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ABSTRACT

Although Bayesian analysis has become vital to the quantification of prediction uncertainty in
groundwater modeling, its application has been hindered due to the computational cost associated
with numerous model executions needed for exploring the posterior probability density function
(PPDF) of model parameters. This is particularly the case when the PPDF is estimated using
Markov Chain Monte Carlo (MCMC) sampling. In this study, we develop a new approach that
improves computational efficiency of Bayesian inference by constructing a surrogate system based
on an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous
works using first-order hierarchical basis, we utilize a compactly supported higher-order hierar-
chical basis to construct the surrogate system, resulting in a significant reduction in the number
of computational simulations required. In addition, we use hierarchical surplus as an error indi-
cator to determine adaptive sparse grids. This allows local refinement in the uncertain domain
and/or anisotropic detection with respect to the random model parameters, which further improves
computational efficiency. Finally, we incorporate a global optimization technique and propose an
iterative algorithm for building the surrogate system for the PPDF with multiple significant modes.
Once the surrogate system is determined, the PPDF can be evaluated by sampling the surrogate
system directly with very little computational cost. The developed method is evaluated first using
a simple analytical density function with multiple modes and then using two synthetic groundwater
reactive transport models. The groundwater models represent different levels of complexity; the
first example involves coupled linear reactions and the second example simulates nonlinear ura-
nium surface complexation. The results show that the aSG-hSC is an effective and efficient tool
for Bayesian inference in groundwater modeling in comparison with conventional MCMC sim-
ulations. The computational efficiency is expected to be more beneficial to more computational
expensive groundwater problems.
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1 INTRODUCTION

Groundwater models are vital tools for predicting the effects of future anthropomorphic and/or
natural occurrences in the subsurface environment. Because it is essential for dealing with re-
alistic experimental data and assessing the reliability of predictions based on numerical simula-
tions, the development of novel uncertainty quantification (UQ) methodologies are necessary to
facilitate science-informed decision-making for water resource management. A crucial, yet of-
ten complicated, ingredient that all UQ approaches must i3corporate is a proper description of
the uncertainty in the system parameters, in the external environment, and in predictions. The
Bayesian inference is one of the more widely utilized approaches for quantifying such uncer-
tainty [1, 3, 4, 8, 20–23, 33, 34], wherein the uncertainty in the model parameters and predictions
are modeled as random variables. The Bayesian method can incorporate any type of prior infor-
mation and measurement errors in the posterior probability density function (PPDF), rendering the
Bayesian inference more informative, and therefore, more valuable for risk analysis and decision
processes.

To quantify the prediction uncertainty using the Bayesian method, one needs to simulate the
PPDF of model parameters. However, except in special cases in which the analytical expression
can be derived, the PPDF is usually known up to a multiplicative constant and needs to be esti-
mated numerically using sampling techniques. The probability density function (PDF) of model
predictions are typically estimated by virtue of the the following numerical procedure: (1) sample
realizations of the uncertain parameters from their PPDF, (2) for each set of sampled parameters,
evaluate the model prediction and (3) estimate the PDF of the model predictions by, e.g., construct-
ing histograms from the ensemble of simulations. For the first step, the Markov Chain Monte Carlo
(MCMC) method has proven to be a powerful approach to generate parameter samples from the
PPDF [9,15,21,31,32]. This approach is based on constructing Markov chains that have the desired
PPDF as its limiting distribution. The states of the chains after a large number of steps are then
used as samples of the PPDF. Due to the non-intrusive implementation of the MCMC approach,
it remains very popular approach for calculation ensembles of random solutions to groundwater
problems. Many algorithms have been developed to improve the computational efficiency, such
as delayed rejection and adaptive Metropolis (DRAM) sampling [13] and differential evolution
adaptive Metropolis (DREAM) sampling [31, 32]. These methods focus on reducing the needed
number of model executions required by the MCMC method by either increasing the acceptance
rate or decreasing the number of samples in the burn-in period before convergence.

However, even with a high acceptance rate and a short burn-in period, the MCMC approach still
requires a very large number of parameter samples to achieve a prescribed accuracy for the estima-
tion of the PPDF due to the slow convergence rate of the Monte Carlo sampling. The total compu-
tational burden is not significantly reduced because one model execution is still needed to generate
one parameter sample. Furthermore, since most groundwater problems are described by partial
differential equations (PDEs), estimating the PPDF and generating the ensemble of predictions
with MCMC require a substantial number of numerical approximations of the PDEs, i.e. forward
model executions. As a consequence, the MCMC approach is very computationally expensive,
especially for problems of modeling groundwater reactive transport [35]. We mention here that the
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number of forward model executions practically makes up the total computational cost because all
other MCMC calculations are simple algebraic operations and negligible when compared to the
cost of the forward model execution, e.g. solving PDEs.

Recently, surrogate modeling has been used to improve computational efficiency for model
calibration and optimization [29]. The sparse-grid stochastic collocation (SG-SC) method [24,
25] has received considerable attention due to its efficiency in uncertainty quantification (UQ),
especially for problems with a moderately large number of model parameters. The SG-SC method
was used to quantify forward uncertainty propagation in subsurface transport modeling [18,19]. In
[34] and [20], the SG-SC method was used to build surrogate systems for geophysical models, after
which the surrogate systems were employed to conduct Bayesian inference. However, the surrogate
systems used in these efforts were constructed using linear (first-order) hierarchical polynomial
functions, and increased number of interpolation points, i.e., more model executions, are needed
to obtain the prescribed interpolation accuracy. On the other hand, the surface of the PPDF may
have multiple significant modes where the significance of each mode is measured by the value of
the PPDF at its peak, i.e., the height of its peak. In this case, existing algorithms cannot succeed in
capturing all the significant modes or may succeed only with significantly increased computational
effort.

In this paper, a new approach is proposed to improve the efficiency of Bayesian inference using
an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. The general idea is
to construct a surrogate system with multiple components for the PPDF, each of which is a sur-
rogate model based on the aSG-hSC method to approximate one significant mode of the PPDF.
Subsequently, the surrogate system is employed to replace the true PPDF in the MCMC simula-
tion. Our method is advantageous for several reasons. First, we construct the surrogate system
with a sparse-grid interpolation with high-order hierarchical polynomial basis, as in [5, 11], using
e.g., quadratic or cubic functions. Due to their increased accuracy compared to the linear hierar-
chical basis, the number of model executions needed for constructing the surrogate system can be
greatly reduced. This high-order approach is not a trivial extension from the linear hierarchical
technique and, to our knowledge, this is the first attempt to introduce the high-order hierarchical
basis (coupled with the SG-SC approach) into the Bayesian framework. Second, instead of build-
ing the approximate PPDF using isotropic sparse-grid interpolation [2, 25] or dimension-adaptive
sparse-grid interpolation [24], we use a locally adaptive sparse-grid interpolation [11]. This tech-
nique utilizes the hierarchical surplus (discussed in Section 3.2) as an error indicator to detect the
non-smooth and/or important regions in the parameter space and adaptively place more points in
this area. This results in further computational gains and guarantees that a user-defined accuracy
of the surrogate system is realized.

In addition, we also incorporate global optimization into the surrogate system and propose
a new iterative algorithm to further reduce the computational cost and construct the surrogate
system for a PPDF with multiple significant modes. It is well-known that in conventional MCMC
methods the searching domain is usually defined to be relatively large due to the lack of information
concerning the locations of the significant modes of the PPDF. Markov chains will move toward
the the high-probability region of each significant mode by following the Metroplis-Hastings rule
[9]. However, if we construct a surrogate system over this arbitrarily large searching domain, a
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significant number of sparse grid points will be placed in the low-probability region of the PPDF as
it tries to detect each significant mode. This may result in the computational cost for the surrogate
system that may even exceed that of the conventional MCMC method, which in turn, renders
the surrogate system useless. To overcome this challenge, our iterative algorithm can capture all
the significant modes and build a surrogate for each of them. In each iteration, we utilize global
optimization to detect the maximum of one significant mode of the PPDF and determine a bounded
prior domain for the significant mode by estimating the Hessian matrix of the negative logarithm
of the PPDF at the detected maximum. In this effort, we use the global optimization algorithm
DIRECT, first proposed in [14], which is an improvement of the standard Lipschitzian approach
that eliminates the need to specify a Lipschitz constant. We demonstrate that our algorithm can
find all the modes whose significance is larger than a user-defined significance tolerance, and the
resulting prior domain for each significant mode determined in this way is much smaller than the
searching domain for the MCMC method.

