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This study is based on applying a non-linear mapping method, here the unscented 

Kalman filter; to estimate and optimize data rate resulting from the arrival rate having a Poisson 

distribution in an orthogonal frequency division multiplexing (OFDM) transmission system. 

OFDM is an emerging multi-carrier modulation scheme. With the growing need for quality of 

service in wireless communications, it is highly necessary to optimize resources in such a way 

that the overall performance of the system models should rise while keeping in mind the 

objective to achieve high data rate and efficient spectral methods in the near future. In this study, 

the results from the OFDM-TDMA transmission system have been used to apply cross-layer 

optimization between layers so as to treat different resources between layers simultaneously. The 

main controller manages the transmission of data between layers using the multicarrier 

modulation techniques. The unscented Kalman filter is used here to perform nonlinear mapping 

by estimating and optimizing the data rate, which result from the arrival rate having a Poisson 

distribution.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

The growing demand for short distance wireless solutions which offer high data rate, low 

power consumption, low cost and reasonably good quality of service support are giving rise to 

the increase in more efficient digital devices and better techniques of using them. All these 

digital devices are exemplified by various resources such as power, spectrum, changing topology 

and other varying consumer needs. These are the characteristics which have become the reason 

for developing the upcoming digital devices being worked on currently while keeping in mind 

factors like efficiency and quality of service. 

 

1.2 Problem Statement 

The goal is to offer the required performance expected by the consumer by minimizing 

the total power consumption of the device. This in turn triggers the need to exploit the systems’ 

run-time performance. This run time performance can then be compared to obtain an optimized 

performance trade-off by using a feedback filter system. 

 

1.3 Thesis Overview and Contribution 

With the goal in mind, such a type of optimization is effectual only if the system is cross-

layer. By cross-layer, I mean across layers of the stack of protocol. Traditionally, the design of 

cross-layer enables exchange of enough data between different communication layers. Hence, 

this kind of information exchange between layers leads to optimization across the device 

components and also improves stability of the system. Therefore a Kalman filter is scheduled 
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here in modeling the system that transfers information between layers. The filter enables the 

estimation of the data rate iteratively thereby leading to an optimization technique which is 

explained in detail in later chapters.  

 

1.4 Organization of the Thesis 

The thesis starts with an introduction to the Kalman filtering as discussed in Chapter 2. 

Chapter 3 describes the problem definition and solution approach adopted in the thesis. The 

simulation results are presented in Chapter 4.  Chapter 5 discusses about the conclusions and 

future work. 
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CHAPTER 2 

KALMAN FILTER 

2.1. Basic Concept of Kalman filter 

Kalman filter is an algorithm based on recursive estimation that was developed as early 

as 1960 by Rudolph E. Kalman. The Kalman filter (KF) is one of the most extensively used 

methods for tracking and estimation due to its simplicity, optimality, tractability and robustness 

[1], [7].  

The basic idea of Kalman filter is to estimate a process by using a type of feedback 

control. This estimation tool consists of a set of measurement values and previous states of a 

system while keeping the estimation error minimal. The filter estimates the states at some point 

in time and then tries to obtain feedback in the form of noisy measurements.  A recursive loop is 

used in the Kalman filter to obtain more accurate results.   

If the noises are Gaussian even after some linear transformations, then the Kalman filter 

is applied to give us a solution to the conditional probability density functions (PDFs) and 

therefore this filter provides a minimum covariance estimate [4], [10]. In case the noise is non-

Gaussian, then the Kalman filter would serve as the best linear estimator. In other words, it 

would have the smallest error covariance among all linear filters. The Kalman filter is noted for 

optimality because it is often derived for Gaussian noise where we find that the calculations are 

performed directly and thus optimality follows straight away.  

