color traces occur492

in dominant frequencies with wavelengths between 25% to 100% of the col-493

umn’s 5.5 cm width (Fig. 8). This corresponds to fingers or “blobs” (half494

wavelength) of widths l ≈ 0.9 to 2.5 cm. Using l = 1.4 cm (wavelength of495

25 pixels, see Fig. 8) and plugging the other numbers into (6) gives an esti-496

mate of the number of particles of roughly 710, compared to the 600 we used497

to visually fit the reaction zones. All of the numbers used here are rough498

estimates, so this is by no means a quantitative validation of the approach.499

It is a qualitative demonstration that the theoretical number of particles is500

consistent with the number we used. A more concrete estimate would require501

more detailed measurement of concentration variance and spatial correlation.502

We may test the sensitivity to this estimate by taking the simulation of503

the second experiment (flow rate of 16 mL/min) from [4] and holding all504

parameters constant, except the numbers of particles. For all three runs505

simulating instantaneous reaction, as shown in Figure 9, when using one506

order-of-magnitude lower number to represent the reactants (N0 = 60), the507

ratio of product concentration over initial concentration is only around 0.25;508

when using ten times more particles (N0 = 6, 000), the predicted product509

profile (C/C0) is approximately 0.40. As the number of particles increases510

to infinity, the product profile would approach 0.5, which is the maximum511

value in a well-mixed system (i.e., the analytic solution to the 1D ADRE512

(1)). From this point of view, the PT model applied in this study is capable513

of simulating the incomplete mixing that is characterized by high variance514

and/or larger concentration fluctuations by choosing a suitable number of515
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Figure 7: a) Example color map of product concentration; b) variance of red, green, and
blue color components in vertical transects; c) example power spectrum of blue component
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Figure 9: Effect of particle numbers, using the second experiments from [4] as base,
shown as 4b. For all runs simulating instantaneous reaction, using the higher number
of particles (N=6,000), the model predicted that the product concentration over initial
reactant concentration was around 0.40, which overpredicts experimental observations
(as red dots displays); the simulation with the lower number of particles (N=60) under
predicted the measurements, the ratio was around 0.25.

particles.516

4.2. Reaction Zone Tails517

Besides the subdued peak product concentrations, another important518

finding from the two experiments is the discrepancies in the reaction zone519

widths. In the concentration profiles (concentration vs. length) in [4], a520

heavy trailing edge is seen in the product concentration not evident in the521

analytic solution [4, 51]. Luo and Cirpka [5] posit that heterogeneity leads to522

this extended tailing behavior in product snapshots and breakthrough curves.523

As reviewed by Edery et al. [32], models such as the ADE-PT using an ef-524

fective radius approach ([11]) and the time-dependent reaction rate method525

([52]), were unable to capture the forward and backward tails of the spatial526

concentration profiles.527

To overcome this issue, Edery et al. [32] chose a different type of underly-528

ing solute transport. Instead of using the classical Brownian motion with the529
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ADE governing equation, they used a continuous time random walk (CTRW).530

The CTRW differs from Brownian motion in that the time required to make531

each motion is random and typically has a broad distribution. The heavier532

weights on the long-time probability tail cause some particles to delay their533

migrations relative to the mean, hence there is a broader spread of both re-534

actants and products. Zhang and Papelis [51] extended this concept by using535

both random times and non-Gaussian particle migration distances to match536

product concentration near the tails. Both of these approaches require ad-537

ditional parameters that need to be gleaned from the transport experiments538

for a conservative tracer. It is unclear if these methods invoked to account539

for the tails in the reactive case were calibrated from a conservative tracer,540

because simulations of the non-reactive tracer test were not displayed in [32]541

or [51]. Furthermore, the traditional advection-dispersion equation appeared542

to match the conservative tracer quite well, i.e., a heavy trailing edge was543

not evident in the original analysis (see Figures 6 and 7 in the original [3]).544

In the other experiment by Gramling et al. [4], the conservative tails do show545

considerable noise that has yet to be attributed to anomalous, non-Fickian546

transport.547

Taking a completely different view, one may theorize that any tails in the548

reaction product may be due simply to the addition of the reaction itself: If549

poor mixing or small-scale diffusion limits the reactions, then the reactants550

could venture farther into “enemy territory” before reacting, and the tails of551