The outline of this paper is as follows. In Section 2, we briefly introduce the Bayesian frame-
work and the MCMC algorithm used in this study. In Section 3, we introduce the global optimiza-
tion method and propose our aSG-hSC method for constructing the surrogate system. In Section
4, we apply our new approach to reactive transport problems and demonstrate its effectiveness and
efficiency when compared to the conventional MCMC method.
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2 PROBLEM DEFINITION

We consider the Bayesian inference problem for the general physical model

d = f(θ) + ε, (2.1)

where d = (d1, . . . , dNd) is a vector of Nd measurement data, θ = (θ1, . . . , θNθ) is a vector of
Nθ model parameters, f(θ) is the quantity of interest (QoI) of the forward model, e.g., discretized
PDE solution, with Nθ inputs and Nd outputs and ε is the random measurement error. Here, we
assume that ε satisfies the multivariate Gaussian distribution with zero mean and known covariance
matrix Σ, i.e., ε ∼ N(0,Σ). The PPDF p(θ|d) of the model parameters θ, given the data d, is
defined with the aid of Bayes’ theorem [4] as

p(θ|d) =
p(d|θ)p(θ)∫
p(d|θ)p(θ)dθ

, (2.2)

where p(θ) is the prior distribution and p(d|θ) is the likelihood function given by

p(d|θ) =
1

(2π)Nd/2|Σ|1/2

· exp
[
− 1

2
(d− f(θ))>Σ−1(d− f(θ))

]
,

(2.3)

with |Σ| the determinant of the covariance matrix. In practice, the likelihood function can be
defined in any alternative form based on the assumption of the distribution of the measurement
error. Note that the denominator of the Bayes’ formula in (2.2) is a normalization constant that
does not affect the shape of the PPDF. As such, in the hereafter discussion concerning building
surrogate systems, the notation p(θ|d) or the terminology PPDF will only refer to the product
p(d|θ)p(θ).

Due to the nonlinearity of the forward QoI f(θ) with respect to the parameter vector θ, it is
often difficult to draw samples from the PPDF directly. The MCMC method provides an effective
approach to sample the posterior distribution, such as Metropolis-Hastings (M-H) algorithm [9]
and its variants. The essence of the MCMC method is that that parameter samples are drawn from
a proposal distribution instead of the PPDF and the Markov property guarantees the convergence
of the proposal distribution to the posterior distribution. However, in practice, the convergence
is often very slow when using a poor proposal distribution that deviates far from the posterior
distribution. Thus, in this work, we use an improved MCMC algorithm based on the differential
evolution adaptive Metropolis approach (DREAM) developed in [31, 32]. The DREAM algorithm
uses multiple Markov chains simultaneously, where the set of all chains are viewed as a population
and the sampling procedure is treated as the evolution of the population. As such, the classic pro-
posal distribution used in the M-H algorithm is not necessary and the jump of each Markov chain
at each step, i.e., the direction and the scale of jump, is determined by differential evolution coming
from a genetic algorithm. It was shown in [31, 32] that DREAM is generally more efficient than
traditional MCMC algorithms in the absence of additional information about the PPDF. Our algo-
rithm will be built in the DREAM framework to develop surrogates for evaluating the likelihood
function in (2.3).
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3 METHODOLOGY

In this section, we introduce the aSG-hSC method for constructing the surrogate system for the
PPDF. As discussed in [27], when approximating a multivariate PPDF with a low variance, i.e.,
with a thin mode, interpolating the PPDF itself results in a very slow convergence rate. Thus, in
this effort, we instead construct the surrogate system for the logarithm of the PPDF. To provide
context for our new iterative algorithm discribed in Section 3.3, we first discuss, in Section 3.1, the
determination of the prior domain by means of global optimization, then, in Section 3.2, describe
the high-order hierarchical polynomial basis and the adaptive sparse-grid interpolation.

3.1 Global optimization for determining the prior domain

To construct a surrogate system, we need to define a prior domain for each significant mode, which
is a bounded domain covering the high-probability region of the mode. To this end, we start by
searching the global maximum of log(p(θ|d)) using global optimization. As shown in Section 3.3,
this will be conducted iteratively to search all significant modes of the PPDF. In this effort, we
use the algorithm DIRECT, first proposed in [14], which is a derivative-free global optimization
algorithm. The algorithm is an improvement of the standard Lipschitzian approach that eliminates
the need to specify a Lipschitz constant.= Hereinafter, we denote by D(·) the global optimization
solver with the input being the objective function and the output being the global maximum. The
searching domain for D(·) is represented by

Γ = [a1, b1]× · · · × [aNθ , bNθ ], (3.1)

which is set sufficiently large due to the lack of prior information.

By running the solver to obtain θ̂ = D(log(p(θ|d))), we then define a neighboring domain
of θ̂ that covers the high-probability region of the PPDF around θ̂. Note that when θ follows the
multi-variate Gaussian distribution, the Hessian matrix of − log(p(θ|d)), denoted by H(θ), is just
the inverse of the covariance matrix of θ, so that H−1(θ) can provide sufficient information to
determine the prior domain. In the case p(θ|d) does not have a standard Gaussian mode around
θ̂ (e.g., a skewed or twisted Gaussian mode), H−1(θ) still provides good sensitivity information
about p(θ|d) by which an appropriate prior domain can be defined. Thus, we use H−1(θ) as the
basis of constructing the prior domain, as shown below.

We estimate the value of the Hessian matrix H(θ) at the global maximum θ̂ using the formulas
in [26]. By defining ρ(θ) = − log(p(θ|d)), the Hessian can be estimated by

Hll(θ̂) =
ρ(θ̂ + ∆θl)− 2ρ(θ̂) + ρ(θ̂ −∆θl)

(∆θl)
2 , (3.2)
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for the diagonal entries and

Hlm(θ̂)

=
1

4∆θl∆θm
[ρ(θ̂ + ∆θl + ∆θm)− ρ(θ̂ + ∆θl −∆θm)

− ρ(θ̂ −∆θl + ∆θm) + ρ(θ̂ −∆θl −∆θm)]

(3.3)

for the off-diagonal entries. Here ∆θl and ∆θm are vectors with zero elements except for the lth
andmth entries which are equal to properly selected steps ∆θl and ∆θm. By calculating the inverse
H−1(θ̂), the diagonal elements of H−1(θ̂) are used to define the prior domain Γθ̂ covering θ̂, i.e.,

Γθ̂ = [θ̂ − βσ, θ̂ + βσ], (3.4)

where σ = (σ1, . . . , σNθ) is a vector of the square roots of the diagonal elements of H−1(θ̂), i.e.,
an estimation of the standard deviations of p(θ|d) in the neighborhood of θ̂, with β > 0 a user-
defined constant. It is well known that in the Gaussian case, 99.7% of the samples are within 3
standard deviations (β = 3) from the mean value. Although it is difficult to automatically find an
optimal value of β that forces the prior domain Γθ̂ to just fit the desired high-probability region
for a non-Gaussian mode, we can set it a little larger, e.g., β = 6, to guarantee that Γθ̂ covers the
significant mode very well for most common cases.

While both the global optimization solver D(·) and the calculation of the Hessian matrix re-
quire forward model executions, such computational expense is worthwhile because it provides a
bounded prior domain Γθ̂ having a significantly reduced volume, compared to the volume of the
searching domain Γ in (3.1). This results in a diminished number of model executions required to
construct the surrogate system of the PPDF. If the PPDF p(θ|d) has multiple significant modes, the
procedure discussed above will be used in each iteration of our new algorithm discussed in Section
3.3.

3.2 Adaptive sparse-grid high-order stochastic collocation method

After obtaining the prior domain Γθ̂ in (3.4) for the significant mode of the PPDF around θ̂ in
the parameter space, the next task is to build the surrogate model for log(p(θ|d)) on Γθ̂ using
the aSG-hSC method. Here, we briefly describe the development of the aSG-hSC method and
refer to [2, 5, 11, 16] for details. For convenience of discussion, we use a general function η(θ) to
represent log(p(θ|d)).

3.2.1 One-dimensional hierarchical interpolation

We begin by introducing hierarchical interpolation in one-dimensional (1-D) which is then used
to construct the desired sparse-grid approximation in the multi-dimensional setting. Consider a
function η(θ) : [0, 1] → R where the standard domain [0, 1] can be re-scaled to any bounded

7



domain by translation and dilation. The 1-D hierarchical Lagrange interpolation formula is defined
by

UL(η)(θ) =
L∑

i=0

∆U i(η)(θ), (3.5)

where the incremental interpolation operator ∆U i(η) is given as

∆U i(η)(θ) =

mi∑

j=0

cijφ
i
j(θ) i = 0, . . . , L. (3.6)

The nonnegative integer L in (3.5) is called the resolution level of the hierarchical interpolant
UL(η) and the summation over the resolution level in (3.5) exhibits the hierarchical structure of
the interpolant UL(η). For j = 1, . . . ,mi, φij(θ) and cij in (3.6) are the basis functions and the
interpolation coefficients for ∆U i(η), respectively. For i = 0, . . . , L, the integer mi in (3.6) is the
number of interpolation points involved in ∆U i(η), which is defined by





m0 = 1

m1 = 2

mi = 2i−1 if i ≥ 2.

(3.7)

We utilize a uniform grid, denoted by ∆X i = {θij}mij=1, for the incremental interpolant ∆U i(η).
The abscissas of ∆X i are defined by

θ0
1 = 0.5 for i = 0,

θ1
1 = 0, θ1

2 = 1 for i = 1,

θij =
2j − 1
i∑

k=0

mk − 1

for j = 1 . . . ,mi, i ≥ 2.