The Kalman filter assumes that the posterior density at every time step is Gaussian and 

hence is parameterized by a mean and covariance [2]. The Kalman filter is implemented in a 

two-step procedure: prediction step and filtering or correction step. The dynamics of the system 

are handled in the prediction step while the measurements are integrated in the system in the 
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filtering step.  As mentioned earlier, the estimation of states at some point in time is done by the 

filter and then the feedback is obtained in the form of noise measurements. Thus the equations of 

Kalman filter also fall into the same two groups stated above: prediction step equations and 

filtering step equations. While prediction step equations are accountable for putting forward the 

present state and error covariance estimates in time, to attain the apriori estimates for the 

subsequent step, filtering step equations on the other hand are accountable for the feedback, i.e., 

for putting forward a novel measurement into the a-priori estimate in order to achieve a better a-

posteriori estimate. While the former set of equations are considered as predictor equations, the 

latter are considered as corrector equations.  Hence the final algorithm looks like that of a 

predictor-corrector algorithm for unraveling numerical problems. 

 

2.2. Kalman Filter 

In general, to define a filtering problem, the state-space model may be formulated along 

the subsequent lines. Let 

   x (k + 1) = f(x(k), u(k),w(k))    (2.2.1) 

   y(k) = h(x(k), v(k))     (2.2.2) 

denote the state dynamics of a non-linear time-varying system, where 

• nQkx ∈)( is the system state vector, 

• f(., ., .) symbolizes the system’s dynamics, 

• mQku ∈)( is the control vector, 

• w is the vector that symbolizes the system error sources, 

• rQky ∈)(  is the observation vector, 

• h(., ., .) is the measurement function, 
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• v is the vector that symbolizes the measurement error sources. 

The following set of variables are given 

• f, h, the noise characterization, the initial conditions, 

• set of controls, u(0), u(1), . . . , u(k − 1), 

• set of measurements, y(1), y(1), y(2), . . . , y(k), 

To obtain:  best estimate of x(k). 

To understand the state- space model, a state vector, x(k) is considered which holds all 

information about the system, at time k, used to find out its future behavior when the input is 

given. The dynamics of the state determines how the system changes over time. If the inputs of 

the system are given by u(k) and process noise w(k), where w(k) is an unpredictable input 

modeled as a stochastic process, then the state of the system at time u(k+1) is  related to the state 

at time u(k), and the inputs of the system u(k) and w(k) by the above mentioned relation 

In case of linear time-varying dynamic system, the above mentioned equations reduce to 

 kkkkkk
CwuBxAx ++=

+1
   0≥k      (2.2.3) 

 kkkk vxDy +=        (2.2.4) 

where nQkx ∈)( , mQku ∈)( , nQkw ∈)( , rQkv ∈)( , rQky ∈)( , { }kw and { }kv  are sequences of 

white Gaussian noise whose mean is zero. 

Steps in the Kalman filter algorithm 

Initial conditions: 
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Filtering  step 
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Prediction  step  
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Let k: =k+1 and repeat from step 2. 

The aforesaid algorithm is a complete way of implementing the Kalman filter. However, 

if the estimation problem is not stated clearly, some numerical problems may arise. Firstly, 

covariance becomes indefinite. Second, the symmetry of the covariance matrices may be lost. 

While verifying the latter is easy, the former is more complex to verify. Therefore a solution to 

this problem is to use square- root implementation approach in which the square-root of the 

covariance matrix is sent. This assures symmetry and definiteness. One such method of 

implementation is the unscented Kalman filter which is discussed in Section 2.5. 

The Kalman filter is limited in application to linear models alone. However, most real-

time applications are non-linear models. The most common approach designed by Julier and 

Uhlman is to make use of the extended Kalman filter (EKF) which merely linearises every 

nonlinear model in such a way that the long-established linear Kalman filter can be applied [1]. 

 

2.3. Linearized Kalman Filter  

The Kalman filter satisfies two criterions. It not only results in the average of the state 

estimate be equal to the average of the true estimate, but also results in the smallest possible 

variation in the state estimate. Technically, Kalman filter is an estimator that results in smallest 

possible error variance [5].  
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In order to implement the Kalman filter on nonlinear models, we assume that the nominal 

trajectory xnom is known and therefore we linearize the system along this trajectory so as to apply 

the Kalman filter over the linearized model. This is usually known as the linearized Kalman 

filter. 

 

2.4. Extended Kalman Filter 

 The extended Kalman filter is developed to overcome the problem of lack of nominal 

trajectory. This filter is used when dynamics of the system (state and observation) is non-linear. 