the product distribution would be enlarged relative to the tails of a conser-552

vative tracer. An examination of the Gramling et al. experiment and our553

PT simulations using a logarithmic concentration axis (Figure 10) reveals554

greater measured product concentrations in both leading and trailing tails,555

as well as the ability of the PT method to model the same phenomenon.556

The BTC tails in the Raje and Kapoor are not as straightforward (Figure557

11). Because the reactions are not instantaneous, we use finite differences558

(FD), with ∆x = 0.05 cm and ∆t = 0.01∆x/u, to solve the ADRE (1). The559

measured and PT-simulated slower-flow experiment (Fig. 11a) has greater560

deviations from the FD solution in the tails than the faster-flow experiment561

(Fig. 11b). The slower-flow experiment conforms more to the instantaneous562

reaction assumption with high Dahmhohler numbers, so we show the (con-563

centration normalized by [A]0) finite-difference solutions on the same plot564

as Gramling et al.’s analytic solution to the ADRE (1) with instantanous565

reactions. The low-flow experiment deviates from the instantaneous reaction566

solution only near the peak, but the faster-flow experiment is roughly an567
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Figure 10: Semi-log plot of spatial concentration profiles from Gramling et al. [4]. Ex-
perimental measurements are red dots, PT simulations are blue lines through ensemble
means, along with plus/minus one standard deviation, and the analytic solution of well-
mixed ADRE (1) is plotted as black continuous line. These data are the same as shown
in Figure 4b.

order-of-magnitude different in the tails (Fig. 11c), showing how sensitive568

the experiments and solutions are to small changes in flow rate at the chosen569

reaction rate. In all cases, the PT model applied here is capable of matching570

the tails in the breakthrough curves and the spatial concentration profiles571

without additional assumptions or parameters.572

This is a significant and somewhat counter-intuitive finding. If hetero-573

geneity was thought to merely (and uniformly) reduce reaction rates, then574

the measured product concentrations would be everywhere lower than the575

well-mixed solution. This clearly is not the case. Our PT simulations give576

some insight into the heavier product tails. Conceptually, some A particles577

may move into the displaced B particles like fingers rather than a smooth,578

well-mixed front. The calculation of reaction based on local diffusion allows579

some probability of longer particle excursions, which is consistent with the580

conceptualization of Cao and Kitanidis [43] who show that the slow rate of581

diffusion allows concentration gradients to be sustained at the small scale582
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Figure 11: a and b) Semi-log plots of breakthrough curves from Raje and Kapoor [3].
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and a reactant can cross the “interface” and interact with the other reactant583

only through diffusion. Tartakovsky [23] showed that, in a similar system584

(however, without the distinction between dispersion and diffusion), the rate585

of island or finger growth limits the rate of overall reactant mixing. This586

was recently shown to be identical to the random time that discrete particles587

require to diffuse to find a reactant partner; therefore, the particle method588

(with an exact calculation of co-location probability via diffusion) appears to589

faithfully reproduce the effects of fingering and poor mixing by segregation.590

5. Conclusions and Recommendations591

In this study, we implement a novel particle tracking method that cal-592

culates the probability that any two particles under general conditions of593

advection, dispersion, and diffusion occupy the same volume. When com-594

bined with the thermodynamic probability manifested in the well-mixed rate595

coefficient, the combined effects of transport and mixing-limited reaction are596

accurately simulated. Simulation results are tested against breakthrough597

curves (as function of time) reported by Raje and Kapoor [3] and concen-598

tration profiles through a flow domain from Gramling et al. [4] individually.599

Not only do the simulation results match the cumulative and point-wise600

product concentrations, but also agree with the forward and backward tails601

of the reaction zone. The agreements between simulations and laboratory602

observations suggest that this particle tracking method is able to success-603

fully simulate the two types of experimental observations without invoking604

any additional transport mechanisms with their required added parameters605

or coefficients.606

Our model is based on first principles, so that the parameters are derived607

from measurable quantities. The only numerical parameter with some ap-608

parent flexibility, the number of particles, represents fluctuations in concen-609

trations, i.e., the product of concentration (spatial) variance and correlation610

length. This information may be gained by direct measurement of the con-611

centration field on either small [4] or large scales [66], or by stochastic means612

[67, 68, 69, 19]. Using visual data of transmitted light in the experiments613

of [4] we derived particle numbers that matched the best-fit numbers very614

closely; however, the estimate is likely to have fairly large variability, the615

magnitude of which we do not endeavor to quantify at this point.616

The particle transport and reaction algorithm presented here has yet to be617

extended to more complex reaction chains. This is not a theoretical problem618
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as reactions with multiple reactants or uneven stoichiometry are a series of619

two-particle interactions (see Gillespie [56]), though it may present numerical620

difficulties. The particle reaction algorithm also has not been coupled to621

detailed 3-d velocity fields for the purpose of validating, for example, Molz622

and Widdowson’s [8] conjecture that poor mixing is primarily responsible for623

pseudo-kinetic reactions in heterogeneous flow fields at the field scale.624
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