(3.8)

Then, the hierarchical grid for UL(η)(θ) is defined by

X L =
L⋃

i=0

∆X i. (3.9)

Since the representation of cij depends on the properties of the selected basis function φij(θ), we
first discuss the selection of these functions. Different from the previous studies that utilize linear
hierarchical basis functions to build surrogate models, in this study, we use high-order hierarchical
polynomial basis functions, including quadratic and cubic hierarchical basis defined in [5], in order
to improve the accuracy and efficiency when constructing the surrogate system. For comparisons,
below we provide the expressions for linear, quadratic, and cubic hierarchical polynomial bases.
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Linear hierarchical basis For i = 0, mi = 1

φ0
1(θ) = 1 on [0, 1]. (3.10)

For i > 0, j = 1, . . . ,mi,

φij(θ) =





1−
∣∣θ − θij

∣∣
dθ

, if
∣∣θ − θij

∣∣ < dθ,

0, otherwise,
(3.11)

where dθ = 1
2i

.

Quadratic hierarchical basis For i = 0, we use the linear hierarchical basis defined in (3.10).
For i = 1, j = 1, 2, define dθ = 1

2
and set

φ1
1(θ) =

θ − θ1
1 − dθ
−dθ · θ − θ

1
1 − 2dθ

−2dθ
on [0, 1], (3.12)

φ1
2(θ) =

θ − θ1
2 + dθ

dθ
· θ − θ

1
2 + 2dθ

2dθ
on [0, 1]. (3.13)

For i ≥ 2, j = 1, . . . ,mi, let

φij(θ) =





θ − θij − dθ
−dθ · θ − θ

i
j + dθ

dθ
if θ ∈ Πi

j,

0, otherwise,
(3.14)

where dθ = 1
2i

and Πi
j = [θij − dθ, θij + dθ].

Cubic hierarchical basis For i = 0 and i = 1, we use the linear hierarchical basis and quadratic
hierarchical basis, defined by (3.10) and (3.12)-(3.13) respectively. For i ≥ 2, j = 1, . . . ,mi and j
is odd,

φij(θ) =





3∏

k=1

θ − θij − (2k − 3)dθ

−(2k − 3)dθ
, if θ ∈ Πi

j,

0, otherwise.

(3.15)

where dθ = 1
2i

and Πi
j = [θij − dθ, θij + dθ].

For i ≥ 2, j = 1, . . . ,mi and j is even,

φij(θ) =





3∏

k=1

θ − θij − (2k − 5)dθ

−(2k − 5)dθ
, if θ ∈ Πi

j,

0, otherwise.

(3.16)

where dθ = 1
2i

and Πi
j = [θij − dθ, θij + dθ].
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Figure 1: One dimensional 3-level hierarchical bases: linear basis (left), quadratic basis (middle),
and cubic basis (right).

Figure 1 depicts the hierarchical basis functions from level 0 to level 3 for the linear, quadratic,
and cubic bases given by (3.10)-(3.16). It is easy to see that on each level i > 0

φij(θ
i
k) =

{
1, if j = k

0, if j 6= k, j = 1, . . . ,mi.
(3.17)

Thus, based on (3.5), (3.6), (3.17) and the interpolatory property of UL(η), i.e., UL(η)(θij) = η(θij)
for j = 1, . . . ,mi and i = 0, . . . , L, we can derive the representation of the coefficient cij as
follows. For i = 0,

c0
1 = ∆U0(η)(θ0

1) = U0(η)(θ0
1) = η(θ0

1) (3.18)

and for i > 0, j = 1, . . . ,mi,

cij = ∆U i(η)(θij)

= U i(η)(θij)− U i−1(η)(θij)

= η(θij)− U i−1(η)(θij).

(3.19)

The coefficient cij is defined as the hierarchical surplus of the basis function φij(θ), which is the
difference between the value of the interpolated function η(θ) and the value of the interpolant
U i−1(η) at θij . As discussed in [16] and [20], when the function η(θ) is smooth with respect to θ, the
magnitude of the surplus cij will approach to zero as the resolution level i increases, so that it can be
used as an error indicator for the interpolant U i(η) in order to guide the mesh refinement. Further
discussion about building adaptive sparse grids will be provided in Section 3.2.3. First we explain
how to interpolate multi-dimensional functions through the isotropic sparse grid construction that
helps alleviate the curse of dimensionality in higher-dimensional problems.
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3.2.2 Isotropic sparse-grid interpolation

Based on the one-dimensional hierarchical interpolation discussed in Section 3.2.1, we consider
constructing an approximation for a multivariate function. We start from the isotropic sparse-grid
interpolation by considering a function η(θ) : [0, 1]Nθ → R where θ = (θ1, . . . , θNθ). Analo-
gous to the definitions of UL(η) in (3.5) and ∆U i(η) in (3.6), we define the multi-dimensional
hierarchical interpolation formula as

IL,Nθ(η)(θ) =
∑

λ(i)≤L

∆I i,Nθ(η)(θ) (3.20)

and the multi-dimensional incremental interpolation operator ∆I i,Nθ(η)(θ) is defined by

∆I i,Nθ(η)(θ) = ∆U i1 ⊗ · · · ⊗∆U iNθ (η)(θ) =
∑

j∈Bi

cijφ
i
j(θ), (3.21)

where i = (i1, . . . , iNθ) is a multi-index that indicates the resolution level of ∆I i,Nθ(η), λ(i) :
NNθ → N is a strictly increasing function, j = (j1, . . . , jNθ) belongs to the multi-index set

Bi =
{
j ∈ NNθ

∣∣ jn = 1, . . . ,min , n = 1, . . . , Nθ

}
, (3.22)

and cij is the multi-dimensional hierarchical surplus. The function φi
j(θ) is the multi-dimensional

hierarchical function defined by

φi
j(θ) =

Nθ∏

n=1

φinjn(θn), (3.23)

where, for n = 1, . . . Nθ, φinjn(θn) is the one-dimensional hierarchical basis function. We also define

the multi-dimensional grid point θij = (θi11,j1 , . . . , θ
iNθ
Nθ,jNθ

) that corresponds to the basisφi
j(θ). From

(3.21), we can see that the multi-dimensional incremental interpolation operator on level i is the
tensor product of Nθ one-dimensional incremental interpolation operators, so we use the notation
∆U i1 ⊗ · · · ⊗∆U iNθ (η) to illustrate the tensor-product operation. In the following discussion, we
only use the equivalent notation ∆I i,Nθ(η) to denote the incremental interpolation operator. The
grids for ∆I i,Nθ(η) and IL,Nθ(η), denoted by ∆Hi,Nθ andHL,Nθ respectively, are represented as

∆Hi,Nθ = ∆X i1 × · · · ×∆X iNθ

HL,Nθ =
⋃

λ(i)≤L

∆Hi,Nθ . (3.24)

Note that ∆I i,Nθ(η) involves a total of
∏Nθ

n=1min grid points. In addition, IL,Nθ(η) is composed
of several incremental interpolants. Thus, the definition of the function λ(i) in (3.20) determines
the number of grid points involved in IL,Nθ(η) and also the structure of the resulting grid. We give
the following two definitions corresponding to full tensor-product grids and isotropic sparse grids:

(a) Full tensor-product grid: λ(i) = max
n=1,...,Nθ

in,

(b) Isotropic sparse grid: λ(i) = |i| = i1 + · · ·+ iNθ .
(3.25)
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Clearly, a L-level full tensor-product interpolant needs (
∑L

i=1mi)
Nθ grid points and function val-

ues wheremi is defined in (3.7). This is also the number of model executions needed when building
the surrogate system. Using the full tensor-product formulation, the number of grid points grows
exponentially with the number of random parameters Nθ, and therefore, we utilize the second def-
inition of λ(i), which corresponds to the isotropic sparse-grid interpolation, to combat the curse of
dimensionality as the dimension Nθ increases.

i 2
=

3
,
m

i 2
=

4
i 2

=
2
,
m

i 2
=

2
i 2

=
1
,
m

i 2
=

2

i1 = 0, mi1 = 1

i 2
=

0
,
m

i 2
=

1

i1 = 1, mi1 = 2 i1 = 2, mi1 = 2 i1 = 3, mi1 = 4

sparse grid: 29 points(L = 3)

full tensor-product grid: 81 points

(a)

(b)

(c)

Figure 2: A comparison of a 3-level isotropic sparse grid (b) and the corresponding full tensor-
product grid (c) based on Newton-Cotes points. The sparse grid (b) consists of 10 coarse sub-grids
above the dashed line in (a)(grids shown in black), each of which is a coarse tensor-product grid
with i1 + i2 ≤ 3. The sparse grid has only 29 points. The full tensor-product grid (c), constructed
by the all 16 sub-grids in (a) (grids shown in both black and gray) with max(i1, i2) ≤ 3 , has 81
points.

The definitions of λ(i) in (3.25) show that an L-level isotropic sparse grid is a sub-grid of
an L-level full tensor-product grid. For example, the construction of a two-dimensional level
L = 3 isotropic sparse grid is illustrated in Figure 2. The resolution level in one dimension can
be i1 = 0, 1, 2, 3 as shown in the top horizontal lines in Figure 2(a). The same is true for the
other dimension as shown in the left vertical lines. There are a total of 16 sub-grids in Figure 2(a),
each of which corresponds to an incremental interpolant ∆I i,2(η) in (3.20), where i = (i1, i2)
and 0 ≤ i1, i2 ≤ 3. Different combinations of i1 and i2 with max(i1, i2) ≤ 3 lead to all the 16
sub-grids in Figure 2(a), the union of which constitutes the level L = 3 full tensor-product grid
with the 81 grid points shown in Figure 2(c). In comparison, different combinations of i1 and i2
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with |i| = i1 + i2 ≤ 3 lead to only 10 sub-grids above the dashed line in Figure 2(a), the union
of which constitutes the level L = 3 isotropic sparse grid with only the 29 grid points shown
in Figure 2(b). This reduction is significant even though the maximum number of interpolation
points in each dimension is the same for the both grids. Generally speaking, an isotropic sparse
grid involves approximately O(M · log(M)Nθ−1) points where M =

∑L
i=1mi, whereas a full

tensor-product grid involves O(MNθ) points [25]. However, even though many fewer points are
used the accuracy of the sparse-grid interpolation does not appreciably deteriorate compared to
that for the full tensor-product interpolation, as proved by [2, 5]. Thus, in the sequel, we fix the
definition of λ(i) in (3.20) to be λ(i) = |i| = i1 + · · · + iNθ and refer to (3.20) as an isotropic
sparse-grid interpolant.