The extended Kalman filter (EKF) presents an approximation of the optimal estimate. The 

system’s non-linearities such as the state and observation are approximated by a linearized 

edition of the non-linear system model about the final state estimate. In order to prove that this 

approximation is legitimate, this linearization ought to be a fine approximation of the non-linear 

model in the entire uncertainty domain associated with the state estimate. 

 The drawback associated with the usage of extended Kalman filter is that, this filter is 

harder to analyze than the traditional linearized Kalman Filter. However, it is proven to work 

well in many applications.   

 

2.5. Unscented Kalman Filter 

 The unscented transform has been proposed by Julier and Uhlman [1] to overcome the 

poor performance of the Extended Kalman Filter in case of highly non-linear systems.  The 

extended Kalman filter can handle only limited amount of nonlinearity and also the posterior 

mean and the covariance may be corrupted due to the analytical way of state distribution. 
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Therefore, a novel technique which does not use any gradients has been introduced. This is the 

unscented Kalman filter (UKF) which uses a deterministic sampling approach [6].   

 In deterministic sampling approach, a set of carefully chosen points called the sigma 

points are considered. These are the occurrences of the early stochastic process. The basic idea of 

the unscented Kalman filter is that the sigma points contribute in obtaining true mean and 

covariance when propagated through a typical non-linear system during filtration.  

 This section talks about the improvement to the unscented Kalman filter prepared by Eric 

A. Wan and Rudolph van der Menve over the UKF proposed by Julier and Uhlman [6].  

 Let us consider the propagation of random variable x (dimension M) through y = f(x), 

which is a nonlinear function [6]. Then x is assumed as the mean and Qx as the covariance. To 

compute y, a matrix X of 2M + 1 sigma vectors tψ (with corresponding weights W
t
) is framed 

and then the following equations are used: 

 

parameterscalingaisMiM

MMtPMxX

MttPMxX

xX

Mtxt

xt

−+=

+=+−=

=++=
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0

σφ

φ

φ
   (2.5.1) 

where i is a scaling parameter usually set to 0, and 

σ is the parameter that evaluates the stretch of the sigma points about x~ .  

By transmitting the sigma points through the dynamic of the model, the time update equations 

are obtained.  

The UKF is explained in detail in the following algorithm. 

Steps in the unscented Kalman filter algorithm 

Initial conditions: 
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Prediction step 
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Let i: = i+1 and repeat from step 2. 
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CHAPTER 3 

PROBLEM DEFINITION AND SOLUTION APPROACH 

3.1 Previous Approaches for Optimization and Problem Statement 

Cross layer techniques are typically applied with intent of obtaining an optimized power 

and throughput for a time-varying channel while also achieving a fixed bit error rate (BER).  

Myriad adaptive techniques for orthogonal frequency division multiplexing channel (OFDM) 

have been presented in [3].  Cross-layer optimization of the different layers has demonstrated to 

be the for the most part beneficial than the typical ways of optimizing [3].  Hence the approach 

of link optimization has been agreed for wireless personal area network (WPAN) that denotes the 

standards of various layers for high rate WPANs that offer quality of service and also maintain 

ad-hoc network between systems. 

Based on a typical channel state information (CSI), the transmitter can adopt three types 

of adaptation schemes, namely adaptive coding (AC): technique that acclimatizes code rate 

based on the state of the channel, adaptive bit loading (ABL): technique in which group size of 

modulation alphabet is tailored to the immediate channel features and adaptive power loading 

(APL): technique that adjusts the power of the transmitter with respect to attenuation of the 

channel [3]. 

To illustrate the approach of cross-layer optimization comprehensively [3]: A network 

with numerous nodes which are joined by T links has been taken into consideration. Of this, one 

node is chosen as the vital controller, which assembles information from one layer and uses it to 

aid in decision making in another layer. The vital controller node VC broadcasts information 

between links by means of the CSI for every link. Figure 3.1 from [3] depicts an arrangement of 

3 nodes of which, one is named as a vital controller. This figure gives details on the flow of data 



 11 

from every layer to the vital controller. It is implicit that every link witnesses slow fading, so that 

the channel is not varying (approximately constant) for any of the coding symbols, however 

varies from one symbol to another. The average channel strength observed by the i
th 

link and sth 

symbol is represented by £
i
(s). 

Fig. 3.1 Flow of information between nodes of the system. 

The system considers the diverse power on every link to offer multiple-link diversity. 

One layer presents a set of data rates D
i
(s) to the vital controller where data may be sent out on 

the ith 
link with symbol s. This gives rise to the function PR(di(s), B), which gives the power 

received, that is required to obtain a BER for a rate di (s)∈ Di(s). This function is sent to the 

controller. The function can be obtained in any way, i.e., it may be logical, pre-simulated, or 

approximated from true data. The data transmission and receiving is done by the nodes directly 

from the vital controller through a separate channel. Every node specifies when the transmission 

has to be done while showing the receiver node, the average slow fading £i(s). This second layer 

sends the vital controller with the delay and queue size. The controller makes use of these 

parameters and average channel strength to decide which link is triggered, and this is represented 

by the following function. 
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The fullness of the buffer, indicated as B
i
(s) for the queue of the i

th
link at the sth symbol is 

denoted as  

)()()1()()1( ( sMndsRsBsB iiiii −++=+    (3.1.2) 

Here )(sRi  denotes the rate of arrival of data which is a Poisson distribution for ith link.  

Another optimizing parameter is the quantity of channel accesses from the time when a 

link was most recently activated for transmitting data, denoted as Q
i
(s). Therefore, the link that is 

activated at (s+1) iteration is denoted as 

)](1)][(1[)1( ( sMsDsQ iii −+=+     (3.1.3) 

Thus the controller is fed with the parameters D
i
(s), )(sRi , B

i
(s) and  Qi(s). 

Once the controller gets to know these parameters, an optimizing parameter for every link 

is formulated. The optimization is then divided into two phases. Firstly, an exchange amid delay 

and multiple-link is prepared; this gives the link the improved optimizing parameter. Next, the 

maximum data rate which can be sustained is utilized. 

The underlying function that decides which link is to be examined is figured as: 

else
QBD

Bordfor
Opt

iii

ii
i
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==

=
ωηµ

ζ 00
    (3.1.4) 

The parametersω , µ  and η  for delay in time ever since the last activation of the link, 

data rate and fullness of the buffer respectively, have a huge impact on deciding the value of the 

Optimum function iOpt . The iOpt  values will be compared in the process so as to obtain an 

optimized value of the data rate. The acquired output value will be sent to another function 
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which generates bits in accordance with the overall quantity of links and among these, that link 

with the best optimized value shall be activated in order to be used while leaving aside the 

remaining links for the later sequence.  

Thus the two factors of time varying nature of the channel and the arbitrarily distributed rate 

of arrival have consequently impacted in nonlinearity in these structures. This drawback calls for a 

modeling technique that provides an enhanced estimate of the optimization results.  

Based on the aforesaid design objectives, the algorithm which involves a filtering method 

has been simulated. The unscented Kalman filter, originally proposed by Julier and Uhlmann [1] 

is used here as the filtering method. The filter iteratively estimates the data rate at a given time. 

Thus the filter is employed to give the best selection of the iteration that provides the maximum 

data rate. 

 

3.2 Solution Approach and Optimization Model 

In order to implement the design approach mentioned in the earlier section 3.1, the 

following model is adopted to obtain the best estimate for achieving maximum data rate. The rate 

of arrival which is a Poisson distribution is used as the input (noise) for the model. The data rate, 

fullness of buffer and delay are the parameters sent to the unscented Kalman filtering, which is a 

non linear mapping method, so as to tune the parameters for optimization ω , µ  and η . The 

output obtained from this block of the model is compared to the earlier computed values and also 

the rate of arrival.  The whole model algorithm is shown in the figure below. 
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Fig. 3.2 Optimization model 

 

3.3 Unscented Kalman Filtering Algorithm 

 To implement the algorithm, the model in [3] is applied. The simulation result obtained 

from the OFDM transmission system [3] is considered here.  The OFDM system with SC
N
= 256 

subcarriers is employed, with a common rate-1/2 convolution code that has generators 133
oct 

and 

171
oct

. This extensively employed code actually has 64 states along with what is called the 