Next, we turn to the computation of the coefficients cij. Analogous to the one-dimensional case
and the discussion in [16], for L = 0, i.e., i1 = i2 = · · · = iNθ = 0, we have

c01 = ∆I0,Nθ(η)(θ01) = I0,Nθ(η)(θ01) = η(θ01). (3.26)

For L > 0, |i| = L and ∀θij ∈ ∆Hi,Nθ , we arrive at

cij = ∆I i,Nθ(η)(θij)

= IL,Nθ(η)(θij)− IL−1,Nθ(η)(θij)

= η(θij)− IL−1,Nθ(η)(θij).

(3.27)

Next, we will explain how to construct aSG-hSC approximations using the higher-order hierarchi-
cal polynomials described in (3.10)-(3.16).

3.2.3 Adaptive sparse-grid interpolation

Analogous to the discussion in Section 3.2.1, in the multi-dimensional case, if η(θ) is smooth
with respect to θ, the magnitude of the hierarchical surplus will also decay to zero as the resolution
level L of IL,Nθ(η) increases. Furthermore, the smoother the function η(θ) is, the faster the surplus
decays. This provides us a good approach to construct adaptive sparse-grid interpolants using the
surplus as an error indicator. Another adaptive sparse grid stochastic collocation approach that
uses the magnitude of wavelet coefficients to guide refinement is described in [12].

We start by focusing on the construction of one-dimensional adaptive grids and then extending
the adaptivity to the multi-dimensional sparse grid. As shown in Figure 3, the one-dimensional
hierarchical grid points have a tree-like structure. In general, a grid point θij on level i has two
children, namely θi+1

2j−1 and θi+1
2j on level i + 1. Special treatment is required when moving from

level 1 to level 2, where we only add one child point on level 2 for each of the nodes θ1
1 and θ1

2. On
each successive interpolation level, the basic idea of adaptivity is to use the hierarchical surplus
as an error indicator to detect the smoothness of the target function and refine the grid by adding
two new points on the next level for each point whose magnitude of the surplus is larger than the
prescribed error tolerance. For example, in Figure 3, we illustrate the 6-level adaptive grid for
interpolating the function η(θ) = exp[−(θ−0.4)2/0.06252] on [0, 1] with the error tolerance being
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0.01. From level 0 to level 2, because the magnitude of every surplus is larger than 0.01, two points
are added for each grid point on level 0 and 2; one point is added for each grid point on level 1. But
on level 3, there is only 1 point θ3

2, the magnitude of whose surplus is larger than 0.01, so only two
new points are added on level 4. If we proceed through levels 5 and 6, we end up with the 6-level
adaptive grid with only 21 points (points in black in Figure 3), whereas the 6-level non-adaptive
grid has a total of 65 points (points in black and gray in Figure 3).
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]
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Figure 3: A 6-level adaptive sparse grid for interpolating a one-dimensional function η(θ) =
exp[−(θ − 0.4)2/0.06252] on [0, 1] with the error tolerance of 0.01. The resulting adaptive sparse
grid has only 21 points (black points) whereas the full grid has 65 points (black and gray points).

It is trivial to extend the adaptivity from the one-dimensional adaptive grid to the multi-dimensional
adaptive sparse grid. The isotropic level L sparse gridHL,Nθ in (3.24) can be rewritten as

HL,Nθ =
{
θij =

(
θi1j1 , . . . , θ

iNθ
jNθ

)∣∣∣ |i| ≤ L
}
, (3.28)

where the grid points have the tree-like structure in each dimension. For example, a point θij ∈
HL,Nθ has 2 children points in each direction, so that it has a total of 2Nθ children. For n =
1, . . . , Nθ, the two children of θij , denoted by Cn

1 (θij) and Cn
2 (θij), are represented by

Cn
1 (θij) =

(
θi1j1 , . . . , θ

in−1

jn−1
, θin+1

2jn−1, θ
in+1

jn+1
, . . . , θ

iNθ
jNθ

)
,

Cn
2 (θij) =

(
θi1j1 , . . . , θ

in−1

jn−1
, θin+1

2jn
, θ
in+1

jn+1
, . . . , θ

iNθ
jNθ

)
,

(3.29)
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where Cn
1 (θij), C

n
2 (θij) ∈ ∆Hîn,Nθ with în = (i1, . . . , in−1, in + 1, in+1, . . . , iNθ) and |̂in| = |i|+ 1.

Note that the children of each sparse-grid point on level |i| belong to the sparse-grid point set of
level |i| + 1. By adding children points, we actually perform the sparse-grid interpolation from
level |i| to level |i| + 1. Thus, in this way, we refine the sparse grid locally while not breaking the
structure of sparse grids. For a prescribed error tolerance α, the adaptive sparse-grid interpolant is
defined as

IL,Nθα (η)(θ) =
∑

|i|≤L

∑

j∈Bαi

cijφ
i
j(θ), (3.30)

where the multi-index set Bα
i can be defined by modifying the multi-index set Bi in (3.22), i.e.,

Bα
i =

{
j ∈ Bi

∣∣|cij| > α
}
. (3.31)

Thus, the level L adaptive sparse-grid interpolant IL,Nθα (η) in (3.30) only retains the terms of the
isotropic sparse-grid interpolant IL,Nθ(η) in (3.20) for which the magnitudes of the corresponding
surpluses are larger than α. The corresponding adaptive spare grid can be represented by

HL,Nθ
α =

{
θij
∣∣ |i| ≤ L and j ∈ Bα

i

}
, (3.32)

which is a sub-grid of the level L isotropic sparse grid HL,Nθ in (3.24). If the tolerance α = 0,
the adaptive sparse-grid interpolant IL,Nθα (η) is equivalent to the isotropic sparse grid interplant
IL,Nθ(η) in (3.20); if α > 0, it will adaptively select which points are added to the sparse grid.
Subsequently, the sparse-grid points will become concentrated in the non-smooth region, e.g.,
where oscillations or sharp transitions occur, to guarantee the prescribed accuracy of the interpo-
lation. On the other hand, in the region where η(θ) is very smooth, e.g., insensitive to certain
parameters, this approach will save a significant number of grid points but still achieve the pre-
scribed accuracy. Therefore, the adaptive sparse-grid interpolation can further reduce the number
of model executions, which significantly improves the efficiency for building the surrogate system.

3.3 Algorithm for constructing the surrogate PPDF

In this section, we introduce our algorithm for building the surrogate system for log(p(θ|d)) using
the global optimization and aSG-hSC method discussed in Section 3.1 and 3.2, respectively. We
remark that the PPDF may have multiple significant modes due to the non-linearity of reactive
transport models. Thus, we propose an iterative algorithm in order to capture all the significant
modes one-by-one, and build the surrogate system consisting of several components, each of which
approximates one significant mode.

We explain our algorithm according to the flow chart shown in Figure 4. First, the searching
domain Γ for the global optimization solver D(·) is defined as in (3.1). The target function g(θ) is
set to

g(θ) = log(p(θ|d)) + C (3.33)

where C > 0 is a sufficiently large constant that enforces g(θ) ≥ 0; we will discuss the function-
ality of C later in this section. The surrogate system, denoted by S(θ), has no component initially,
i.e., S(θ) = 0. For the first iteration (k = 1) in Figure 4, the global optimization solver D(·) is
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used to search for the global maximum θ̂1 of the function g1(θ) = g(θ) where g1(θ̂1) is the highest
peak of g(θ). Then, we calculate the inverse Hessian matrix H−1(θ̂1) of −g1(θ), determine the
prior domain Γθ̂1

in (3.4) that covers the high-probability region of the PPDF around θ̂1, and then
build the adaptive sparse-grid interpolant

S1(θ) = IL,Nθα (g)(θ) (3.34)

on the prior domain Γθ̂1
by setting η(θ) = g(θ) in (3.30). S1(θ) is the first component of the

surrogate system S(θ). After that, S(θ) is updated to S(θ) = S1(θ)XΓ
θ̂1

(θ), where XΓ
θ̂1

(θ) is the
characteristic function of the prior domain Γθ̂1

.