Hamming free distance d
free 

=10. Also a channel that is time-varying, which has eight time-

domain taps and a maximum Doppler of f = 0.05 is considered. Then for the variations in time, 

Jakes’ model is considered. The BER = 10-4 and Number of links T = 20 links are employed for 

the computations. These first set of simulations have been obtained from the already conducted 

experiments in [3]. By making use of the existing parametersω , µ  andη , their respective values 

for delay Qi, rate of data Di, and fullness of buffer B
l 
versus the rate of arrival is computed. From 
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these simulation results, the covariance and mean are computed so that they are sent to the model 

as calculated value.  The whole process is thus repeated iteratively to make estimations of the 

rate of data. 

The basic idea is that the filter will enhance the estimation of the states by the filter, or to 

calculate approximately the states of the links and additional measurements. This extra work of 

computing the states will further add to the enhancement of the filter. This implies that the 

kalman filter performs three tasks. First, it computes the states of the links in accordance with the 

model shown in the figure. Then, it calculates in accordance with the additionally computed 

measurements. Lastly, it makes a comparison between measurements of these states that were 

obtained as a function of rate of arrival of Poisson distribution, to that of the states of the links of 

the model and then formulates a weighted average of both of these results.  

 To stimulate this, the primary state and also its covariance have to be defined. Thus the 

rest of the unidentified states as well as the mean obtained from the measurements resulting out 

of the simulated model are all initialized to zero. Also, at the start, the covariance of both the 

model and the simulated model’s measurements are all initialized. 

 The time phase or the prediction phase states are computed by the model. Thus the model 

computes the state kx  at a certain later time k, by making use of inputs u and previous state 1−kx . 

However, the value of the previous state is vague; since only the estimate and the covariance P is 

known. Therefore, the next state ought to be computed by making use of the possible states 

contained in that covariance. However, this step is not entirely mandatory to perform. Instead, 

the carefully chosen sigma points of the kalman filter are used here on the boundary of the 

covariance. 
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CHAPTER 4 

SIMULATION RESULTS 

The optimizing function is as follows:  

OPT = ω Q + µ D + ηB 
                             = D with µ =1,ω ,η  = 0        (4.1) 

 

The algorithm uses the UKF equations (2.5.1) through (2.5.5) and mapping of the 

variables/parameters discussed in Section 3.3. 

The algorithm for this case is given as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formulate measured mean queue   

Formulate measured covariance  

For i = no of iterations  

Initialize value for state parameter: data rate  

Initialize value for variance  

Formulate sigma points  

For l=no of links 

Calculate sigma points  

Predict sigma points for i+1  

Obtain predicted measurement mean 

Obtain priori covariance  

Obtain covariance of predicted measurement  

Formulate UKF estimate  

Put OPT = UKF_est(l)  

End  

Assess the UKF for all l  

Select link with higher UKF_est  

End 
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The following simulation depicts the data rate vs. rate of arrival of data. 

 

Fig. 4.1 Simulation depicting data rate vs. rate of arrival of data 

 

 

 

 



 18 

The following simulation results from Fig. 4.2 - 4.5 were obtained for four different arrival sets. 

 

Fig. 4.2 Link served per time unit for maximizing rate  

 

 

Fig. 4.3 Link served per time unit for maximizing rate 
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Fig. 4.4 Link served per time unit for maximizing rate 

 

 

Fig. 4.5 Link served per time unit for maximizing rate 



 20 

CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

The algorithm is scheduled to obtain the link with better performance. After a few 

iterations, the filter converges to an average value based on the input. This means, as the number 

of iterations increases, the error covariance decreases. This is because the input covariance that 

is supplied to the filter is small. In summation, the link is so selected that the system is 

optimized based on arrival of data rate.  

In the current thesis, an optimization method is implemented using the Kalman filter for 

OFDM transmission system. Thus the Kalman filter is used to optimize the data rate while 

transferring the data between different layers in a communication system. Simulations were 

performed to illustrate the link which results in the best estimate of maximizing data rate.  

This work can be further enhanced by testing for efficiency using various other filters like 

particle filter. Moreover, other parameters like time delay can also be tested and optimized. 
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