From Figure 4, for k ≥ 2, because the surrogate system already has k − 1 components, the
output of the optimization solver D(·) searches the global maximum of the remainder

gk(θ) = g(θ)− S(θ) = g(θ)−
k−1∑

m=1

Sm(θ)XΓ
θ̂m

(θ), (3.35)

where, for m = 1, . . . , k− 1, Sm(θ) is the m-th component of the surrogate system defined on the
domain Γθ̂m

. Namely, the maximum θ̂k, defined by

θ̂k = D(gk(θ)), (3.36)

represents the k-th highest peak of the PPDF p(θ|d). Here we explain the functionality of the
constant C in (3.33). According to the formula of the likelihood function in (2.3), log(p(θ|d))
may be negative at the maxima of some significant modes. In this case, if C = 0 in (3.33) and
log(p(θ̂k|d)) < 0, since gk(θ) is very close to zero in the domain

⋃k−1
m=1 Γθ̂m , the output of D(gk(θ))

in (3.36) would not be θ̂k but some other value in
⋃k−1
m=1 Γθ̂m . If this occurs, our algorithm fails

to capture the remaining significant modes. Therefore, we use the sufficiently large shift constant
C > 0 in (3.33) to guarantee g(θ) ≥ 0 at the maximum of each significant mode.

We use the significance ratio, defined by

δ = exp

[
g(θ̂k)

g(θ̂1)

]
(3.37)

to stop the algorithm when g(θ̂k) is too small to be significant. Here δ measures the ratio of the
PPDF values at θ̂k and θ̂1. If the ratio is smaller than a user-defined tolerance δ̃, for example
δ < δ̃ = 10−5, then on the PPDF, the height of the peak at θ̂k is much smaller than that of the
highest peak at θ̂1, so we do not need to construct a surrogate component for such a small mode
(i.e., the mode is insignificant). Otherwise, if δ ≥ δ̃, then the mode around θ̂k is considered as a
significant mode. We treat θ̂k as θ̂1 by constructing the k-th component Sk(θ) and add it to the
surrogate system S(θ). Eventually, we end up with a surrogate system for log(p(θ|d)) with M
components, i.e.,

S(θ) =
M∑

m=1

Sm(θ)XΓ
θ̂m

(θ)− C on Γ. (3.38)
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The total number of model executions for constructing S(θ) in (3.38) includes three contributions:
the global optimization, the estimation of the Hessian matrix, and the adaptive sparse-grid interpo-
lation. We discussed the first two parts in Section 3.1. Based on the computational gains provided
by the reduced volume of the union of all the prior domains

⋃M
m=1 Γθ̂m

, the use of the surrogate
system S(θ) based on the high-order hierarchical basis can further reduce the total computational
cost.
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Figure 4: The algorithm for constructing the surrogate system of the PPDF.
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4 APPLICATION IN GROUNDWATER REACTIVE TRANSPORT
MODELING

In this section, first, the aSG-hSC method is evaluated in Appendix A using a bivariate function
that can be viewed as a PDF of two parameters with four modes. This illustrates the performance
of the iterative algorithm presented in Section 3.3 for building the surrogate system of a PDF
with multiple significant modes. Next, the effectiveness and efficiency of the aSG-hSC method
are illustrated in building the surrogate system for the PPDF using two synthetic groundwater
reactive transport examples. The first example is about multi-species reactive transport discussed
in [30]. The second example is related to reactive transport of uranium (VI) in column experiment,
which is revised from [17]. While the first example involves only linear reactions, the second
example is more complicated consisting of nonlinear reactions. we evaluate our aSG-hSC method
by comparing the results of aSG-hSC-based MCMC with those of the conventional MCMC in
approximating the PPDFs of model parameters and the PDFs of model predictions. In this work
the efficiency of Bayesian inference is evaluated from two perspectives: (1) the number of model
executions required to obtain an estimate of the PPDF within a prescribed accuracy, and (2) the
accuracy of the approximate PPDF for a given number of model executions. These two criteria are
complementary representing situations when large or limited model executions are affordable.

4.1 Case 1: Multi-species reactive transport equations

In the first synthetic study, we consider the transport of multiple reactive species coupled by a
serial-parallel reaction network in a uniform flow field studied in [30]. As shown in Figure 5, the
species A has one child species B and B has three child species C1, C2, C3. The governing PDEs
of simultaneous transport and degradation of the five species involved in the serial-parallel reaction
network are as follows:

∂cA
∂t
−D∂

2cA
∂x2

+ v
∂cA
∂x

= −kAcA
∂cB
∂t
−D∂

2cB
∂x2

+ v
∂cB
∂x

= yBkAcA − kBcB
∂cC1

∂t
−D∂

2cC1

∂x2
+ v

∂cC1

∂x
= yC1kBcB − kC1cC1

∂cC2

∂t
−D∂

2cC2

∂x2
+ v

∂cC2

∂x
= yC2kBcB − kC2cC2

∂cC3

∂t
−D∂

2cC3

∂x2
+ v

∂cC3

∂x
= yC3kBcB − kC3cC3 ,

(4.1)

where cA, cB, cC1 , cC2 , cC3 are the concentrations of the five species A, B, C1, C2, C3 respectively,
t is the time, x is the spacial location in the domain [0,40], v is the constant flow velocity, D is the
constant hydrodynamic dispersion coefficient, kA, kB, kC1 , kC2 , kC3 are the reaction rates of the
species, yB is the stoichiometric yield factor that describes the production of its parent species A
to B, and likewise for yC1 , yC2 , yC3 .
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Figure 5: The serial-parallel reaction network in Case 1.

The true parameter values given in Table 1 are adopted from [30]. Based on these true pa-
rameter values, we generate the synthetic data by solving the system (4.1) at time t = 40 and
x = {4, 8, 12, 16, 20, 24, 28, 32, 36, 40}. It generates a total of 50 simulated values of the five con-
centrations, cA, cB, cC1 , cC2 , and cC3 . Then, these simulated values are corrupted with 3% Gaussian
random noise, and the corrupted data are treated as measurements. In the MCMC simulation, six
of the parameters listed in Table 1 are considered as unknown parameters which are the dispersion
D and the logarithm of the five reaction rates, log(kA), log(kB), log(kC1), log(kC2) and log(kC3).

Table 1: True parameter values used in Case 1.
Parameter Symbol Value
Dispersion D 10
Velocity v 0.4
Reaction rate of A kA 0.2
Reaction rate of B kB 0.1
Reaction rate of C1 kC1 0.02
Reaction rate of C2 kC2 0.02
Reaction rate of C3 kC3 0.02
Stoichiometric yield of A→ B yB 0.5
Stoichiometric yield of B → C1 yC1 0.3
Stoichiometric yield of B → C2 yC2 0.2
Stoichiometric yield of B → C3 yC3 0.1

Here, we solve the PDEs in (4.1) using the numerical code PHT3D [28], and the number of
forward model executions is equal to the number of times that PHT3D is called. To evaluate the
performance of the aSG-hSC method, we take the conventional MCMC simulation results as ref-
erence, i.e., the results computed without using the surrogate system. The surrogate system is
constructed by following the algorithm discussed in Section 3.3. The procedure of the algorithm
is also illustrated in Figure 4. First, we define the searching domain Γ of the unknown parameters
for the optimization solver D(·) as shown in Table 2. Then, in the searching domain, we conduct
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Table 2: The true values, the initial searching domain Γ and the prior domain Γθ̂1
of the six

unknown parameters in Case 1.
D log(kA) log(kB) log(kC1) log(kC2) log(kC3)

true value 10 -1.6094 -2.3026 -3.9120 -3.9120 -3.9120
Γ [1,20] [-10, -0.1] [-10, -0.1] [-10, -0.1] [-10, -0.1] [-10, -0.1]

Γθ̂1
[8.0, 12.2] [-1.8, -1.4] [-2.5,-2.1] [-4.5,-3.2] [-4.5,-3.2] [-4.5,-3.2]

the global optimization solver D(·). The shift constant C in (3.33) is set to 104 here, which is con-
sidered large enough to make log(p(θ|d)) + C ≥ 0. The solver D(·) takes 1034 model executions
to find the first maximum of g1(θ) = log(p(θ|d)) + C which is

θ̂1 = (10.151,−1.607,−2.289,−3.819,−3.822,−3.911), (4.2)

where the value of the logarithm of the joint PPDF at the peak θ̂1 is log(p(θ̂1|d)) = −7.9128.
Next, we compute the Hessian matrix H(θ̂1) using the formulas in (3.2) and (3.3), which requires
73 model executions. By taking the inverse, we obtain

H−1(θ̂1) =




0.1203 0.0080 0.0085 0.0277 0.0270 0.0296
0.0080 0.0007 0.0005 0.0019 0.0018 0.0020
0.0085 0.0005 0.0008 0.0021 0.0020 0.0023
0.0277 0.0019 0.0021 0.0101 0.0065 0.0071
0.0270 0.0018 0.0020 0.0065 0.0096 0.0070
0.0296 0.0020 0.0023 0.0071 0.0070 0.0112



. (4.3)

Based on this first found maximum, we construct the prior domain for θ̂1 which is calculated
using (3.4) with β = 6. The results are listed in Table 2 as Γθ̂1

. The difference between Γθ̂1
and Γ in Table 2 indicates that the volume of the prior domain Γθ̂1

is much smaller than the
searching domain Γ, suggesting that building surrogate system on the prior domain can greatly
reduce computational cost compared to that on the searching domain Γ. After that, on the prior
domain Γθ̂1

, we construct the adaptive sparse-grid interpolant IL,Nθα (η)(θ) in (3.30) by setting
η(θ) = log(p(θ|d)) + C, Nθ = 6, L = 10 and the tolerance α = 0.0001, which is the first
component S1(θ) of the surrogate system S(θ). For comparison, we build three interpolants with
linear, quadratic, and cubic basis functions, as shown in Figure 1. The number of model executions
needed for the three interpolants are 6760, 1909, and 1299, respectively, which are also the number
of points of the three corresponding adaptive sparse grids.

Next, based on the first component S1(θ), we continue to search the second maximum of
log(p(θ|d)) + C by having the global optimization solver D(·) act on the remainder g2(θ) =
log(p(θ|d))−S1(θ)+C. The solver D(·) takes 1359 model executions to find the global maximum
of g2(θ) which is

θ̂2 = (12.151,−1.535,−2.149,−4.222,−4.257,−3.583), (4.4)

where the value of the logarithm of the PPDF at the peak θ̂2 is log(p(θ̂2|d)) = −45.2932. By
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setting the significance tolerance to δ̃ = 10−5 in Figure 4, the significance ratio in (3.37) is

δ =
p(θ̂2|d)

p(θ̂1|d)
= 5.8331× 10−17 < δ̃. (4.5)

This suggests that the second maximum is extremely small compared to the first one and there is
no need to construct the surrogate component for it. So, finally, the surrogate system has only one
component corresponding to the first maximum, as represented by S(θ) = S1(θ)− C.
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Figure 6: The marginal PPDFs for the six unknown parameters in Case 1 are estimated using
the conventional MCMC (C-MCMC) with 60,000 model executions (red-solid lines), the linear,
quadratic, and cubic surrogate systems with 9226, 4375, 3765 model executions (dashed lines),
respectively. The true parameter values are plotted in black-solid lines. Take the conventional
MCMC results as reference, the estimations by the surrogate systems are accurate enough but with
computational cost greatly reduced.

With the constructed surrogate system S(θ), we explore the PPDF of model parameters by
conducting the MCMC simulation which is executed in the searching domain Γ as listed in Table
2. The prior distribution of each parameter is assumed to be uniform distribution with bounds the
same as the searching domain. Four MCMC simulations are conducted, three of which are based on
the linear, quadratic, and cubic surrogate systems, respectively, and the other is conducted via the
conventional MCMC without using the surrogate systems. Each MCMC simulation draws 60,000
parameter samples using three Markov chains, i.e., each chain evolves 20,000 generations. Before
conducting further analysis, it is important to check convergence of the chains. Several methods
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Figure 7: The marginal PPDFs for the six unknown parameters in Case 1 are estimated using the
conventional MCMC (C-MCMC) with 60,000 model executions (red-solid lines) and 9226, 4375,
3765 model executions (dashed lines) which correspond to those used by the linear, quadratic,
and cubic surrogate systems,respectively in Figure 6. The true parameter values are plotted in
black-solid lines.

have been developed for the convergence diagnostics [6]. Here, we use the Gelman-Rubin R statis-
tic [10] to determine the convergence (when the R is smaller than 1.2, the chains are thought to be
converged). The calculated Gelman-Rubin R statistic indicates that the Markov chains converge
after 720, 840, 970, and 760 generations for the linear, quadratic, and cubic surrogates and the con-
ventional MCMC, respectively. For simplicity, we discard the first 1,000 generations in all the four
simulations and use the remaining 60, 000−1, 000×3 = 57, 000 samples to explore the PPDF. The
marginal PPDFs for the six parameters are plotted in Figure 6. The black vertical line represents
the true value of each unknown parameter, as listed in Table 2. The red-solid lines represent the
marginal PPDFs estimated by the conventional MCMC, and the dashed lines represent those esti-
mated by the MCMC simulations based on the surrogate systems. Taking the conventional MCMC
results as reference, Figure 6 indicates that the MCMC results based on the surrogate systems con-
structed by our aSG-hSC method can make good approximations for the marginal PPDFs. With
the comparable accuracy, however, the surrogate-based MCMC needs significantly fewer model
executions. The number of model executions for the conventional MCMC is 60,000 while the
MCMC with linear, quadratic, and cubic surrogate systems only costs 9226, 4375 and 3765 model
executions, respectively, where the 1034 executions for finding the first maximum, the 73 exe-
cutions for calculating the Hessian matrix, the 6760, 1909, and 1299 executions for building the
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linear, quadratic, and cubic adaptive sparse-grid interpolants, and the 1359 executions for finding
the second maximum. For the surrogate-based MCMC simulations, drawing parameter samples
does not take any model executions and the computational time is negligible since the calcula-
tion of the PPDF is just polynomial evaluation. The improvement of computational efficiency by
using our surrogate systems is more outstanding when more parameter samples are drawn in the
MCMC simulation. In addition, we compare the accuracy of the surrogate-based MCMC and the
conventional MCMC with the same computational effort. The marginal PPDF for each parame-
ter based on the conventional MCMC with 9226, 4375, 3765 samples, are plotted in Figure 7 as
dashed lines. Comparing the corresponding graphs in Figure 6 and 7 indicates that with the same
number of model executions, the approximations in Figure 6 using our surrogate systems are more
accurate than those in Figure 7 using the conventional MCMC. This demonstrates the efficiency of
our surrogate-based MCMC method from the other perspective.
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Figure 8: The errors of the surrogate systems based on linear, quadratic, and cubic hierarchical
basis functions in Case 1.

Comparing different surrogate systems with linear, quadratic, and cubic interpolants, the dis-
tinction between Figure 6 and 7 suggests that the cubic surrogate system based on 3765 model
executions shows the most improvement in efficiency. To further compare the efficiency between
the three interpolants, we plot their error decay as the level L increases in Figure 8. To attain
the same error, the cubic interpolant needs significantly fewer interpolation points than both the
quadratic and linear interpolants. This indicates the surrogate system based on high-order hier-
archical basis (i.e., the cubic basis) is more efficient than that with linear hierarchical basis. The
estimated 95% credible intervals for the six unknown parameters based on the four MCMC sim-
ulations (three surrogate-based simulations and the conventional one) are listed in Table 3. Table
3 indicates that all the intervals can include the true parameter values listed in Table 1, and these
intervals calculated based on different simulations are close to each other.

Finally, based on the parameter samples obtained in above MCMC simulations, we predict the
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Table 3: The 95% credible intervals of the six unknown parameters obtained using the conventional
MCMC and the surrogate systems with linear, quadratic, and cubic basis functions in Case 1.

conventional MCMC linear S(θ) quadratic S(θ) cubic S(θ)
D [9.5218,10.8981] [9.5834, 10.9382] [9.5723, 10.9560] [9.5717, 10.9153]

log(kA) [-1.6596, -1.5588] [-1.6561, -1.5545] [-1.6575, -1.5531] [-1.6568, -1.5565]
log(kB) [-2.3426, -2.2342] [-2.3394, -2.2315] [-2.3381, -2.2298] [-2.3390, -2.2325]
log(kC1) [-4.0410, -3.6442] [-4.0137, -3.6462] [-4.0223, -3.6378] [-4.0254, -3.6501]
log(kC2) [-4.0489, -3.6629] [-4.0501, -3.6515] [-4.0394, -3.6499] [-4.0420, -3.6549]
log(kC3) [-4.1405, -3.7258] [-4.1259, -3.7205] [-4.1338, -3.7143] [-4.1340, -3.7151]

breakthrough curve of the concentration c3 at velocity of v = 0.2. The breakthrough curve is
predicted at time t = 40, and xi = 2i ∈ [0, 40], for i = 1, . . . , 20. For each parameter sample
drawn in the conventional MCMC, we run PHT3D to get predictions; and for that drawn in the
surrogate-based MCMC, the predictions are estimated based on the surrogate system. For each
predicted point in the breakthrough curve, the surrogate systems are built via IL,Nθα (η) in (3.30) by
setting L = 10 and the tolerance α = 0.0001. In Figure 9(a), we plot the upper and lower bounds
of the 95% credible intervals for the predictive breakthrough curve based on the conventional
MCMC and the surrogate-based MCMC. As expected, the credible intervals via the surrogate
systems match very closely to those obtained by the conventional MCMC but with computational
effort greatly reduced. For example, Figure 9(b) shows the PDFs of point c3(x = 32, t = 40)
in the predicted breakthrough curve based on the four MCMC simulation results. Figure 9(b)
indicates that the four estimated PDFs are very similar to each other, but the surrogate system for
the prediction c3(x = 32, t = 40) using linear, quadratic and cubic basis cost only 1853, 1032, 793
model executions respectively and the conventional MCMC requires 57,000 model executions.

4.2 Case 2: Reactive transport of uranium (VI) in column experiment

The second synthetic study is designed based on the real-world study of [17]. In order to study ura-
nium reactive transport, [17] conducted eight column experiments in a well-characterized U(VI)-
quartz-fluoride column system where seven of them have U(VI) concentration data. The concen-
tration measurements have independent measurement errors with coefficient of variation of 3%.
The breakthrough curves of U(VI) exiting the column over the course of several pore volumes of
water showed the retardation effect due to uranium adsorption on the quartz surface. The ura-
nium adsorption was simulated in [17] using seven alternative surface complex models (C1-C7)
with different numbers of functional groups and different reaction stoichiometry. The models were
calibrated against three column experiments (Experiments 1, 2, and 8) conducted under different
experimental conditions and the calibrated models are used to predict the remaining four experi-
ments (Experiments 3, 4, 5, and 7).

In the synthetic study, the true model is designed based on model C4 in [17]. As shown in Table
4, the true model has two functional groups, the weak site (S1OH) and the strong site (S2OH).
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Figure 9: Left graph shows the true solution of c3(x, t) at t = 40 (black dots), the 95% credible
intervals estimated using conventional MCMC (red-solid lines) and using the surrogate systems
with linear, quadratic, and cubic hierarchical basis (dashed lines) in Case 1. Right graph shows
the PDFs of a specific predicted quantity of c3(x = 32, t = 40) estimated using the conventional
MCMC (red-solid line),and the linear, quadratic, and cubic surrogate systems (dashed lines) in
Case 1. The true solution is plotted in black-solid line and the red-solid lines are taken as reference.
The surrogate-based MCMC simulations require 1853, 1032, 793 model executions for the linear,
quadratic and cubic surrogate system respectively, while the conventional MCMC requires 57,000
model executions

There are four parameters, three reaction rates and one site density for the strong site. Synthetic
concentration data are first generated by the true models using the parameter values listed in Table
4, under the chemical conditions of Experiments 1, 2, and 8. The computer code RATEQ developed
by [7] is used for the forward model execution. This process generates a total of 120 true values of
uranium concentrations. The true values are then corrupted with 3% Gaussian random noise, and
the 120 measurement data are used to define the likelihood function and build the surrogate system.
To evaluate the performance of our method, we still use the conventional MCMC simulation result
as a reference, i.e. the results computed without using the surrogate system.

Table 4: Surface complexation reactions and parameters of the true model in Case 2. Total site
density used in this model is 1.3 M/L and the summation of site fraction in the last column is 1.0.

U(VI) surface reaction reaction rate site fraction
S1OH + UO2+

2 + H2O = S1OUO2OH + 2H+ K1 = 7.3284× 10−3 1.0-Site
S2OH + UO2+

2 + H2O = S2OUO2OH + 2H+ K2 = 3.4812× 10−2

Site = 1.8079× 10−1

S2OH + UO2+
2 = S2OUO+

2 + H+ K3 = 2.6353× 100

In this example, three parameters in Table 4 are considered as unknown parameters, which are
the logarithms of the first two reaction rates denoted by log(K1) and log(K2), and the fraction
of the strong site denoted by log(Site). The searching domain Γ of the unknown parameters for
the optimization solver D(·) is given in Table 5. First we run the global optimization solver D(·)
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Table 5: The true values, the initial searching domain Γ and the prior domain Γθ̂1
of the three

unknown parameters in Case 2.
log(K1) log(K2) log(Site)

true value -4.9160 -3.3578 -1.7104
Γ [-10.0, -2.0] [-6.0, -1.0] [-4, -0.1]

Γθ̂1
[-4.93, -4.90] [-3.5, -3.3] [-1.75,-1.68]

in the domain Γ. The shift constant C in (3.33) is set to 105 which is large enough to make
log(p(θ|d)) + C ≥ 0. The solver D(·) takes 2763 model executions to find the first maximum of
log(p(θ|d)) which is

θ̂1 = (−4.9169,−3.3603,−1.7111), (4.6)

where the value of the logarithm of the PPDF at the peak θ̂1 is log(p(θ̂1|d)) = −11.4738. Then, we
compute the Hessian matrix H(θ̂1) using the formula in (3.2) and (3.3) which requires 19 model
executions. By taking the inverse, we obtain

H−1(θ̂1) =




2.9495× 10−6 5.3356× 10−6 −3.9045× 10−6

5.3356× 10−6 1.4448× 10−4 −5.3501× 10−5

−3.9045× 10−6 −5.3501× 10−5 2.2257× 10−5


 . (4.7)

Based on this first found maximum, we construct the prior domain for θ̂1 which is calculated using
(3.4) with β = 6. Results are shown in Table 5. Table 5 indicates that like in Case 1, the volume
of prior domain Γθ̂1

is much smaller than the searching domain Γ.

After that, based on the domain Γθ̂1
, we construct the adaptive sparse-grid interpolant IL,Nθα (η)(θ)

in (3.30) by setting η(θ) = log(p(θ|d)) + C, Nθ = 3, L = 8 and the tolerance α = 0.001, which
is the first component S1(θ) of the surrogate system S(θ). Again, we build three interpolants with
linear, quadratic, and cubic basis functions. The number of model executions needed for the three
interpolants are 1072, 705, and 341, respectively. The adaptive sparse grids with 1072, 705, 341
points and the same level L = 8 isotropic sparse grid with 6017 points are shown in Figure 10.
Comparing these four graphs in Figure 10, it again suggests that the adaptive sparse grids surro-
gate used in this work is more efficient than the isotropic one, and the surrogate system based on
high-order hierarchical basis is more efficient than the one with linear hierarchical basis.

Next, based on the first component S1(θ), we continue to search the second maximum of
log(p(θ|d)) + C by having the global optimization solver D(·) acting on the remainder g2(θ) =
log(p(θ|d))−S1(θ)+C. The solver D(·) takes 3625 model executions to find the second maximum
of g2(θ) which is

θ̂2 = (−5.1392,−3.8653,−1.6394), (4.8)

where the value of the logarithm of the PPDF at the peak θ̂2 is log(p(θ̂2|d)) = −203.8976. By
setting the significance tolerance δ̃ = 10−5 in Figure 4, the significance ratio δ in (3.37) is

δ =
p(θ̂2|d)

p(θ̂1|d)
= 2.7003× 10−84 < δ̃. (4.9)
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Figure 10: (a): The 8-level isotropic sparse grid with 6017 points; (b): the adaptive sparse grid
with 1072 points for the linear surrogate system; (c): the adaptive sparse grid with 705 points for
the quadratic surrogate system; and (d): the adaptive sparse grid with 341 points for the cubic
surrogate system in Case 2.

So, finally, like Case 1, the surrogate system has only one component corresponding to the first
maximum, as represented by S(θ) = S1(θ)− C.

In this example, we only conduct two MCMC simulations, one is the conventional MCMC and
the other is cubic surrogate based MCMC (since it is more efficient than the linear and quadratic
ones.) For each MCMC simulation, like in Case 1, a total of 60,000 parameter samples are drawn
using three Markov chains. The Gelman-Rubin R statistic indicates that the Markov chains con-
verge after 510 and 590 generations for the cubic surrogate system and the conventional MCMC,
respectively. For simplicity, we discard the first 600 generations in both simulations and use the
remaining 60, 000 − 600 × 3 = 58, 200 samples to explore the PPDF. The marginal PPDFs of
the three parameters and the PPDF contours of their combinations are plotted in Figure 12. As in
Case 1, Figure 12 indicates that the MCMC results based on the surrogate systems constructed by
our aSG-hSC method can make good approximations for the marginal PPDFs. With the compa-
rable accuracy, however,the surrogate-based MCMC needs significantly fewer model executions.
The number of model executions for the conventional MCMC is 60,000 while the surrogate-based
MCMC only costs 6748 model executions.
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Figure 11: Left graph shows the true breakthrough curve of Experiment 4 in Case 2 (black dots),
the 95% credible intervals estimated using the conventional MCMC (red-solid lines) and using
the cubic surrogate system (pink-dashed lines). Right graph shows the PDFs of a specific pre-
dicted quantity at Pore Volume of 2.49 estimated using the conventional MCMC (red-solid line)
with 58,200 model executions and the cubic surrogate system (pink-dashed line) with 411 model
executions. The true solution is plotted in black-solid line and the red-solid lines are taken as
reference.

Finally, based on the parameter samples obtained in above two MCMC simulations, we predict
the breakthrough curve of Experiment 4 in [17]. It total contains 118 predicted points. Figure 11a
plots the upper and lower bounds of the 95% credible intervals for the predictive breakthrough
curve based on the conventional MCMC and the cubic surrogate based MCMC. As expected,
the credible intervals via the cubic surrogate system match very closely to those obtained by the
conventional MCMC but with computational effort greatly reduced. For example, Figure 11(b)
shows the PDFs of point at Pore volume of 2.49 in the predicted breakthrough curve based on the
two MCMC simulation results. Like in Case 1, Figure 11(b) indicates that the two estimated PDFs
are very similar to each other, but the cubic surrogate system constructing the PDF costs only 411
model executions and the conventional MCMC requires 58,200 model executions.
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Figure 12: The 1D and 2D marginal PPDFs of the three unknown parameters in Case 2 are esti-
mated using the conventional MCMC with 60,000 model executions (red-solid lines and contours)
and the cubic surrogate system with 6748 model executions (pink-dashed lines and contours). The
true parameter values are plotted in black-solid lines or black dots. Take the conventional MCMC
results as reference, the estimations by the cubic surrogate system is accurate enough but with
computational cost greatly reduced.
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5 CONCLUSION

This work proposed a new adaptive sparse-grid high-order stochastic collocation method to im-
prove the efficiency of the Bayesian inference. The high-order hierarchical polynomial basis is
used to build the surrogate system for the PPDF. Combining the increased accuracy of the high-
order hierarchical basis and the local adaptive sparse-grid technique, the computational cost for
the desired surrogate system is greatly reduced compared to the existing methods. Moreover, we
utilized a global optimization method and propose an iterative algorithm for building the surrogate
system for the PPDF with multiple significant modes. The case studies compare our approach with
the existing methods for building surrogate system in the context of Bayesian inference, and pro-
vide computational verification that our technique is efficient and superior to the compared meth-
ods. Such a computationally efficient method is critical for Bayeisan inference of time-consuming
groundwater reactive transport modeling. Due to the non-intrusive nature of the new method, it
can be used together with many models and sampling methods for Bayesian inference.

As a surrogate method, our approach also has some limitations. First, the performance of
the algorithm relies on the ability of the selected global optimization solver. If the execution of
the global optimization solver is computationally expensive, then it will deteriorate the efficiency
of the method. If the solver fails to find the global maximum at a given iteration step in our
algorithm, then we may miss a significant mode which may be lead to an incorrect estimation
of the PPDF. In this case, one has to sacrifice computational efficiency and use more sparse grid
points. However, it is worth mentioning that this kind of challenge is not specific to our method
but to all numerical algorithms of uncertainty quantification and optimization. In addition, since
we use the Hessian matrix to determine the prior domain for each significant mode, it remains
empirical at this moment to find the optimal value for the user-defined constant β in (3.4). When
the shape of the detected significant mode is extremely complicated, the commonly used value,
e.g. β = 6, may not be appropriate to cover the high-probability region. In other words, the
reduction of the bounds for building sparse grids may not be significant as shown in the numerical
examples of this study. The major challenge resides in non-smoothness of the PPDF surface due
to nonlinearity of groundwater reactive transport models. This requires further study in the future,
especially for coupled biohydrogeochemical processes at larger scales, to determine applicability
of the aSG-hSC method in groundwater modeling.
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Appendix A BUILDING THE SURROGATE SYSTEM FOR A 2-D
FUNCTION WITH MULTIPLE SIGNIFICANT MODES

In order to further test the performance of our method in approximating a PDF with multiple
significant modes, we use our method to build the surrogate system for a 2-D artificial function
with four modes. Although the target function is not a PPDF via the Bayesian approach, it is
sufficient for the verification of the proposed algorithm. The 2-D target function is defined by

η(θ) = M1(θ) +M2(θ) +M3(θ) +M4(θ),

M1(θ) = w1 exp
[
(h(θ)− µ1)>Σ−1

1 (h(θ)− µ1)
]
,

M2(θ) = w2 exp
[
(h(θ)− µ2)>Σ−1

2 (h(θ)− µ2)
]
,

M3(θ) = w3 exp
[
(θ − µ3)>Σ−1

3 (θ − µ3)
]
,

M4(θ) = w4 exp
[
(θ − µ4)>Σ−1

4 (θ − µ4)
]
,

(A.1)

where θ = (θ1, θ2), the translation function h(θ) = (h1(θ), h2(θ)) is defined as

h1(θ) = θ1 and h2(θ) = θ2 + 0.2× θ2
1, (A.2)

and the weights w1, w2, w3, w4 are set to

w1 = 1.0, w2 = 2.0, w3 = 0.0002, w4 = 0.0001 (A.3)

The means and covariance matrices in (A.1) are given by

µ1 = [−6.0,−4.0], Σ1 =

(
0.2 0.0
0.0 0.1

)
,

µ2 = [3.0, 1.0], Σ2 =

(
0.2 0.0
0.0 0.1

)
,

µ3 = [−6.0, 5.0], Σ3 =

(
0.1 0.0
0.0 0.1

)
,

µ4 = [6.0, 6.0], Σ4 =

(
0.1 0.0
0.0 0.1

)
.

(A.4)

(A.1)-(A.4) indicate that the target distribution η(θ) has 4 modes, of which the first two modes,
M1(θ) and M2(θ), are twisted Gaussian modes due to the definition of h(θ) and the other two
modes, M3(θ) and M4(θ), are standard Gaussian modes. In Figure A1(a,b) we plot the surfaces
of η(θ) and log(η(θ)). M1(θ) and M2(θ) are more significant than M3(θ) and M4(θ) due to the
much larger weights w1, w2. Thus, in Figure A1(a), only M1(θ) and M2(θ) are exhibited and the
other two modes are too small to be displayed. The logarithm of η displays the four modes better,
as Figure A1(b) of log(η(θ)) shows all the four peaks. The coordinates of the four maxima are
(3.0,−0.8), (−0.6,−0.32), (−6.0, 5.0) and (6.0, 6.0)

Next, we treat η(θ) as a PPDF and apply the algorithm discussed in Section 3.3 to build a
surrogate system. The searching domain Γ in (3.1) for the optimization solver D(·) is set to Γ =
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[−10, 10]× [−10, 10]. The shift constant C in (3.33) is set to 1000 which is large enough to make
log(η(θ)) +C ≥ 0. The optimization solver D(·) takes 284 function evaluations to find the largest
maximum which is

θ̂1 = (2.999,−0.801) (A.5)

where the value of η(θ1) is 2.2508. Then we compute the Hessian matrix H(θ̂1) using the formula
in (3.2), (3.3) which requires 9 function evaluations. By taking the inverse, we obtain H−1(θ̂1)

H−1(θ̂1) =

(
0.200 −0.240
−0.240 0.388

)
, (A.6)

then the prior domain for θ̂1 is calculated using (3.4) with β = 5, which is

Γθ̂1
= [0.763, 5.236]× [−3.915, 2.315], (A.7)

whose volume is much smaller than the searching domain Γ.

After that, on the domain Γθ̂1
, we construct the adaptive sparse-grid interpolant IL,Nθα (η)(θ)

in (3.30) by setting η(θ) = log(η(θ)) + C, Nθ = 2, L = 8 and the tolerance α = 0.001, which
is the first component S1(θ) of the surrogate system S(θ). In this example, we focus on testing
the performance of our algorithm in detecting multiple significant modes, so we only use the cubic
hierarchical basis to build the surrogate system. The number of function evaluations needed for
the surrogate is 145, which is also the number of points of the adaptive sparse grid.

Based on the first component S1(θ), we continue to search the second maximum of log(η(θ))+
C by having the global optimization solver D(·) acting on the remainder g2(θ) = log(η(θ)) −
S1(θ) + C. The solver D(·) takes 369 function evaluations to find the global maximum of g2(θ)
which is

θ̂2 = (−6.002,−3.200), (A.8)

where the value η(θ̂2) is 1.1254. By setting the significance tolerance δ̃ = 10−3 in Figure 4, the
significance ratio δ in (3.37) is

δ =
η(θ̂2)

η(θ̂1)
= 0.5001 > δ̃. (A.9)

Thus, the second mode around θ̂2 is also a significant mode. Then we compute the Hessian matrix
H(θ̂2). By taking the inverse, we obtain H−1(θ̂2)

H−1(θ̂2) =

(
0.200 0.480
0.480 1.252

)
, (A.10)

then the prior domain for θ̂2 is calculated using (3.4) with β = 5, which is

Γθ̂2
= [−8.236,−3.763]× [−8.794, 2.394], (A.11)

whose volume is also much smaller than the searching domain Γ. Then we construct the second
surrogate component S2(θ) on Γθ̂2

which requires 359 function evaluations. In Figure A1(c), we
plot the plain view of the logarithm of η(θ) where the two black dots represent the peaks at θ̂1 and
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θ̂2, and the two black boxes are their prior domains Γθ̂1
and Γθ̂2

. Accordingly, in Figure A1(d), we
plot the sparse grids built on Γθ̂1

and Γθ̂2
.

Next, based on S1(θ) and S2(θ), we run the third iteration of the algorithm in Figure 4. The
optimization solver D(·) takes 217 function evaluations to find the global maximum of g3(θ) =
log(η(θ))− S1(θ)− S2(θ) + C which is

θ̂3 = (−6.001, 4.999). (A.12)

The value of η(θ̂3) is 3.183× 10−4, and the significance ratio δ in (3.37) is

δ =
η(θ̂3)

η(θ̂1)
= 1.414× 10−4 < δ̃. (A.13)

Thus, the function η(θ) has two significant modes according to the selected value of the signifi-
cance tolerance. Then the final expression of the surrogate system is S(θ) = S1(θ) + S2(θ) − C
and the two modes M3(θ) and M4(θ) are discarded.

Note that the significance tolerance δ̃ can be set to any value according to the purpose of the
simulation. For example, when the probability of a rare event is studied for risk assessment, then
the two small modes, M3(θ) and M4(θ), become important in quantifying the uncertainty of the
rare events. In this case, the tolerance δ̃ can be set smaller, e.g. 10−5, in order to capture M3(θ)
and M4(θ) and the two additional components to the surrogate system.
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Figure A1: (a): Surface of the target function η(θ) where modesM3(θ) andM4(θ) are too small to
be displayed. (b): Surface of log(η(θ)) that has four modes displayed. (c): Plain view of log(η(θ)).
Since modes M1(θ) and M2(θ) (black dots) are more significant than M3(θ) and M4(θ) (green
dots), our algorithm only build the surrogate system consisting of the two components for M1(θ)
and M2(θ). The prior domains of the two components are marked by the black boxes around the
two black dots. (d): The sparse grids for the two components of the surrogate system. The one for
M1(θ) has 341 points and the other for M2(θ) has 145 points..
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